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Abstract 
An enhanced displacement feedback structural control procedure is presented for performance-based 

design in this paper. At first, a comparative study is implemented assessing three most common active 
control algorithms including state, acceleration, and displacement feedback controls. The advantage of the 
displacement feedback algorithm for active control of structures against earthquakes is demonstrated 
through a number of representative examples. Second, the conventional displacement feedback control is 
modified to keep the lateral displacements under a preset value and to apply the control forces only when 
needed not continuously, hence to minimize the input energy. The lateral displacement at a certain level, 
e.g., the roof, is used as an on/off switch for the applied control forces. When the target displacement is 
going to be exceeded, the control forces are applied to reduce the displacements. As a result, it is shown 
that use of the proposed algorithm considerably reduces the energy demand of the control system 
compared to other procedures. Moreover, response of structure is controlled to any desired limit. 
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1. Introduction 
 

Advancement of science and technology in recent decades has also resulted in developing 
novel methods for seismic resistant systems in structures, out of which the active control is 
among the leading approaches. The most important applications of an active seismic control 
are: reduction of the response level of structure, strengthening of existing structures against 
earthquakes, retaining sensitive and expensive components in buildings when their post-
earthquake serviceability is of prime importance, resilience of the system and the ability to 
conform to the nature of the earthquake loading when preparing for reaction. According to 
Soong [1], the first attempts for using active control as a method for lowering structural 
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response dates back to early 60's when Freyssinet suggested use of prestressed tendons for 
stabilization of tall buildings. At the same time, Minai & Kobori [2] introduced the concept 
of dynamical smart structures being able to actively control the response in severe 
earthquakes. Zuk [3,4] and Zuk and Clark [5] introduced some basic actively controlled 
structures separating control systems designed for reduction of motion from motion-inducing 
systems. Nordell [6] proposed to include some reserved resistant members in structure to be 
activated in the event of an emergency loading to increase the structural strength. Yao [7] 
presented a comprehensive theory for the structural control.  

In the years afterwards, parallel to the advent and development of digital computers and 
sensors, several control methods were proposed, including the optimum control method 
(LQR) [8,9,10], the sliding mode control approach (SMC) [11], and the predictive controlling 
procedure [12]. A comprehensive review on different active control methodologies can be 
found elsewhere [13,14]. A prime concern and disadvantage of the active seismic control of 
structures has been the severe energy demand of the control apparatus in a large earthquake. 
Therefore, optimizing the control algorithm has been a focus of research in recent years. The 
fundamental configuration of an active control system consists of a number of sensors 
installed at floor levels of a building to record response acceleration, velocity, and/or 
displacement at short time steps. These data are analyzed within a certain control algorithm to 
determine the control forces to be applied to structure immediately. Conversion of response 
to control force is generally implemented using the control efficacy matrix. In linear 
optimization, the control force vector is computed such that a performance index is 
minimized. This index is representative of the energy required for the operation of the control 
system and it is clearly preferred to be a minimum [13,14].  

For structural applications, the linear optimized control is categorized to three different 
algorithms including the state, acceleration, and displacement feedback controls. In the state 
feedback control use is made of the velocity and displacement vectors of the structure’s 
DOF’s. Then, the control forces are calculated as the efficacy matrix multiplied by the state 
vector. While the state feedback control theoretically is the fundamental control algorithm, it 
requires measuring velocity and displacement at all degrees of freedom which is impractical. 
This major drawback of this method was the reason for development of other algorithms 
including the acceleration feedback and the displacement feedback controls [13,14].  

At the same time, emerge of the performance and displacement based design of structures 
leads one to the idea that by modifying the displacement feedback algorithms and the 
corresponding control forces, it may be possible to retain the response within the limits 
ascertained by the current performance-based instructions for different performance levels. 
The above idea is followed and a performance-based displacement feedback algorithm is 
developed based on a target displacement. The control forces are to be applied only when the 
target displacement is to be exceeded, hence minimizing the required energy. 

In the next sections first it is shown that the displacement feedback control (DFC) is the 
most efficient algorithm within the conventional control methods. Then, the new modified 
displacement feedback control (MDFC) algorithm is developed and implemented based on a 
selected target displacement and instantaneous application of control forces. The structural 
response is to be controlled to any desired limit. 
 
