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Abstract 
 

Micropolar plasticity provides the capability to carry out post-failure simulations of geo-structures 
due to microstructural considerations and embedded length scale in its formulation.  An essential part 
of the numerical implementation of a micropolar plasticity model is the integration of the rate 
constitutive equations. Efficiency and robustness of the implementation hinge on the type of 
integration scheme employed.  In this paper, two types of algorithms are developed for a critical-state 
micropolar plasticity model based on cutting plane and substepping integrations procedures. 
Performance of the two integration algorithms is first assessed in triaxial and biaxial compression 
tests at an element level.  To evaluate the two integration schemes in a strain localization problem, 
biaxial compression simulations on a slightly heterogeneous specimen of sand are conducted.  In all 
cases the substepping method performs better than the cutting plane method. 
 

Keywords: Integration schemes; Cutting plane method; Substepping method; Micropolar plasticity model; 
Granular soil. 
 

1.  Introduction 
 
Response of granular soils in the pre-failure regime is successfully captured using realistic 

constitutive models such as the critical state two-surface plasticity model proposed by 
Manzari and Dafalias [1,2].  However, beyond the pre-failure regime, during further shearing 
the heterogenous distributions of void ratio and stresses within the soil mass as well as the 
boundary conditions may lead to formation of highly localized shear zones.  This is 
commonly known as strain localization phenomenon. The thickness of the localized zone 
normally depends on the average grain size of the soil.  It has been observed that the soil 
grains may undergo significant rotations within the localized band.  The energy dissipation 
due to grain rotations cannot be accounted for in the constitutive models that are formulated 
in the framework of classical continuum.  Therefore, at the onset of strain localization, 
numerical simulations using the models that are based on classical continuum framework 
may face convergence difficulties.  A suitable framework for post-failure analyses of granular 
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soils is micropolar continuum in which any point of the medium undergoes displacements 
and rotations.  It incorporates the characteristic length that relates the couple-stresses and 
micro-curvatures in the constitutive model.  This approach is used by Manzari and Dafalias 
[3] to enhance their non-polar version of the model in order to capture the post-failure 
response of geo-structures.  

In order to use the micropolar plasticity model proposed by Manzari and Dafalias [3] in 
nonlinear finite element analysis for solving boundary value problems the rate constitutive 
equations must be numerically integrated over a discrete sequence of time steps.  The 
integration schemes and the algorithms used in the simulations control the accuracy, 
convergence and stability characteristics of the global iterative solution.  Therefore, an 
appropriate integration scheme with its proper implementation is important for the overall 
efficiency and robustness of the numerical simulation code.  Generally, a robust 
implementation requires implicit integration which for a realistic constitutive model can be 
fairly lengthy and cumbersome.  Therefore, explicit and semi-explicit integration schemes 
may be attractive alternatives to the implicit schemes.  

Implicit integration schemes such as Closest Point Projection Method (CPPM) have 
become popular because it provides unconditionally stable integration of plasticity models 
[4].  Implicit integration schemes are successfully used for integration of various constitutive 
models for soils [5-10].  With implicit integration schemes a quadratic convergence and 
unconditional stability for Newton-Rhapson iterations can be obtained with the use of 
consistent (algorithmic) tangent operator.  While stability and quadratic convergence are 
guaranteed for simple classical plasticity models such as J2-plasticity, this may not be true for 
more complex models.  The second derivatives of the yield and plastic potential function are 
needed in the algorithm as well as for the formation of the consistent tangent operator.  It is 
often lengthy and cumbersome procedure to obtain the closed-form derivatives for complex 
models, if they can be derived at all, and their implementation is not always straightforward.   

In the explicit integration schemes higher order derivatives of yield and plastic potential 
functions are not needed and the implementation of the algorithms is generally easy and 
straightforward.  While its simplicity and general applicability seem to be attractive features, 
a major drawback of explicit integration schemes is that the algorithm is conditionally stable 
which means that an appropriate step size must be used to retain numerical stability.  Due to 
this limitation, explicit schemes are usually less efficient than implicit schemes.   

In recent years a new class of explicit integration schemes has been proposed that includes 
automatic substepping and error control techniques to alleviate the problem of step size 
requirement.  In this category the one that has been popularly used in the past years is that 
proposed by Sloan [11], and the enhanced and complete form is presented by Sloan et al [12].  
Two schemes that are generally applicable to elastoplastic constitutive models are presented 
by Sloan et al [12].  One approach is based on a modified Euler method and the other is based 
on the high order Runge-Kutta formula.  The first scheme is recently used for integration of 
more complex models and is shown to be accurate and efficient both at the element and 
structural levels [13-16]. 

Another type of integration scheme is the semi-explicit methods, such as the cutting plane 
method proposed by Simo and Ortiz [17].  The simplicity and efficiency of this method are 
quite attractive. However, its major deficiency lies in the weak enforcement of the 
consistency condition that often produce drift-off errors.   

