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Abstract 

A new approach for analyzing cracked problems in 2D orthotropic materials using the 

well-known element free Galerkin method and orthotropic enrichment functions is proposed. 

The element free Galerkin method is a meshfree method which enables discontinuous 

problems to be modeled efficiently. In this study, element free Galerkin is extrinsically 

enriched by the recently developed crack-tip orthotropic enrichment functions. Also, a 

suitable way is applied to select support domains near a crack so that the discontinuity can be 

modeled without the Heaviside enrichment function. Crack-tip enrichment functions span the 

possible displacement space that may occur in the analytical solution. For evaluating the 

mixed-mode stress intensity factors, the interaction integral is applied. Some numerical 

examples are simulated to investigate the efficacy of the new approach by comparing with 

other numerical or (semi-) analytical methods.  
 

Keywords: Orthotropic material; Element free Galerkin method; Enrichment functions; 

Interaction integral; Stress intensity factors. 

 

1. Introduction 

Since the stiffness and strength per unit weight of orthotropic materials such as composites 

are higher than other conventional engineering materials in many cases, applications of these 

kinds of materials have been widely increased in recent decades. Considering their strength, 

they are applied in thin shell forms while crack initiation is probable to take place in them. As 

a result, analysis, modeling and investigation of fracture behavior of such materials have 

turned into a growing research subject. 

Some analytical investigations have been performed on the fracture behavior of composite 

materials such as the pioneering one by Muskelishvili [1], Sih et al. [2] and more recently 

Nobile and Carloni [3]. 

The analytical solution is not applicable to all problems; in particular to complicated 

engineering cases, whereas, the numerical methods are the best available approaches for 

                                                           
*
 Corresponding author.   

E-mail address: syazdi@kntu.ac.ir  (S.R. Sabbagh-Yazdi) 

CMCE 
  Computational Methods in Civil Engineering 



S.Sh. Ghorashi, S.R. Sabbagh-Yazdi, S. Mohammadi /  Comp. Meth. Civil Eng.  1 (2010) 1-13 

2 

studying such general problems. There are many numerical methods applied for modeling 

cracks in mechanical problems such as the Boundary Element Method (BEM), the Finite 

Difference Method (FDM), the Finite Volume Method (FVM), the Finite Element Method 

(FEM), the eXtended Finite Element Method (XFEM) and Meshless Methods (MMs) such as 

the Element Free Galerkin (EFG) method [4]. One of the main drawbacks of FEM is that 

elements associated with a crack must conform to crack faces. Furthermore, remeshing 

techniques are required to follow crack propagation patterns. Some drawbacks of FEM have 

been modified in XFEM but it is still necessary to introduce a mesh of elements at the 

beginning of modeling. Due to mesh-based interpolation, distorted or low quality meshes lead 

to higher errors, and necessitate remeshing, a time and human labour consuming task, which 

is not guaranteed to be feasible in a limited time for complex three-dimensional geometries. 

MMs were born with the objective of eliminating part of the difficulties associated with 

reliance on a mesh to construct the approximation. In MMs, the approximation is built from 

nodes only. Mainly they are more convenient for analysis of discontinuous problems. The 

element free Galerkin method [4] was developed in 1994 and was one of the first and famous 

MMs based on a global weak form. 

On the other hand, in XFEM [5], the finite element approximation in the vicinity of the 

crack is enriched with appropriate enrichment functions extracted from the analytical analysis 

near a crack-tip. Two dimensional discontinuous problems in orthotropic materials have been 

analyzed by XFEM recently [6, 7, 8]. They developed three different sets of enrichment 

functions for various types of composites. It is, therefore, a feasible idea to use enrichment 

functions of XFEM in EFG for increasing the accuracy of analysis near crack-tip. 

In this paper, the element free Galerkin method is extended to orthotropic materials by 

modification of the weight functions and adopting the orthotropic enrichment functions 

proposed by Asadpoure et al. [8]. In order to verify the formulation and to investigate the 

robustness of the proposed method, stress intensity factors (SIFs) for cracked media are 

obtained by the method proposed by Kim and Paulino [9] and compared with other numerical 

or (semi-) analytical methods.  

 

2. Fracture mechanics in orthotropic media 

The stress–strain law in an arbitrary linear elastic material can be written as 
ε cσ             (1) 

where ε  and σ  are strain and stress vectors, respectively, and c  is the compliance matrix 
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which E ,   and G  are Young's modulus, Poisson's ratio and shear modulus, respectively. 

