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Abstract 
A frequency-wavenumber-domain formulation is presented in this paper for calculation of the Green's 

functions and wave propagation modes in a stratified fluid body underlain by a layered viscoelastic soil 
medium. The Green's functions define the solid and fluid displacements and fluid pressures due to uniform 
disk loads acting in either the soil or fluid media. The solution is in the frequency domain and is based on a 
Fourier expansion of the displacements in the azimuthal direction together with Hankel transform in the 
radial direction and analytical solutions in the vertical direction. The presented formulation uses the notion 
of layer stiffness matrices for the solid and fluid layers. Derivation of the expressions for the fluid layer 
matrices is presented, and a simple procedure for numerical integration of the Green’s functions is 
proposed. Two examples of the use of the presented model are presented. The first example deals with 
computation of the dynamic impedances of seabed foundations, and the second example concerns 
computation of fundamental modes of surface waves at the solid-fluid interface. This mode is often used in 
characterization of the seabed material from the direct seismo-acoustic measurements underwater. 
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1.  Introduction 
 

Within the realm of continuum mechanics, Green's functions are mathematical expressions 
which define the response of a medium to concentrated loads. Depending on the type of 
medium, these functions relate displacements or velocities to the applied forces, stresses, 
dislocations or pressure sources.  Although derivations of Green's functions date back long 
before the computer age, extensive work on their development took off just with the 
introduction of numerical techniques such as the boundary element methods. A 
comprehensive coverage of the literature in this subject is beyond the scope of this paper. The 
reader is referred to classical texts on solid mechanics and wave propagation such as Ewing 
et al. [1]. Only a few work directly related to this study is cited in the following. 
                                                           
∗Corresponding author.   
E-mail addresses: amir.m.kaynia@ngi.no (A.M. Kaynia)  

CMCE
  Computational Methods in Civil Engineering 



A.M. Kaynia / Comp. Meth. Civil Eng., Vol. 2, 2 (2011) 127-143 

128 

Based on the pioneering work of Thomson [2] and Haskell [3], Kausel and Roesset 
presented a frequency-wavenumber-domain solution for the Green's functions in viscoelastic 
media [4]. Using a different solution technique, Luco and Apsel presented other expressions 
for the Green's functions [5]. Both these solutions are based on expanding the load in the 
horizontal direction and using analytical solutions in the vertical direction. A different 
approach, reversing the use of analytical and approximate solutions in the two directions, was 
proposed by Kausel [6] and Waas et al. [7].  These and similar expressions for Green's 
functions have been incorporated in different applications in earthquake engineering, 
seismology, site response analyses and seismic site explorations. 

Based on the work of Ewing et al. [1] and Kausel and Roesset [4], Stokoe et al. extended 
the 2-D Green's functions for a layered half-space to include a layer of water over the half-
space [8]. They used their results to develop a technique for the inversion of dispersion curve 
in the surface wave measurements performed offshore. This formulation is extended in this 
paper to 3-D problems accounting also for layering in the fluid medium. To this end, the 
solution technique by Kausel and Roesset is adapted to ideal fluid media where the shear 
modulus is zero (acoustic medium). The derived solutions are in the form of integral 
expressions. The numerical evaluation of these integrals is implemented in a numerical 
simulation code from which representative results are calculated for the dynamic impedances 
of seabed foundations.  

Another important application of the developed model is in characterization of offshore 
sites. Shear modulus is a central parameter in characterizing the mechanical behavior of geo-
materials. Low-amplitude shear modulus plays a significant role in such analyses as machine 
foundation design, site response analyses under seismic excitations, and calculation of 
foundation impedance in soil-structure interaction studies. In addition, this parameter can be 
used for characterization of deposits that are hard to sample, such as gravels and cobbles or 
are difficult to characterize by traditional in situ techniques such as offshore sites. Shear 
modulus is directly related to the wave velocity of the material. Therefore, an indirect way of 
estimating the shear modulus is determination of wave velocities, which is often carried out 
by employing seismic methods. 