In this paper two integrations schemes, cutting plane method (CPM) and the substepping 
method (SSM) based on the second order modified Euler method are considered for the 
integration of the micropolar plasticity model proposed by Manzari and Dafalias [3].  These 
two algorithms are implemented in the widely used commercial finite element code, 
ABAQUS, via the user-defined subroutine, UMAT.  The performance of the two integration 
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schemes is first evaluated in one-element simulations.  To evaluate the performance of the 
two schemes in problems involving strain localization, drained and globally undrained biaxial 
compression tests on a slightly heterogenous granular soil specimen are considered. 

 
2. Micropolar plasticity model 
 

A brief description of this constitutive model, previously proposed by Manzari and 
Dafalias [3], are outlined in the following subsections. 

 
2.1. Elastic response 
 

Assuming a small perturbation the additive decomposition of the strain and curvature 
tensors denoted by ε  andκ , respectively, are given by e p= +ε ε ε& & &  and e p= +κ κ κ& & &  where the 
subscripts “e” and “p” indicate the elastic and plastic components, respectively. 
The general isotropic elastic relationship for a micropolar continuum are given by [18] 

( ) { } ( ) { }2 2 ; 2 2e e e e e e
ij kk ij ij c ij ij kk ij ij ijG Gλ δ µ ακ δ βκ γκ′ = + + = + +σ ε ε ε & & && & & & &  (1) 

in which the subscript “(ij)” and “{ij}” of the strain and curvature tensors denote the 
symmetric and skew symmetric parts, respectively.  Four additional elastic constants are 
introduced in addition to the usual Lame constants.  To simplify the elastic stress-strain 
relations we assume 0α β= = and ( ) ( )2

12 4 /c cGG G Gγ = +l  where 1l  is a characteristic 
length scale and Gc is a material constant.  Thus equations (1) is reduced to 

( ) ; 2e e e
ij kk ij c ij ij ijG Gλ δ µ γκ′ = + + =σ ε ε && & & &  (2) 

In the non-polar version of Dafalias-Manzari model a hypoelastic relation is adopted for a 
more realistic behavior of granular soils in which shear modulus G is not only a function of 
pressure, but also a function of current void ratio e and is given by 

( ) 1/ 22

0

2.97
1at

at

e pG G p
e p
− ⎛ ⎞′

= ⎜ ⎟+ ⎝ ⎠
 (3) 

where G0 is a material constant and pat is the reference pressure for normalization, usually the 
atmospheric pressure.   
 
2.2. Yield function 
 
The yield function is given by 

  
1/ 2

2 2 / 3 0f J p m⎡ ⎤ ′= − =⎣ ⎦
%  (4) 

where m represents the size of the yield surface. Here 2J% , unlike that in the non-polar version 
of the model, takes the form 

2 1 2 1 2ij ij ij ji ij ij ij jiJ a s s a s s b bµ µ µ µ= + + +% % % % %  (5) 
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where ;p p′= − = −s s α s σ I% , and here the back-stress tensor α  is unsymmetric.  The four 
parameters a1, a2, a3 and a4 may be obtained considering the micromechanics of particles 
displacements and rotation in a granular material [19].  Here assuming 

2
1 2 1 2 21; 0; 1/ ; 0a a b b= = = =l , 2J%  is simplified to ( ) 2

2 2/ij ij ij ijJ s s µ µ= +% % % l  where 2l  is a 
second characteristic length corresponding to plastic deformation.  Although we can set 

2 1=l l  in the present formulation we keep the option of assigning different values to these 
length scales.  The derivatives of the yield function with respect to force-stress and couple-
stress tensors are given as 

1/ 2

2

1 2; ; :
3 3

f N N m
J

σ σ σ σ σ σ∂
= = − = = +
∂ ⎡ ⎤⎣ ⎦

sL n I n n α
σ

%

%
 (6) 

and 

1
1/ 2

2

bf

J
µ µ∂
= = =
∂ ⎡ ⎤⎣ ⎦

µL n
µ %

 (7) 

The dilatancy, critical, and bounding surfaces can be written as 

2 / 3 ; ( , ) exp( )s s s sg c M n mσ
θ θ θα α θ= = Ψ −α n m  (8) 

where ( )1/ 2

2/ Jσ =n s %% , the superscript s = b, c, and d, in which b is for bounding surface, c for 
critical state surface, and d is for dilatancy surface.  m  corresponds to s = b and d, 
respectively, and nc = 0.  The surfaces are dependent on the Lode angle θ  through the 
relation 

2( , )
(1 ) (1 )cos(3 )

cg c
c c

θ
θ

=
+ − −

 (9) 

where c=Me/Mc in which Me and Mc are the critical shear stress ratios in triaxial extension 
and compression, respectively. The Lode angle is defined by 

( ) ( )
3

1/ 2cos3 6 ; ;−
= = =

′− −⎡ ⎤⎣ ⎦

r α sn n r
r α : r α

tr
p

θ  (10) 

where θ  varies from 0 to / 3π  as the loading transitions from triaxial compression to 
extension, and “:” denotes the tensor contraction. 

Note that the in the calculation of theθ  Lode angle only symmetric part of the deviatoric 
stress tensor is used, and θ  is assumed to be independent of the couple-stress tensor. 