For a plane stress case the compliance matrix is reduced to the following form: 
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and for a plane strain state 
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Now assume an anisotropic body subjected to arbitrary forces with general boundary 

conditions and a crack. Global Cartesian co-ordinate  1 2,X X , local Cartesian co-ordinate 

 ,x y  and local polar co-ordinate  ,r  , defined on the crack-tip, are illustrated in Figure 1. 

A fourth-order partial differential equation with the following characteristic equation can be 

obtained using equilibrium and compatibility conditions [10] 

 4 3 2
11 16 12 66 26 222 2 2 0c s c s c c s c s c       (5) 

where ijc  ( , 1,2,6i j  ) are the components of 2D
c . 

 

 
Figure 1. An arbitrary cracked orthotropic body subjected to body force b  and traction t . 

 

According to Lekhnitskii [10], the roots of equation (5) are always complex or purely 

imaginary ( 2,1,  kisss kykxk ) and occur in conjugate pairs as 1s , 1s  and 2s , 2s . The two-

dimensional displacement and stress fields in the vicinity of the crack-tip have been derived 

as [2] 
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where Re  denotes the real part of the statement and IK  and IIK  are stress intensity factors for 

mode I and mode II, respectively. ijc  are compliance matrix components. ip  and iq  can be 

defined by 
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3. Crack-tip orthotropic enrichment functions 

Crack-tip enrichment functions have been obtained in a way that include all possible 

displacement states in the vicinity of crack-tip, as described by in equations (6) and (8) [8]. 

These functions span the possible displacement space that may occur in the analytical 

solution. These are defined as [8] 
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with 2,1j . In the above equations jxs  and jys  are real and imaginary parts of js  computed 

by equation (5), respectively. 
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Orthotropic enrichment functions mentioned in equation (12) are enrichment functions 

which are used in eXtended Finite Element Method (XFEM). The algorithm for applying 

these functions in the element free Galerkin method will be explained in the following 

sections. 

 

4. EFG formulation 

Consider a standard two-dimensional problem of linear elasticity in the domain   bounded 

by  , as shown in Figure 2. The equilibrium equation, natural and essential boundary 

conditions for such a problem can be written as 

0T  L σ b    in   (15) 

σn t    on t  (16) 
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where L  is the differential operator defined as 
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(18) 

and σ , u  and b  are the stress, displacement and body force vectors, respectively. t  is the 

prescribed traction on the natural (traction) boundaries; u  is the prescribed displacement on 

the essential (displacement) boundaries and n  is the vector of unit outward normal at a point 

on the natural boundary (see Figure 2). 
 

 
Figure 2. A two-dimensional continuum. 

 

The standard un-constrained weak form of equation (15) is posed as 

   
t

T T Td d d 0  
  
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where D  is the matrix of elastic constants (inverse of compliance matrix c  defined in 

equation (1)). 

The problem domain is now represented by a set of field nodes for the purpose of field 

variable (displacement) approximation. These nodes are numbered sequentially from 1 to n 

for the entire problem domain. In EFG method, the Moving Least Squares (MLS) shape 

functions, presented in [11], are used to approximate the displacements at any point of 

interest using a set of nodes in the local support domain of the point. For using the 

enrichment functions of XFEM, the original displacement approximation (see [4]) changes to 
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where i ( ) X  is the MLS shape function associated to node i , and iu  is the vector of regular 

nodal degrees of freedom. Kb  is the vector of additional nodal degrees of freedom for 
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the accuracy of approximation near a crack-tip). 

After manipulating equation (19) by equation (20), the final discretized system equations 

for the developed discontinuous enriched EFG has been derived as 
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After solving equation (21) and obtaining U , the nodal displacements h ( )u X  can be 

obtained by solving equation (20). Then, the strain and stress components can be retrieved 

using equations (31) and (32), respectively. 
hε Lu  (31) 

and 

σ Dε  (32) 

Since the MLS shape functions lack the Kronecker delta function property, it is necessary 

to apply a technique to enforce the essential (displacement) boundary conditions. In this 

study, the Lagrange multiplier method is adopted. The Lagrange multiplier method provides 

an efficacious way to implement essential boundary conditions and was used in the EFG 

method by Belytschko et al. [4]. 