The commonly used seismic methods for velocity logging in onshore applications are the 
cross-hole, down-hole and refraction seismic methods. Both the cross-hole and down-hole 
methods require installation of one or more boreholes. This limits their application offshore. 
The alternative technique is the surface wave seismic method that is based on measurement 
of surface waves. Being a noninvasive seismic technique, this method has received more 
attention recently for onshore and offshore applications. The development in surface wave 
technique accelerated recently by the introduction of transient excitation (impact) source and 
implementation of more advanced signal analysis procedures. The technique is commonly 
known as Spectral Analysis of Surface Waves (SASW) method and is widely used in 
geodynamic site characterization, construction monitoring, and determination of pavement 
elastic properties (see, for example, Hiltunen and Gucunski [9]; Tokimatsu [10]; and 
Haegeman [11]). This method has been extended to offshore applications for site 
characterization by Stokoe et al. [8] and Luke and Stokoe [12] and detection of gas hydrates 
by Sedighi-Manesh et al. [13], among others. More recent applications are those by Sauvin et 
al. [14], Socco et al. [15] and Vanneste et al. [16].  

 
2. Dynamic impedance of foundations on seabed  
 

The technique used here to calculate the impedances is based on the solution proposed by 
Wong and Luco [17]. According to this technique, the contact surface between the soil and 
foundation is discretized into a regular grid of rectangular elements. By applying uniformly 
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distributed unit loads on each element in the three directions and calculating the 
displacements at all element centers (nodes), one can derive the soil flexibility matrix at the 
soil/foundation interface. Inversion of this matrix, and imposition of the kinematic conditions 
for the various response modes of the rigid foundation, leads to computation of the tractions 
at the soil-foundation interface and determination of the impedances.  

This formulation hinges on the availability of a dynamic Green's function for the medium 
which gives the relationship between the applied loads/tractions and the resulting 
displacements in the medium. In the present application, the stiffness matrix approach 
proposed by Kausel and Roësset [4] has been used. Implementation of this method is 
achieved by assembling layer stiffness matrices and solving the resulting equations for the 
specified unit forces at layer interfaces. The calculations are carried out under steady-state 
harmonic vibration at discrete frequencies ω.  

The stiffness matrices of the acoustic (fluid) layers are derived in Appendix A of this 
paper. For the soil layers, the expressions derived by Kausel and Roësset [4] for solid layers 
have been used in this study. These expressions are summarized in the following for 
completeness. Appendix A also presents, as example, derivation of the Green’s functions for 
the vertical disk load, and also presents a simple algorithm for their numerical evaluations. 

If k denotes the wave number, G is shear modulus, and q and s are defined as 

( )2/1 PVkq ω−=   (1) 

( )2/1 SVks ω−=  (2) 

then the symmetric layer stiffness matrix for the "SV-P wave" case is given by 
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and h is thickness of the layer. The stiffness matrices for a layer and half-space for the "SH-wave" 
case are 
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Finally, the stiffness matrix of a water layer with free surface is given by (see Appendix 
A) 
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where β  is defined as 

( )2/1 Ckk ωβ −=  (8) 

 
3. Impedances of rigid foundations on seabed 

 
This section presents the vertical impedances of a square foundation with side dimension 2a. 

Figure 1 shows the geometry and the parameters of the problem under consideration. As expected 
and verified by previous studies (e.g. Kaynia et al. [18]), the horizontal and rocking impedances 
are only marginally affected by the presence of the water; therefore, classical solutions for 
foundations on homogenous half space can be used for them, and this study has focused on 
vertical response only. The derived impedances are complex quantities which are represented by 
their real and imaginary parts. For the sake of comparison with other solutions, the vertical 
impedance is normalized by Ga and its variations with frequency is plotted in terms of the non-
dimensional frequency a0 = ω a/VS, where G  and VS are the shear modulus and the shear wave 
velocity of the half space. The presented results are for a hysteretic damping ratio ξ = 0.05. The 
Green's functions were evaluated by discretizing the soil/foundation interface into a grid of 8x8 
elements. Moreover the soil was assumed to have a pressure wave velocity VP = 1500 m/s 
(representing typical water-saturated soils) 

Figure 2 shows the real and imaginary parts of the normalized vertical impedance of a square 
foundation. To illustrate the influence of water depth on the impedance, the results are shown for 
H = 0.0 (no water) to H = 10m. No results are given for higher depths as the impedance 
practically reached its asymptotic value at H = 10 m. (The dimension of the foundation was 2a = 
4m. The water depth beyond which the water has no additional effect on the impedances depends 
on the foundation dimensions. This is addressed in the following.) Examination of the plots in 
Figure 2 suggests that the presence of water can be viewed essentially as an added mass-dashpot 
effect. The added mass is approximately equivalent to the mass of a block of water directly over 
the foundation with a height of about 0.25a. 