A novel feature of the model is the incorporation of critical state behavior through the use 
of the state parameter ce eΨ = − which is a measure of how far the material state, i.e, void 
ratio, is from the critical state.  The critical void ratio is given by 

0
c

c c
at

pe e
p

ξ

λ
⎛ ⎞

= − ⎜ ⎟
⎝ ⎠

 (11) 

where 0e , cp , atp are initial void ratio, pressure at critical state, and atmospheric pressure for 
normalization respectively, and finally cλ and ξ  are material constants.  The bounding and 
dilatancy surfaces are function of the state parameter Ψ as shown in equation (8).  The latter 
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feature allows the model to be used with a single set of model parameters for all confining 
pressures and densities. 

 
2.3. Flow rule 
 

The flow rule is non-associative for the plastic strain, but it is assumed to be associative 
for the plastic curvature: 

1;
3

;

p

p

σ σ σ

µ µ µ

= Λ = +

= Λ =

ε R R n DI

κ R R L

&&

&&

 (12) 

where 0Λ ≥&  is a non-negative plastic multiplier, and  is the Macaulay bracket which is 

defined by , 0ifΛ = Λ Λ >& & &  and 0 for all other values of Λ& .  The magnitude of plastic strain 

and curvature tensor is provided by Λ&  while the direction of the plastic flow is given by σR
and µR .  D is the dilatancy which is defined in the following section. 
 
2.4. Hardening laws 
 

The hardening laws are similar to those used in the non-polar version, and they are 
assumed to be independent of the couple-stress tensor.  The force-stress, back-stress, and 
fabric-dilatancy tensors are asymmetric.  The back-stress tensor α  evolves as follows 

= Λα α&&  (13) 

where 

( ) ( )
02 ;

3 :
b

in

bh hθ σ= − =
−

α α α
α α n

 (14) 

in which 

( )
1/ 2

0 0 0
2 ( , ) exp( ) ; 1
3

b b
c h

at

pg c M n m b G h c e
p

σ
θ θ

−
⎛ ⎞′

⎡ ⎤= − Ψ − = − ⎜ ⎟⎣ ⎦
⎝ ⎠

α n  (15) 

and inα is the initial value of α  at initiation of a new loading process and is updated when the 
denominator in the definition of h (equation 14) becomes negative.  h0, ch, nb are model 
parameters. 
The evolution of the fabric-dilatancy tensor is given as [3]: 

( )max
p

z vc z σε= − − +z n z&&  (16) 

Substituting p
v Dε = Λ&& in equation (16) we have the familiar form 

( )max; zc D z σ= Λ = − − +z z z n z&&  (17) 

in which cz and zmax are model parameters.  The former controls the pace of evolution of z in 
equation (16) while the latter represents the maximum value z can attain.  D is also a function 
of the fabric tensor and is defined by 



M. T. Manzari, K. Yonten / Comp. Meth. Civil Eng.  2 (2011) 21-42 

26 

( ) :d
dD A σ

θ= −α α n  (18) 

where 

( )0
2 ( , ) exp( ) ; 1 :
3

d d
c dg c M n m A Aσ σ

θ θ⎡ ⎤= Ψ − = +⎣ ⎦α n z n  (19) 

 
3. Incremental stress-strain relations 
 

A general form of the elastoplastic constitutive equations in rate form can be obtained in 
the standard procedure utilizing the essential components of the model discussed in previous 
sections.  The equations are derived as: 

;ij klep ep
ijkl

ij ij

D
σ ε
µ κ
′ ′⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

σ ε
D

µ κ
&& & &

&& &&
 (20) 

where 

;
ep ep
ijkl ijklep ep

ijkl ep ep
ijkl ijkl

D
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦⎣ ⎦

D
ep ep

ep ep

D L
E M

D L
E M

 (21) 

The four components of epD  is given as follows 

( ) ( ): :
: : : :

⊗
= −

+ +

D R L D
D

L D R L D R

e e
e

e e
pK

σ σ
σ σ

ε σ σ µ µ
σ µ

Dep  (22) 

( ) ( ): :
: : : :

⊗
= −

+ +

D R L D
L D R L D R

e e

e e
pK

σ µ
σ µ

σ σ µ µ
σ µ

Lep  (23) 

( ) ( ): :
: : : :

⊗
= −

+ +

D R L D
L D R L D R

e e

e e
pK

µ σ
µ σ

σ σ µ µ
σ µ

Eep  (24) 

( ) ( ): :
: : : :

⊗
= −

+ +

D R L D
D

L D R L D R

e e
e

e e
pK

µ µ
µ µ

µ σ σ µ µ
σ µ

Mep  (25) 

where the superscript “ep” refer to “elastoplastic,” and “⊗ ”denotes the tensor product.  The 
second terms in equations (22) and (25) and those in equations (23) and (24) are the terms 
that appear during plastic yielding in which L and R are respectively the derivatives of the 
yield function and plastic potential function with respect to ′σ  or µ  indicated by the 
corresponding superscript used.  pK  is the plastic modulus.  De