The final discretized system equations for the proposed approach accompanied by the 

Lagrange multiplier method for enforcement of essential boundary conditions are changed to 
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K , U  and F  have been defined in equation (21);  Λ  is a vector that collects the nodal 

Lagrange multipliers for all field nodes on essential boundaries;  G  is the global Lagrange 

matrix formed by assembling the nodal Lagrange matrix, ijG , that is defined as 
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In equation (33), q  is the global Lagrange vector formed by assembling the nodal 
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In equations (34) and (35), the shape function iN  can be the Lagrange interpolants used in 

the conventional FEM. The first order Lagrange interpolant (the linear interpolation) which 

applied in this paper, can be given in the following form 
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In a simple case, the essential boundaries are discretized using the line segments; The 

Lagrange multiplier at z  is interpolated using two nodes at the two ends of this line 

segments. 

 

5. Support domain selection near a crack 

To represent discontinuity in a cracked problem, the following approach has been used in this 

paper. Since the definition of weight function in MLS depends on the distance between 

nodes, every change in selection of the support domain results in a change in weight 

functions. 

The adopted approach way to select a support domain of radius sr  near the crack face is 

illustrated in Figure 3(a). It is noted that the nodes at the opposite side of the crack face are 

not considered. For nodes near a crack-tip, as depicted in Figure 3(b), to determine the 

distance of interest node iX  and arbitrary node  1 2,X XX  near a crack-tip, instead of 

considering the amount of 0 ( )d X , the amount of 1 2 ( )d d X  is considered where 

           0 ( ) id  X X X  ,  1 i Cd  X X  ,  2 ( ) Cd  X X X     
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Figure 3. Selection of support domain near a crack: (a) crack face; (b) crack-tip. 

 

 

6. Computation of stress intensity factors 

The stress intensity factor (SIF) is one of the important parameters representing fracture 

properties of a crack. In this paper, stress intensity factors are evaluated to compare the 

accuracy of the developed EFG with other methods. In this study, the technique developed by 

Kim and Paulino [9] for computation of mixed-mode stress intensity factor, is employed and 

briefly reviewed. 

The standard path independent J -integral for a crack is defined as [12] 
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the j th component of the outward unit normal to  , j1  is the Kronecker delta and the co-

ordinates are taken to be the local crack-tip co-ordinates with the 1x -axis parallel to the crack 

face.  

Now suppose there are two equilibrium states; state 1 corresponds to actual state that is 

obtained by analysis of the problem and state 2 corresponds to an auxiliary state for the given 

problem geometry. The auxiliary stress and displacement fields are defined by asymptotic 

fields near a crack-tip as given by analytical solutions (6), (7), (8) and (9). 

By combining the actual and auxiliary solutions for obtaining the J-integral one can write: 
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where MW  is strain energy density that is defined as follow for linear-elastic conditions 
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After some manipulations, M  can be written in the form of [8] 
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In the above equations, ijc  is the compliance matrix component and 1 2,s s  are the roots of 

equation (5). 

The SIFs for the problem can be obtained by considering the two states (state I: 1aux
IK , 

0aux
IIK ; state II: 0aux

IK , 1aux
IIK ) and solving a system of linear algebraic equations: 

III
stateIIact

III
stateIact

KeKeM

KeKeM

2212
),(

1211
),(

2

2




 (46) 

In order to solve the system of equations, M  must be calculated from equation (39) and 

then compared with equation (46). 

 

7. Numerical simulations 

7.1. A rectangular plate with an edge crack under uniaxial tensile distributed load 

In this example, the proposed method is applied to an edge horizontal crack in a rectangular 

plate subjected to tensile distributed load. The plate is considered in the plane stress state and 

several orientations of material elastic axes are studied. The proportions of width to height 

and crack length to width are equal to 0.5 (see Figure 4). The plate is composed of a graphic-

epoxy material with orthotropic properties as: 

            

5
1 2

kg
11.71 10 (114.8 Gpa),

cm
E           

5
2 2

kg
1.19 10 (11.7 Gpa)

cm
E    

           

4
12 2

kg
9.85 10 (9.66 Gpa),

cm
G             21.012   

 
Figure 4. Geometry and loading of the rectangular plate with an edge crack. 