The observation that for underwater foundations one could use the corresponding results for 
foundations on half space with additional damping and mass, has inspired a parametric study to 
establish practical values for design. To this end, a series of analyses was carried out for a circular 
foundation with radius a over a uniform half space with different values of Poisson’s ratio. The 
results are presented in Figure 3 in terms of the added damping ratio (left plot) and the height of a 
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block of water over the foundation normalized by the foundation radius. The latter indicate 
typically a water height of approximately 25% of the foundation diameter. 

 
 

 
 

Figure 1. Key elements of soil-water-foundation model used in impedance computations. 
 

 
 

 
Figure 2. Real and imaginary parts of normalized vertical impedance of rectangular rigid foundation 
on seabed. 
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Figure 3. Equivalent mass-damping parameters for circular footing for different values of Poisson’s 
ratio. 

 
 

4. Numerical simulation of surface wave modes 
 
Measurements of surface wave modes are sometimes used in estimating the soil 

parameters. The soil profile is often interpreted based on forward modeling algorithms or 
optimization techniques. Both methods require generation of theoretical dispersion curves for 
the soil profile. Among the proposed approaches, the one known as the determinant search 
method [19] has been was adopted in the present study. The procedure is explained in the 
following, and a number of examples are presented subsequently.  

For a layered solid-fluid system, the total stiffness matrix is assembled from the individual 
layer stiffnesses, in a finite element sense, as described in the previous section. For a given 
frequency, ω, this matrix is a function of the wave number k. By varying the wave number 
from an estimated upper bound and calculating the determinant of the total stiffness matrix 
one can determine the k-values which render the determinant zero. These values, ki , are the 
eigenvalues of the problem and correspond to phase velocities Ci = ω /ki and wavelengths λi 
= 2π/ki of the surface wave modes (Rayleigh wave for onshore and Scholte wave for offshore 
sites). Alternatively, one could specify the wavelength and vary the phase velocity until a 
zero determinant is observed. The latter approach has been used in this study. Depending on 
the soil-fluid parameters, the fundamental mode (as well as other natural modes) can be real 
or complex. A real mode, which corresponds to a real eigenvalue, k, propagates with in-phase 
motions of particles in the horizontal and vertical directions. A complex mode, on the other 
hand, lacks this characteristic and, furthermore, attenuates with distance.  

It has been noted earlier (e.g., Stokoe et al. [8]) that in most natural soil deposits, where 
the soil stiffness increases with depth, the fundamental mode is real. This mode can readily 
be determined by the determinant search method outlined above. Although a complex mode 
can also be captured by this method (by allowing the wave number to take on complex 
values), its implementation for complex cases tends to become inefficient and time 
consuming [20]. One may expect to encounter complex modes in sites characterized by a stiff 
layer over softer deposits for wavelengths that span the two contrasting layers. For such sites, 
the surface wave mode may still be real if the wavelength is too small or too large compared 
to the thickness of the top layer [21]. To estimate the surface modes for such cases it has 
become customary in the geophysics community to use only the real part of the determinant. 
Although this value does not correspond to any realistic physical mode, it has nonetheless 
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been shown to provide a reasonable estimate of the phase velocity for onshore applications. 
This approximate approach has been adopted in this study for offshore problems.   

A number of case studies are presented in this section to highlight the characteristics of the 
modes. To this end, three idealized soil profiles were considered. The first is a homogeneous 
half space. The second one is a profile with increasing stiffness with depth, and the third is a 
stiff layer over a homogeneous half space. The same mass density, equal to 1800 kg/m3, and 
same Poisson's ratio, equal to 0.4, was used in all the soil types. Table 1 gives the shear wave 
velocities for these soil profiles. In order to study the influence of water on the characteristics 
of the first surface mode, a range of water heights was considered over each soil profile. 