σ  and e
µD  are tensors of 

elastic constants for elastic relationship where “e” denotes “elastic” and the subscripts 
denotes the relation corresponding to force-stress or couple-stress.  They are given as 

2 2 4 42 2= ⊗ + +D I I I Ie sym skw
cG Gσ λ  (26) 

2 22e
µ γ= ⊗D I I  (27) 
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where the ( )4 / 2sym
ik jl il jkδ δ δ δ= +I , and ( )4 / 2skw

ik jl il jkδ δ δ δ= −I  are the symmetric and skew 

symmetric fourth rank identity tensor, respectively, and 2 ijδ=I  is the second rank identity 

tensor.  The plastic modulus is given by ( )/pK f= − ∂ ∂ ⋅α α . 

 
4. Integration schemes 
 

The constitutive model is integrated using the cutting-plane and sub-stepping algorithms.  
It is convenient to combine together the components of strain and curvature tensors, and the 
components of force-stress and couple-stress tensors into a single vector in the vector-matrix 
representation (for implementation purpose) of the second and fourth order tensors, 
respectively.  The following notations are used to indicate the combined variables: ˆ T=ε ε κ ,

ˆ T′=σ σ µ ,
Tσ µ=L L L , 

Tσ µ=R R R .  ˆ eD  also combines the respective elastic 
constants which is given in the Appendix.  Thus in this section “stress” includes both force-
stress and couple-stress, and “strain” includes curvature as well.  The two algorithms are 
described in the next subsections. 

 
4.1. Cutting-plane method 
 

A schematic illustration of cutting plane method is shown in Figure 1.  In the cutting-plane 
method the first step involves an elastic predictor in which a trial stress is calculated by 
assuming an elastic response.  This state of stress may fall inside the yield surface in which 
case the response is elastic.  However, if the predicted stress state lies outside the yield 
surface in order to satisfy the consistency condition the stress state must be corrected and 
brought on the yield surface.  To state it mathematically 

ˆ0 : 0ff ∂
= ⇒ + =

∂
L σ α

α
&& &  (28) 

Substituting the hardening law = Λα α&& , plastic modulus, and ( )/pK f= − ∂ ∂α α in equation 
(28), we can express it compactly as 

ˆ: 0pf K= +Λ =L σ&& &  (29) 

 
 

Figure 1.  Schematic illustration of Cutting Plane Method. 
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Now using a Taylor series expansion the first order approximation of the yield function may 
be written as 

0 ˆ: 0pf f Kδ δ δ= + + Λ =L σ  (30) 

where f0 is the value of yield function obtained at the current stress state.  Assuming no 
change in the total strain increment during plastic corrector step we substitute the relationship 
between stress and plastic strain, i.e. ( )ˆˆ :eδ δ= − Λσ D R , in equation (30) and derive the 
plastic multiplier as 

0

ˆ: :e
p

f
K

δΛ =
+L D R

 (31) 

The stress state and internal variables are then brought onto the yield surface by generation 
of plastic strain and internal variables whose magnitudes and direction are given by δΛ  and 
the tensors R ,α  and z .  However, because of the linearization of the Taylor series expansion 
of the consistency condition the stress state may not always lie on the yield surface so an 
iterative procedure has to be used. 
The main steps of the algorithm at tn+1 time increment and iteration, k, are as follows: 

1. Initialize: 
(0) (0) (0) (0)
1 1 1 1ˆ0; 0; ; ; 0p

n n n n n nk + + + += ∆ = = = Λ =ε α α z z  
2. Calculate trial stresses: 

( ) ( ) ( )( ) ( )( ) ( ) ( )
1 1 1 1 11 1

ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ: :
k kk e e p k trial e p k

n n n n n n nn n+ + + + ++ +
= + ∆ = + ∆ −∆ = − ∆σ σ σ σ D ε ε σ D ε  

where 

( )( )

1 11
ˆˆ ˆ ˆ:

ktrial e
n n nn+ ++

= + ∆σ σ D ε  

3. Calculate and check if yield condition is satisfied: 

( ) ( )
1/ 2( )( ) ( )

1 2 11

2
3+ ++

⎡ ⎤= −⎢ ⎥⎣ ⎦
% kk k

n nn
f J p m  

IF ( )
1

k
nf fTol+ ≤ then EXIT 

ELSE 

4. Compute plastic multiplier: 

( ) ( )
( )

( ) 1
1 ( )( ) ( ) ( )

1 11 1
ˆ:

+
+

+ ++ +

∆Λ =
+L D : R

k
k n

n kk k e k
p n nn n

f

K
 

( )
( )

( ) ( )
11

1

k
k k

p nn
n

fK ++
+

∂⎛ ⎞= −⎜ ⎟∂⎝ ⎠
:α

α
 

5. Update plastic strain and internal variables: 
( 1) ( ) ( ) ( )
1 1 1 1ˆ ˆp k p k k k

n n n n
+

+ + + +∆ = ∆ + ∆Λε ε R  
( ) ( ) ( ) ( )

1 1 1 1
k k k k

n n n n+ + + += + ∆Λα α α  
( ) ( ) ( ) ( )

1 1 1 1
k k k k

n n n n+ + + += + ∆Λz z z  
( 1) ( ) ( )

1 1 1
k k k

n n n
+
+ + +Λ = Λ + ∆Λ  

Set 1k k→ + and GOTO Step 2. 
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4.2. Substepping method 
 

A schematic illustration of the substepping method is shown in Figure 2.  The automatic 
substepping method proposed by Sloan et al [12] can be summarized in four key steps.  In the 
first step the trial stress state is calculated by assuming it to be elastic.  If the trial stress state 
is on or inside the yield surface the stress state is updated with the trial stress state.   