2. Comparison of the conventional active control algorithms 
 
2.1. The state feedback control (SFC) 
 

The dynamic equilibrium equation for an MDOF structure under active control can be 
written as equation (1): 
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In which M, C and K are the square mass, damping and stiffness matrices of the 
dimension n; x, u and f are the n×1 vector of structural displacements, m×1 vector of control 
forces and r×1 vector of structural loadings, respectively; and D and E are respectively the 
n×m and n×r position matrices of the control forces (CF's) and the structural loadings. Since 
solving the control equation (1) is easier in the state space, a 2n×1 collective vector of 
displacements and velocities is introduced as equation (2): 

 
(2) 

 
Replacing equation (2) in equation (1), results in equation (3):  

 
(3) 

The coefficient matrices of equation (3) are defined as:  
 

(4) 
 
 

(5)  
 
 
 

(6) 
 
In the above equations, I is the n×n unit matrix and 0 is a rectangular null matrix.  
As of the optimized linear control theory, the target is finding a control vector u(t) 
minimizing the performance index J defined as follows:  

 
(6)  

 
 

where: 
                                                                         (7) 

 
in which Q is a 2n×2n weighting positive semi-definite matrix and R is an m×m weighting 
positive definite matrix calculated by trial and error.  
In the linear control theory, the Hamiltonian of a dynamical system is defined by equation (8) 
[3]: 

                                                                                       (8) 
 
Substituting equations (3) and (7) in equation (8) in the absence of structural loadings results 
in equation (9): 

(9)  
 

in which λ is a coefficient matrix defined as:  
 

(10) 
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(11) 
 
Therefore:  

(12)  
 
Equation (12) shows that the CF's are direct functions of λ; but calculating λ is not an easy 

task because the boundary condition λ(∞)=0 refers to the steady state response while value of Z 
is known only at t=0. Such problems are known as 2-point boundary value problems (TPBVP). 
To overcome the above difficulty, it is common to define λ as a multiple of the state vector as:  

(13) 
 

Substituting equation (13) in equation (12) results in:  
(14) 

 
(15) 

S is a positive definite matrix known as the Riccati matrix and G is the control efficacy 
matrix relating the CF's to the measured system responses. Replacing equation (14) in 
equation (9), a Riccati equation is derived as:  

(16) 
 

There are quite a few methods for solving the Riccati equation (16) for S. Then the CF's are 
calculated using equations (14) and (15).  
 
 
2.2. The acceleration feedback control (AFC)  
 

The main goal in AFC is controlling the response only using the acceleration response 
values. Chung et al. [15] provided a solution for this problem which is summarized here. The 
main idea in this solution is again minimizing the performance index in the framework of the 
optimized control algorithm.  
It is assumed that the output vector y(t) is a linear function of the state space vector, as:  

                                                               
           (17) 

 
in which D is a P×2n coefficient matrix where P is the number of acceleration sensors and 
y(t) is the vector of measured acceleration responses. Considering the definition of )(ty , the 
following simple change of equivalent notation is applied to equation (17):  

(18) 
 

in which  )(txa  is the absolute acceleration response. 
Next, the CF's are calculated with multiplying the response vector by the efficacy matrix G as:  

(19)  
 

Chung et al. [16] derived the following equations for calculating the efficacy matrix:  
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(21) 
(22)      

  
in which L  is the Lagrangian coefficient matrix, ][ 000

TzzEZ = , and z0 is the initial value 
of the vector z(t). An initial guess for G  solves equations (20) and (21) for L  and H  
matrices. These matrices are then substituted in equation (22) to derive a modified G . This 
process is repeated until convergence. Then using the final G matrix; the CF's are calculated 
by equation (18).  
 
2.3. The displacement feedback control (DFC)  
 

While in SFC knowing the state vector was a requirement for the optimized control, in 
DFC having the system displacements and a dynamic ''observer'' are enough for computing 
the CF's. The dynamic ''observer'' is one of the common algorithms in the modern control 
theory and analysis. On this basis, a mathematical model is developed in which only the 
measured displacements are used to prepare the dynamic system. Therefore, the system 
output vector can be shown as:  

(23) 
 

The matrix C0 defines the accessible entries of the state vector. Based on the control 
algorithm, the dynamic observer equation can be written as:  

 
(24) 

 
 (25) 

 
in which L  is the efficacy observer matrix to be computed, and a hat sign shows the 

output of the system. The first and second terms on the right of equation (24) correspond to 
the estimated system and the third term corrects the mathematical model of the system using 
a linear feedback of the difference between the measured output )(ty  and the calculated 
output )(ˆ ty . Both of the later values are known and accessible.  
Now, equation (24) is deduced from equation (3) resulting in:  

 
(26) 

 
If the difference between the observer and the main systems is shown as the error function 

)(ˆ)()()( tZtZtZter −=  and is substituted in equation (25), the following linear first order 
equation emerges:  