 
 

Table 1. Shear wave velocities (in m/s) used for idealized soil profiles. 

 Thickness (m) Profile 1 Profile 2 Profile 3 

Layer 1 10 200 100 400 

Layer 2 10 200 200 200 

Layer 3 10 200 300 200 

Half space ∞ 200 400 200 

 
 
Figure 4 displays the calculated dispersion curves of the fundamental Scholte mode in 

Profiles 1 to 3 for water heights varying from H = 0.0 to H = 70m. The dispersion curves are 
plotted in the velocity-wavelength domain and cover the wavelength from λ = 5 m to λ = 200 
m.  

The results for Profile 1 (Figure 4a) show that, as expected, the phase velocity of the 
fundamental Scholte mode varies between a lower value corresponding to small wavelengths 
to an upper value corresponding to the first Rayleigh wave mode of the half space (H = 0.0).  
The lowest Scholte wave velocity in this profile is about 10% lower than that of the Rayleigh 
wave mode. 

Figure 4b illustrates the same set of dispersion curves for Profile 2 (increasing stiffness 
with depth). The expected gradual increase of phase velocity with wavelength is well 
reflected by the plots in this figure.  

Figure 4c shows the dispersion curves for Profile 3 (stiff layer over softer soil). The mode 
shapes in this case are complex. It is interesting, however, to observe that the dispersion 
curve, calculated on the basis of only the real part of the determinant, displays a reasonable 
pattern from a physical viewpoint. This is true for both the Rayleigh wave mode (H = 0.0) 
and Scholte modes, although some anomaly is detected for the Rayleigh wave at small λ. 
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(a)   

(b)  

(c)  
 

Figure 4. Dispersion curves of fundamental modes in soil profiles 1, 2 and 3. 
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To gain more insight into the dynamics of the modes, the fundamental mode shapes in 
Profile 1 are plotted in Figure 5 for two values of wavelength: 40m (left plot), and 100m 
(right plot).  

The plots display only the normalized vertical components of the fundamental (and the 
only) mode shape in Profile 1 for four values of water height, H, ranging from 0.0 to 50m. 
The z-axis points downward with its origin (0.0) at the ground surface; thus, negative z-
values correspond to the water layer. Note that as the wavelength increases, the mode shapes 
corresponding to the various water heights begin to separate. 
 
 

 
Figure 5. Fundamental mode shape of vertical response in Profile 1 for various water heights: two 
wavelengths 40m (left) and 100m (right). 
 

 
5. Summary and conclusions  
 

A frequency-wavenumber-domain formulation was presented in this paper for calculation 
of the Green's functions and wave propagation modes in a stratified fluid body underlain by a 
layered viscoelastic soil medium. The formulation is based on the notion of layer stiffness 
matrices for the solid and fluid layers.  

Two examples of the use of the presented model were presented. The first example dealt 
with computation of the dynamic impedances of seabed foundations, and the second example 
concerned computation of fundamental modes of surface waves at the solid-fluid interface. 
This mode is often used in characterization of the seabed material from the direct seismo-
acoustic measurements underwater. Numerical results to highlight the use of these results 
were also presented.  
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Appendix-A: Derivation of Green’s functions in acoustic layers 
 

This section presents the mathematical formulation for the problem of wave propagation 
in layered solids under water.  It begins with the governing differential equations in both solid 
and acoustic media, then proceeds to the development of stiffness matrices for the layers, and 
finally presents integral solutions for the Green's functions.  Both a limited-depth acoustic 
layer and half-space acoustic medium are considered.  The derivations are carried out under 
steady-state harmonic conditions.  Therefore all variables have time variations of the form     
A (r, t) = A (r) eiωt, where r represents space variables, t denotes time and ω is the frequency. 
The response to an arbitrary loading function is then achieved through a Fourier synthesis of 
harmonic solutions. 