However, if the trial stress state is outside the yield surface plastic yielding has occurred 
and thus the yield surface intersection with the stress path must be determined which is the 
second step.  This is done by finding a scalar parameter indicating the proportion of the total 
strain increment that produces plastic yielding.  To satisfy the yield function the current stress 
state that lies outside the yield surface is scaled by a factor whose value is obtained by either 
solving the single non-linear equation of the yield function in a closed-form or numerically 
using methods such as bisection, regula-falsi, secant, Pegasus, etc.  The scalar parameter 
takes the inclusive value between 0 and 1, where the two extreme values represent pure 
plastic or elastic deformation, respectively.   

 
 

Figure 2.  Schematic illustration of the Substepping Method. 
 
The actual stress integration is then carried out in the third step.  In this step automatic 

substepping and an error control algorithm are used.  A local error measure that represents 
errors in the stresses and internal variables due to the approximate integration is computed at 
each subincrement by taking the difference between the second order accurate modified Euler 
solution and the first order accurate Euler solution.  Based on the dominant error term the 
next step size is determined thus allowing variable step size throughout the integration 
process. 

Depending on the constitutive model and the nature of the problem being solved the final 
stress state may lie outside the updated yield surface.  This yield surface drift must be 
corrected by projecting the stress back onto the yield surface to avoid inaccuracy and 
numerical difficulties that may arise at the global level.      
The substepping algorithm is given in the following steps at tn+1 time increment and iteration 
k:  

1. Initialize: 
(0) (0) (0) (0)

1 10; 0; 1; ;n n n nk T T + += = ∆ = = =α α z z  
2. Calculate trial stresses: 
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( )( )( )
1 1 11

ˆˆ ˆ ˆ ˆ ˆ ˆ:
kk trial e e

n n n n nn+ + ++
= = + ∆ = + ∆σ σ σ σ σ D ε  

where ( )( )

1
ˆ ke

n+
D is the secant elastic modulus tensor. 

3. Evaluate the yield function and see if it is satisfied: 
IF ( )( ) ( )

1 1 1ˆ ,k trial k
n n nf fTol+ + + ≤σ α EXIT 

ELSE     
4. IF ( )( )

1 ˆ ,k
n n nf fTol+ < −σ α and ( )( ) ( )

1 1 1ˆ ,k trial k
n n nf fTol+ + + >σ α  (Elastic-to-plastic transition): 

Calculate the intersection parameter η  by solving the equations 

( )( ) ( )( )( ) ( )
1 1 1

ˆˆ ˆ ˆ, : , 0k e k
n n n v n nn

f η η+ + ++ ∆ ∆ =σ D σ ε ε α  

ELSEIF ( ) ( )( ) ( ) ( )
1 1 1 1ˆ ˆ, ,k k trial k

n n n n n nf fTol and f fTol+ + + +≤ >σ α σ α  (purely plastic) 
Set 0η =  
Update stress and the total strain increment portion that causes plastic yielding 

( )( ) ( )( )
1 1

ˆˆ ˆ ˆ ˆ, :k e
n n n v nn

η η+ += + ∆ ∆σ σ D σ ε ε  

( )1 1ˆ ˆ1n nη+ +∆ = − ∆ε ε  
5. WHILE T < 1 Repeat (6-13): 
6. Calculate the first and second order estimates of the increments of stresses and internal 

variables as follows: 
Using ( )( ) ( )

1 11
ˆ ˆk k

nn ++
=σ σ , ( )( ) ( )

1 11

k k
nn ++

=α α  and ( )( ) ( )
1 11

k k
nn ++

=z z  calculate the first order increment 
of stresses and internal variables 

( ) ( )( )( ) ( )
1 1 11 1

ˆˆ ˆ:
kk ep k

nn n ++ +
∆ = ∆σ D ε  

where ( )( )

1
ˆ kep

n+
D is the continuum tangent modulus defined in the next section. 