 
(27) 

 

 
It is seen that the error function is time dependent, thus it must tend to zero in the steady state 
response phase for a stable system. For this purpose, the stability condition of the closed loop 
observer can be considered as follows:  

(28) 
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in which iλ  are the eigenvalues of the LCA−  matrix. Since both matrices A  and C  are 
definite, it suffices to determine the efficacy matrix L . L  should be selected such that the 
closed loop LCA−  system remains stable. Considering the property that the eigenvalues of a 
matrix and its transposed counterpart are identical, then:  

 
(29) 

Now efficacy of the observer can be computed using the closed loop TTT LCA − . Then after 
calculating )(ˆ)( tZtZ  by equation (24) and substituting in equation (25), the CF's are calculated 
as:  

(30) 
 

 
3. Numerical comparison of the conventional algorithms  
 
3.1. Properties of the structural models  
 

To assess and compare the mentioned control algorithms, three structures having 4, 8 and 
12 stories are used in order to cover a wide range of periods. The structures are similar in 
plan having 8 frames in each of the perpendicular directions. The story height is 3 m. The 
structural system consists of special moment frames, located in a very high seismicity region 
on very firm soil. The buildings are residential and are regular both in plan and elevation. 
Table 1 shows the dynamic characteristics of the structures.  
 

Table 1. Dynamic characteristics of the structures studied. 

 
 
3.2. Numerical results  
 

The structural models described in the previous section are analyzed under the Elcentro 
(Imperial Valley station, 1940), Tabas (Tabas station, 1978), and Manjil (Abbar station, 
1990) earthquakes, all scaled to a PGA of 0.35g. The response is controlled using the three 
methods explained earlier. The results are compared with those of the uncontrolled linear 
structures. It is assumed that the CF is applied only to the roof. The results are shown, as 
examples of similar trends, for the 12-story structure under Tabas (1978) in Figures 1-4. 
Also, the distributions of the responses along height, averaged between the earthquakes, are 
given for all of the buildings studied in Figures 5 and 6.  
 

Structure  Stiffness 
(kN/m) 

Story mass 
 (ton) 

First mode damping 
ratio (%) 

Fundamental 
period (sec) 

4-story whole stories 680,000 600 2 0.537 

8-story 

lower 4 
stories 871,000 600 

2 0.920 upper 4 
stories 680,000 600 

12-story 

lower 4 
stories 1,463,000 600 

2 1.167 intermediate 
4 stories 871,000 600 

upper 4 
stories 680,000 600 

)LCA()LCA( TTT
ii −=− λλ

)t(Z.G)t(u −=
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Figure 1. The displacement time history of the roof of the 12-story building under Tabas (1978) 
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Figure 2. The normalized base shear time history, 12-story, Tabas (1978) 
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Figure 3. The control force time history (at roof), 12-story, Tabas (1978). 
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Figure 4. The first story drift time history, 12-story, Tabas (1978). 
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Figure 5. Distribution of mean story drift along the height of 4, 8, and 12-story buildings, Tabas 

(1978). 
 

 
Figure 6. Distribution of mean normalized base shear for 4, 8, and 12-story buildings. 
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Studying the results demonstrated in the above figures, it is observed that the DFC has been 
as successful as SFC in controlling and lowering the structural response resulting in almost the 
same response values. These two algorithms both have reduced the displacements more than 
50% in most cases. On the other hand, the AFC has not been successful in controlling the 
response as much, resulting in responses quite similar to the uncontrolled structure.  

The reason can be attributed to much smaller variations of the displacement response 
compared to the acceleration response where due to severe fluctuations of the acceleration 
time history, determination of the appropriate direction and value of the CF at each time step 
cannot be appropriately accomplished. This is the case for the other response values too, e.g., 
the story drifts and the base shear.  

Similarity of the responses provided by the SFC and DFC shows a very good estimation of 
the system’s state in the DFC algorithm with the dynamic observer system. Therefore, noting 
that in a response control with the DFC algorithm only measurement of the structural 
displacements is required, the DFC can efficiently replace the SFC where in the later both of 
displacement and velocity responses must be at hand.  

In the next section, the DFC that was proved as a most successful algorithm for structural 
response control in seismic events is further enhanced to be suitable for a performance-based 
design procedure. 
 