If the displacements in the radial, tangential and vertical directions in a solid or acoustic 
medium are denoted by ur, uθ and uz, respectively, and the corresponding external loads per 
unit volume are fr, fθ and fz, the differential equations of wave propagation in an elastic solid 
or acoustic medium can be expressed as 
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where  λ and µ are Lamé constants, and ρ is the mass density.  The dilatation ∆ and the 
rotations ωr, ωθ and ωz are given by: 
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In the following derivations it is assumed that the acoustic medium is an ideal fluid with 
zero shear modulus and, thus, no shear stress, and the external (body) sources are zero; that 
is, fr = fθ = fz = 0.  The sources are then considered as surface tractions at layer interfaces or 
point sources in the acoustic medium. This assumption does not impose any practical 
restriction on the model, but makes derivations and the code development more 
straightforward. 

To solve equation (A1), one may expand displacements in Fourier series in tangential 
direction as 
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It is necessary at this point to differentiate between the solutions in the solid continuum 
and the acoustic medium.  The solution for the former has been obtained by Kausel and 
Roesset [4] and, therefore, is not repeated there.  However, the final results, in the form of the 
stiffness matrices of layers, will are included in the main text of this paper for convenience of 
reference.  The same solution technique proposed by Kausel and Roesset [4] was pursued 
here for obtaining the stiffness matrices for acoustic layers. The details are given in the 
following sections. 
 
Solution of acoustic equations 
 

Setting µ = 0 in equation (A1) and substituting relations (A4) in equation (A1) to (A3) one 
obtains: 
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where 
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In order that the above equations are satisfied, it is necessary that the terms in the 
parentheses are identically zero. Then combination of equation (A5-a) and (A5-b) leads to the 
following three equations, to be satisfied by any value of n: 

( ) 02 =++⎟
⎠
⎞

⎜
⎝
⎛ ∆−
∆

nrnn
n uu

r
n

r θρω
∂
∂λ  (A7-a) 

( ) 02 =−+⎟
⎠
⎞

⎜
⎝
⎛ ∆+
∆

nrnn
n uu

r
n

r θρω
∂
∂λ  (A7-b) 

02 =+
∆

zn
n u

z
ρω

∂
∂λ  (A7-c) 

Defining now the following Hankel transforms: 
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where Jn (kr)  is the nth order Bessel function of the 1st kind and k the radial wave number, 
and using the following properties of Bessel functions 
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one can show that Hankel transform of equation (A7) leads to 
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can derive the following equations: 
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Finally, substituting from equation (A12-a) for u1n in equation (A12-b) one gets: 
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which can also be expressed as 
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and  Cb = (λ/ρ)1/2  is the speed of sound in the fluid. 
Solving equation (A14) for u2n and substituting in equation (A12-a) for u1n one obtains the 

following solutions: 
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where A and B are unknown constants. 
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Stiffness matrices for acoustic layer 
 

To derive the stiffness matrix of an acoustic layer, similar to the derivations by Kausel and 
Roesset [4], for an elastic solid layer, one has to develop expressions for the stresses. 

The only nonzero component of stress in an acoustic medium, on a plane perpendicular to 
the Z-axis, is σzz which is given by 

σzz =  λ ∆ (A17) 

using the displacement expansions in (A4) and ∆ given by equation (A2), one can derive the 
following expression for the vertical normal stress: 
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Defining now the following Hankel transform of the stress 
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one can show that 
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Substituting for u1n and u2n from equation (A16) in equation (A21) one gets 
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For an acoustic layer of thickness h (Figure 1b) one can use equation (A16-a) to express  
u0

2 n  and   u-h
2 n  at the top  (z = 0) and bottom (z = −h) of the layer as a function of A and B 

and, at the same time, use equation (A22) to express fluid pressures p0
2 n =  σ0

2 2n and p−h
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22n at the top and bottom of the layer in terms of A and B.  Elimination of the unknowns A 

and B from the resulting four equations leads to the following relations: 
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which can be expressed in matrix form as 
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The stiffness matrix of the acoustic layer is then the matrix which multiplies the displacement 
vector in equation (A24). 
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In addition to the general stiffness matrix of the layer, one needs to consider one of the follow-
ing two cases, depending on the extent of the acoustic medium. 
 