( ) ( ) ( )( ) ( ) ( )
1 1 11 1 1

k k k

n n n+ + +
∆ = ∆Λα α  

( ) ( ) ( )( ) ( ) ( )
1 1 11 1 1

k k k

n n n+ + +
∆ = ∆Λz z  

( ) ( )
1 1ˆ ˆk k

n nT+ +∆ = ∆ ∆ε ε  
in which: 

( )
( ) ( )

( ) ( ) ( ) ( )

( )( ) ( )
1 1 1( ) 1 1

1 ( )1 ( ) ( ) ( )
1 1 1 11 11 1

ˆ: :

ˆ: :

kk e k
nk n n

kn k k ke
p n nn n

K

++ +
+

+ ++ +

∆
∆Λ =

+

L D ε

L D R
 

( )
( )

( ) ( )
1 11

1 1

k
k k

p nn
n

fK ++
+

⎛ ⎞∂
= − ⋅⎜ ⎟∂⎝ ⎠

α
α

 

Update the stresses and state variables: 
( ) ( )( ) ( )( )

2 1 11 1
ˆ ˆ ˆk kk

nn n++ +
= + ∆σ σ σ  

( ) ( )( ) ( )( )
2 1 11 1

k kk
nn n++ +

= + ∆α α α  

( ) ( )( ) ( )( )
2 1 11 1

k kk
nn n++ +

= + ∆z z z  

Using the updated stresses and internal variables calculate the second order increment 
of stresses and internal variables repeating the same steps used for the calculation of 
the first order increments. 
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7. Calculate new stresses and internal variables and temporarily store them: 

( ) ( )( )( ) ( )( ) ( )
1 1 1 21 1

1ˆ ˆ ˆ
2

k kk k
n n n n+ + + +

= + ∆ + ∆σ σ σ σ%  

( ) ( )( )( ) ( )( ) ( )
1 1 1 21 1

1
2

k kk k
n n n n+ + + +

= + ∆ + ∆α α α α%  

( ) ( )( )( ) ( )( ) ( )
1 1 1 21 1

1
2

k kk k
n n n n+ + + +

= + ∆ + ∆z z z z%  

8. Calculate relative error, ( )
1

k
nR + : 

( )

2 1 2 1 2 1( )
1

1

ˆ ˆ1 max , , ,
2

k

k
n

n

R EPS+

+

⎧ ⎫∆ −∆ ∆ −∆ ∆ −∆⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

σ σ α α z z
σ α z%% %

 

where EPS is a machine constant indicating the smallest relative error. 
IF ( )

1
k

nR STOL+ > , then the substep has failed and a smaller pseudo-time step needs to be 
computed by means of an extrapolation.  STOL is a user-specified tolerance with a 
value normally in the range 10-3-10-5.  First compute 

{ }( )
1max 0.9 / ,0.1k

nq STOL R +=  

and then set 
{ }minmax ,T q T T∆ ← ∆ ∆ GOTO Step 5 

ELSE 
9. Update stresses and internal variables:  

( ) ( ) ( ) ( ) ( ) ( )
1 1 1 1 1 1ˆ ; ;k k k k k k

n n n n n n+ + + + + += = =σ σ α α z z%% %  

10. Use drift correction if ( )( ) ( ) ( )
1 1 1ˆ ,k k k

n n nf fTol+ + + >σ α  

11. Extrapolate the size of the next substep: 

{ }( )
1min 0.9 / ,1.1k

nq STOL R +=  

If the previous step failed, limit the step size growth further by enforcing 
{ }min ,1q q=  

Update pseudo-time and compute new step size: 
( 1) ( ) ( 1) ( ) ( );k k k k kT q T T T T+ +∆ = ∆ = +∆  

12. Minimize step size: 
{ }( 1) ( 1)

minmax ,k kT T T+ +∆ = ∆ ∆  

{ }( 1) ( 1) ( 1)min ,1k k kT T T+ + +∆ = ∆ − ∆  

where ( 1)
min 1kT T +∆ ≤ ∆ ≤  must hold true. 

Set 1k k→ +  GOTO Step 4 

13. At T=1 exit with updated stresses and internal variables. 
 

4.3. Continuum Jacobian 
 

The continuum Jacobian is derived following the same procedure as in the classical 
continuum utilizing the consistency condition, flow rule, hardening laws, and stress-strain 
relationship.  It is computed after the integration step is successfully completed with the 
updated stresses and internal variables passed to the global finite element routine to update 
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the global stiffness matrix and residual force vector.  The continuum Jacobian for the 
micropolar constitutive model takes the form presented in equation (21). 

 
5. Performance of the integration schemes 
 
5.1. One element simulations 
 

To evaluate the performance of the two implemented integration schemes, triaxial 
compression tests are simulated using a single axisymmetric element.  Although the micro-
rotations at the bottom nodes may be fixed for bottom nodes in a finite element mesh with 
more elements, in a single element case fixing the micro-rotations leads to over-constrained 
system.  After the isotropic consolidation of the specimen vertical displacement is applied to 
the top nodes of the element to shear the specimen.  The vertical displacement is applied in 
several numbers of steps, i.e., varying the increment of strain.  The finite element formulation 
used in these simulations is fully coupled and utilizes mixed elements that couple 
displacements, micro-rotation, and pore water pressure (u-p-φ elements).  Both drained and 
globally undrained simulations are conducted.  In the globally undrained simulations, the 
water flux is prevented from all sides of the specimen. 