4. The modified displacement feedback control (MDFC) for performance-based design 
 
4.1. The proposed algorithm 
 

The performance-based, especially the displacement based design, has been the prevalent 
tendency in earthquake engineering in recent years. The main philosophy in the 
displacement-based design is on the basis of a design beginning with deformations limited to 
certain values determined considering function and importance of structure. This is essential 
because it is now well known that seismic damage is a direct function of relative 
displacements. Therefore, paying attention to controlling displacements from the very first 
steps of design is imperative. The control algorithms studied in the previous sections do not 
consider displacement directly as the target of the control process. Actually, they replace 
matrix A in equation (4) with A+BG to change the stiffness and damping of structure. This 
requires calculation and application of the control force in all time steps to the system. 
Following such an algorithm, it is seen that there is not an explicit control on the values of the 
resulting displacements. In fact, the control forces act such that in SFC and DFC algorithms 
automatically a considerable decrease in displacement response is attained. It is not 
mandatory to set a certain level for the amount of response reduction in these algorithms. 
Moreover, and perhaps more important, is the fact that the control force must be applied 
continuously in time with large variations; see Figure 3.  

The above discussion leads to the point that if the conventional control algorithms, 
especially DFC, are modified such that the displacement responses can be directly 
controllable to remain under certain limits, then the desired performance is maintained and 
the required control energy is minimized. This is clearly important when it is noticed that use 
of standby power sources like emergency generators and large batteries is inevitable for safe 
operation of control systems. On the other hand, at many moments structure’s response is not 
as large as needing to be controlled. The control procedure can be idle in such times. 

Now, it is decided not to apply the control force when the displacement is still under a 
predefined value, called the target displacement. This is implemented in this research in the 
framework of the displacement feedback control, as an algorithm adapted to the performance-
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based design. It is called the modified displacement feedback control, (MDFC) having an 
algorithm shown in Figure 7. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Algorithm for the modified displacement feedback control (MDFC). 
 

In the above algorithm first the structural characteristics are provided along with a target 
(maximum) displacement for the roof considering the function and importance of the 
building. At each time, the sensors record and relay the roof displacement to the control 
system enabling the observer system (lower part of the algorithm) to estimate the state vector. 
Calculation of the control force is disregarded until displacement of the roof exceeds the 
target value, when the control force is determined and applied to the roof. Since the control 
force is applied one time step later, to be on the safe side a reduction factor is considered for 
the target displacement and a decreased target displacement is used in the algorithm. The 
appropriate reduction factor was appeared to be 0.9 in the cases studied. 
 
 
4.2. Numerical study  
 

The same buildings introduced previously are studied again under the same earthquakes 
using the proposed MDFC algorithm (Figure 7). Because of similarity of the trends, only 
those of the 12-story structure under Tabas (1978) are presented in the following. As is seen 
in Figure 1, the maximum displacement of the roof of this building in the uncontrolled case 
under Tabas (1978) is about 17cm. Considering this value, several cases for the target 
displacement of the roof are evaluated selecting this quantity to be 16, 14, 12, 10, 8 and 6 cm. 
The controlled response of the structure is calculated for different target displacements. The 
roof displacement and control force time histories are shown in Figure 8. Also, Figure 9 
shows the required input energy for the control system in each case. 
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                          (c) TD=12 cm                                                               (d) TD=10 cm 
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                           (a) TD=16 cm                                               (b) TD=14 cm 
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                               (e) TD=8 cm                                                           (f) TD=6 cm                                                          

 
Figure 8. The roof displacement and control force for DFC, Tabas (1978)  

 
 

 
Figure 9. Time history of the required input energy of the control system for various target 

displacements, 12-story building, Tabas (1978). 
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As shown in Figure 8, the MDFC algorithm has been practically successful in limiting the 
roof displacement to the target values. Also, comparing Figure 8 with Figure 3, instantaneous 
application of the control force only when needed at certain moments in MDFC against its 
continuous application in the conventional DFC, has resulted in a drastic reduction of the 
total energy required for the active control system, even for a target displacement as small as 
6 cm. Therefore, the MDFC control algorithm presented in Figure 7, has been successful in 
limiting the lateral displacements according to a performance-based design methodology and 
at the same time has needed a minimum energy compared to that of the conventional DFC. 
 
5. Summary and conclusions 
 

A performance-based modified displacement feedback control (MDFC) procedure was 
presented in this study. It was presented in the framework of the conventional displacement 
feedback control (DFC) adding the condition that the control force be applied if only the roof 
displacement exceeds a target maximum value. Therefore, in the proposed algorithm the 
response is controlled only when it is needed. The lateral displacement at any level can be 
used as the control criteria for the applied control forces. 
Despite needing larger instantaneous control forces, it was shown that the MDFC procedure 
can considerably reduce the total energy required for the active control system. Moreover, the 
seismic response of structure can be contained to any desired limit based on existing energy 
resources. 
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