 
a)  Acoustic half-space 
 

For this case, both u and p approach zero as  z → ∞.  Therefore, one should have A = 0 in 
equation (A16-a) and (A22).  Eliminating B from these equations and expressing the stress 
versus the displacement, one gets 

H
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where the superscript H is used to denote "half space".  In this case the stiffness matrix reduces to 
a scalar. 
 
b)  Layer with free surface 
 

For the free surface, the condition at a point on this surface is 
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Introducing this relation in the stiffness expression of the layer, equation (A24), one can derive 
the stiffness matrix of an acoustic layer with free surface, as 
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Integral representation of Green's functions 
 

The first step in deriving the Green's functions is to calculate the transformed 
displacements u1n and u2n for applicable values of n.  This is achieved by assembling the 
stiffness matrices of the solid and acoustic layers, as in a traditional finite element method, 
and solving for the interface displacements, u1n and u2n, under the specified interface forces. 
This operation requires the transformed forces for a given stress condition. The details of 
such a derivation are outlined here for the case of a uniform vertical load over a circular disk 
at the solid-fluid interface. This is a case frequently encountered in various applications of 
under-water seismic. The derivations for other cases can simply follow the principles 
presented here. 

For a vertical unit load over a circular disk with radius R, one has the following stress 
conditions: 
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where overbar is used to differentiate the applied stresses from the internal stresses.  If a Fourier 
transform of the load (as in equation A18), is compared with equation (A29) one can observe 
that 
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This means that the displacements are only contributed by the terms associated with n = 0.  
Therefore the displacement expansions reduce to the following expressions: 

ur  (r, θ, z)  =  uro  (r, z) (A31-a) 

uθ  (r, θ, z)  =  0 (A31-b) 
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Applying Hankel transform to the stresses given in equation (A30) one gets (see equation A20) 
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Therefore, if the stiffness relation for a medium is solved for a unit load at a given interface 
and the resulting transformed displacements at a desired point are denoted as 2010  uandu  then, 
from equation (A8), one can write (note that although the stiffness matrices of acoustic layers 
involve only u2, the solid/fluid ensemble retains both u1 and u2) 
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Finally, taking inverse Hankel transform of these expressions, one obtains the following 
integral representations for the vertical and radial displacements (that is, the Green's functions): 
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The calculation of pressures at layer interfaces is straightforward. To this end, having 
calculated the transformed displacements at layer interfaces, one may simply use the stiffness 
relationship in the pertinent layer and calculate the transformed pressures. The pressures can then 
be derived from inverse transformations similar to equation (A34). For instance, if p is an 
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interface transformed pressure due to a unit vertical disk load, one can show that the pressure at 
any point along that interface would be  
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Numerical evaluation of integrals 
 

The above integrals have to be evaluated numerically.  For this purpose, one needs to use a 
scheme to make sure that the sharp peaks in the variation of the integrands are captured within the 
∆k used for the numerical integration. A rigorous scheme has been proposed by Apsel and Luco 
[5]. It takes advantage of locating the sharp peaks in the integrand in establishing a sufficiently 
small ∆k and the asymptotic expansions of the Bessel functions for large k-values. One could also 
adopt a simple integration procedure and obtain fairly accurate results if one carefully selects ∆k in 
the integration region and take advantage of the exponentially decaying properties of the 
integrands.  

A potential source of inaccuracy is the truncation of the integrals at some cutoff wave number 
which results in an artificial spatial periodicity of the load.  If  N denotes the number of  integration 
steps, then  L = 2RN would be the spatial period of the load. The integration step can be taken as 
∆k = 2 π/L and the cutoff wave number (Nyquist wave number) would then be equal to kmax = N 
∆k. For a given frequency, ω, the selected N and ∆k should be such that kmax> 2 ω/VS, min, where VS, 

min is the smallest shear wave velocity in the soil profile. The reason for this restriction is that the 
integrands are highly wavy below kmax  while above this value they decay either uniformly or 
exponentially with wave number, depending on the elevation distance between the observation and 
source points. 
 
 
 
 

 