The force-displacement plots for the two integration schemes in drained and undrained 
conditions are shown in Figures 3 and 4, respectively.  In the drained case up to 50 steps can 
be used for the substepping method and the results are almost identical to those obtained with 
2000 steps.  There is a slight difference in results at the peak of the curve because more data 
points are needed to capture the peak.  However, the solution does not converge for the 
cutting plane method, if the number of steps is not larger than 300.  For the undrained case 
about 100 steps could give as accurate results as larger steps for the substepping method 
while for the cutting-plane there is a significant difference in the solution between 150 steps 
and 500 steps.  These simulations clearly demonstrate that the substepping method is more 
robust and efficient than the cutting-plane method. 

For both the drained triaxial and biaxial compression simulations iso-error maps are 
constructed to compare the errors in estimated stress states using the substepping and cutting-
plane methods.  In both the triaxial and biaxial simulations first the specimen is isotropically 
consolidated by applying a confining pressure of 100 kPa.  Then in the second step the 
specimen is sheared to bring it to plastic stage.  The strain probes of different sizes were 
imposed by simultaneously applying displacements in horizontal and vertical directions.  For 
each strain probe the exact solution is obtained by dividing the desired displacement 
increment into 1000 steps.  The error, δ , is calculated by using: 

( ) ( )
( )

* *

* *

:

:
δ

− −
=

σ σ σ σ

σ σ
 (32) 

where *σ is the exact solution and σ  is the calculated stress tensor for the strain probe.  
Figures 5 and 6 show the iso-error maps for the two integration schemes, respectively.  The 
computed iso-error maps show same order of magnitude for the biaxial simulations 
conducted by using the two integration schemes, but the error of substepping method is much 
smaller than that of the cutting-plane method.  For both methods the largest error occurs in 
tension when the horizontal and vertical strain increments are greater than 65 times the 
vertical yield strains.  Vertical yield strain is used for normalization because it has much 
larger value than that of the horizontal component.  The largest value of the error for 
substepping method is about 0.25% while for the cutting plane method it is about 0.4 %.  
Note that the patterns of the iso-error maps are different for the two methods.   
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Figure 3.  Force-displacement plots for drained triaxial compression simulations using a micropolar 
model: (a) Cutting-Plane Method, (b) Substepping Method. 
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Figure 4.  Force-displacement plots for undrained triaxial compression simulations using a micropolar 
model: (a) Cutting-Plane Method, (b) Substepping Method. 
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(a) 

 
(b) 

Figure 5. Comparison of iso-error map for biaxial compression simulations using a micropolar model: 
(a) Substepping Method, (b) Cutting-Plane Method. 
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(a) 

 
(b) 

Figure 6. Comparison of iso-error map for triaxial compression simulations using a micropolar model: 
(a) Substepping Method, (b) Cutting-Plane Method. 

 
For the triaxial simulations substepping method has relatively smaller error than that of 

cutting-plane method.  The largest error 0.05% for substepping method occurs in the region 
where the radial strain increments are about 20 times the axial yield strain, and the axial 
strain increments are between 30 to 40 times the axial yield strain.  In the case of cutting-
plane method 0.5% error takes place in two zones: one where both the axial and radial strain 
increments are in tension and greater than 75 and 80 times the axial yield strain, and second 
where the axial strain increment is greater than 10 times axial yield strain in compression, and 
radial strain increments are greater than 80 times the axial yield strain in tension.  
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Considering all the comparisons of the performance of the two integration schemes, it is 
observed that substepping approach is clearly more robust than the cutting plane method.   

 
5.2. Biaxial compression simulations 
 

For the biaxial compression tests, a 4cmx14cm specimen of Toyoura sand is considered as 
shown in Figure 7.  The finite element meshes used in these simulations consisted of 228 
elements.   

 
 

Figure 7.  Biaxial specimen boundary conditions and simulation steps. 
 

 
 

Figure 8.  Random distribution of initial void ratio within the specimen. 
 
These simulations were conducted for a relatively dense specimen of Toyoura sand that is 

slightly heterogeneous with an average initial void ratio of 0.735 (Dr = 63%).  Initial void 
ratios at different integration points within the elements were randomly assigned using a 
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random number generator.  The average void ratio is 0.735 with a variance of 0.01.  The 
random distribution of initial void ratios within the specimen is shown in Figure 8.  The 
values of initial void ratios vary from 0.725 to 0.745.  All non-polar model parameters are the 
same as those proposed in Dafalias and Manzari [2] for Toyoura sand. 

The boundary conditions and simulation steps are shown in Figure 7.  The micro-rotations 
(φz) at the top and bottom edges of the specimen are set to zero.  The specimen is 
isotropically consolidated first by applying a confining pressure of 100 kPa, and then it is 
sheared by applying a vertical displacement of 3 cm on the top edge.   

Biaxial compression simulations in drained and globally undrained conditions were 
conducted by using substepping and cutting-plane algorithms.  In drained simulations a 
length scale of l1=l2=4 mm is used, and in undrained simulations a length scale of l1=l2=1 
mm.  In undrained biaxial simulations the pore water is prevented from seeping out of the 
boundaries of the soil specimen, but it is allowed to flow within the specimen.  Therefore, it 
is undrained in a global sense.   

Figure 9 shows the force-displacement plot for drained simulations using the two 
integration schemes.  The simulation using substepping method successfully completes while 
the simulation using cutting plane method fails at the peak of the force-displacement curve, 
i.e., at the onset of strain localization.  The solution does not converge regardless of the step 
size used.  This divergence problem is caused by the accumulation of the drift-off errors 
which is due to the weak enforcement of the consistency condition used in the cutting-plane 
algorithm.  The force-displacement curve using the cutting-plane method is identical to that 
obtained by using the substepping method up to the point where the former fails.  Note that 
because the size of the yield surface for this model is small the specimen undergoes plastic 
deformation in a relatively few steps. 

 

0

5

10

15

20

25

0 0.05 0.1 0.15 0.2 0.25

Substepping Method

Cutting Plane Method

u
y
/H

Ve
rt

ic
al

 F
or

ce
 (k

N
)

 
Figure 9. Force-displacement curves for drained biaxial simulations using the two integration 
schemes. 

 
The contours of micro-rotation at the peak in drained simulations using the two integration 

schemes are shown in Figure 10.  The localized band is not yet formed at this point.  The 
distribution of the micro-rotation within the specimen is similar. 
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                        (a)

                 
                            (b) 

Figure 10.  Contours of micro-rotation at the peak in drained biaxial simulations for: (a) Substepping 
Method, (b) Cutting-Plane Method. 
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Figure 11. Force-displacement curves for undrained biaxial simulations using the two integration 
schemes.   

 
Figure 11 shows the force-displacement plots for the two integrations schemes for the 

undrained simulations.  The simulation using the cutting plane method converges up to about 
90% of the prescribed vertical displacement.  The force-displacement curve of the cutting 
plane method slightly deviates from that of the substepping method after 15% nominal strain.  
This might be because no drift-off errors correction is used for the cutting plane algorithm.   
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                  (a) 
 

                          (b) 
 

Figure 12. Contours of micro-rotation in undrained biaxial simulations for: (a) Substepping Method, 
(b) Cutting-Plane Method. 

 
The contours of micro-rotation for the undrained simulations using the substepping and 

cutting plane schemes, up to where the latter fails, are shown in Figure 12.  The shear 
localization modes obtained from the two simulations are similar, but due to the random 
nature of shear band formation directions of the bands are mirror images of one another.  In 
the case using substepping method the localized band cuts the specimen diagonally from left 
to right edge where the band initiates at the center of the left edge.  In the case using cutting 
plane method the localized band initiates at the center of the right edge and the band crosses 
diagonally from right to left edge.  The micro-rotations within the shear band using the two 
schemes are of the same magnitude (about 102 degrees), but in opposite directions 
(counterclockwise for substepping method and clockwise for cutting plane method).  The 
thickness and the inclination of the band with respect to horizontal axis are the same for the 
two simulations. 

The CPU usage for the undrained biaxial simulations using the two integration schemes is 
shown in Table 1.  Cutting plane method requires much smaller step size compared to the 
substepping method for the solution to converge which adds computational cost.  Even 
though the simulation using cutting plane method completes only up to 90% of the prescribed 
displacement its CPU usage is over twice that of the substepping method.  Clearly, for 
simulations of larger problems the substepping method is much more efficient than the 
cutting plane method. 

 
Table 1.  CPU usage for undrained biaxial simulations. 

Algorithm Global Iterations CPU (sec) 

Substepping 5193 6424 

Cutting Plane 11472 12129 
 

6. Conclusion 
 

The micropolar plasticity model proposed by Manzari and Dafalias [3] is integrated using 
substepping and cutting plane methods.  The performances of the two integration schemes are 



M. T. Manzari, K. Yonten / Comp. Meth. Civil Eng.  2 (2011) 21-42 

41 

compared in a series of one-element simulations as well as biaxial compression tests on 
slightly heteregenous specimens of Toyoura sand.  Both cases show that the performance of 
the substepping method is superior to that of the cutting-plane method.  In strain localization 
problem, where the cutting-plane method faces convergence difficulties, the substepping 
method is able to produce complete solution at a lesser computational cost. 
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Appendix-A 
 

The general elastic stress-strain relationship is given by: 

 ˆ ˆˆˆ ˆ ˆ; :e e e e
ij ijkl ijDσ ε= =σ D ε  (A1) 

Here the stresses and strains are asymmetric.  For plane strain and axisymmetric case we 
can write the stress-strain relationship as: 

4 2 2 0 0 0 0
3 3 3
2 4 2 0 0 0 0
3 3 3
2 2 4 0 0 0 0
3 3 3

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0 2 0
0 0 0 0 0 0 2

xx xx

yy yy
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 (A2) 

Here: 
4 2 2 0 0 0 0
3 3 3
2 4 2 0 0 0 0
3 3 3
2 2 4ˆ 0 0 0 0
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