 

The EFG model is composed of 1984 field nodes (Figure 5a) and 1891 background cells 

for integration. The enriched nodes are shown in Figure 5b. 48 degrees of freedom are added 

to usual EFG degrees of freedom for enrichment. The proportion of support domain 
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dimension to nodal spacing is considered 1.7. The mixed mode stress intensity factors are 

calculated as described with the relative integration domain size of about 0.16 of crack 

length. Effects of changing the material elastic angle on mixed mode stress intensity factors 

in the plate are probed. The comparison of results between the proposed method and the 

results by Asadpoure et al. [8] who performed similar studies using the extended finite 

element method, is shown in Figure 6. 
 

 
Figure 5. Nodal distribution for the rectangular plate with an edge crack: (a) whole view of EFG 

model; (b) enlarged view of nodal distribution around the crack-tip (enriched nodes are distinguished 

by red cross signs). 

 

 
Figure 6. The effect of various inclinations of elastic material axes on the stress intensity factors: (a) 

mode I stress intensity factor; (b) mode II stress intensity factor. 
 

(a) 

(b) 

(a) 

(b) 
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The results show that the trend of mode I stress intensity factor changes around  = 45°. It 

has an increasing trend in the span of  = 0° to   = 45° and then decreases in the span of 

= 45° to  = 90° and reaches a value around its initial value, i.e. when  = 0°. The turning 

point for the mode II stress intensity factor is about  = 30°. 

Table 1 shows the s values computed by equation (5) for different angles of elastic 

material axes with respect to the horizontal line (  ). 

 

      Table 1. s  values for different  . 

  
1s  1s  2s  2s  

0 0 + 0.9652i 0 - 0.9652i 0 + 3.2454i 0 - 3.2454i 

30 0.0301 + 0.9820i 0.0301 - 0.9820i -1.2201 + 0.9593i -1.2201 - 0.9593i 

45 0.0354 + 0.9994i 0.0354 - 0.9994i -0.8266 + 0.5628i -0.8266 - 0.5628i 

60 0.0312 + 1.0174i 0.0312 - 1.0174i -0.5065 + 0.3982i -0.5065 - 0.3982i 

90 0 + 1.0361i 0 - 1.0361i 0 + 0.3081i 0 - 0.3081i 

 

7.2. A central crack in a square plate subjected to tension 

The next problem considered is shown in Figure 7. It consists of a finite orthotropic body 

containing a central crack and subjected to tension. The material and crack axes coincide. 

This problem was solved by Bowie and Freese [13] by the boundary collocation method for a 

variety of material properties and geometric ratios. Conditions of plane stress were assumed. 

The geometric parameters are chosen here to be / 1h w   and / 0.3a w  . The material 

properties: 2E , 12G  and 12  are the same as the previous example but 1E  is considered 

  20.5,1.5,2.5,4.5 E .These sets of parameters are chosen to examine the effect of the ratio 

1 2/E E  on solution accuracy. 

 

 
Figure 7. Finite orthotropic body containing a central crack. 
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As shown in Figure 8, 7344 field nodes and 7171 background cells are used for modeling 

and integration, respectively. Results for the normalized stress intensity factors  I oK a   

are shown in Table 2, together with those obtained by Bowie and Freese [13]. The present 

results show good agreement, with an average difference of 0.99 percent. 

 
Figure 8. Discretization of the square plate with a central crack: (a) nodal distribution in entire 

domain; (b) nodal distribution around the crack-tip; (c) background cells. 
 

Table 2. Normalized mode I SIF I I oK K a   for different sets of material parameters. 

1 2E E  IK  
Difference (%) 

Proposed approach Bowie and Freese [13] 

0.5 1.1427 1.17 2.33 

1.5 1.1019 1.10 0.17 

2.5 1.0885 1.08 0.79 

4.5 1.0773 1.07 0.68 

 

8. Conclusions 

In this contribution, the conventional EFG has been further extended to analysis of cracked 

orthotropic plates. The newly developed crack-tip orthotropic enrichment functions have 

been employed in the EFG method to increase the approximation accuracy near the crack-tip. 

Moreover, by using an appropriate way of support domain selection near the crack, the 

discontinuity has been modeled without defining any further enrichment functions. Also, for 

imposition of essential boundary conditions, the Lagrange multiplier method has been 

utilized and its formulations have been modified according to the enrichment functions. 

(a) 

(b) 

(c) 
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Some numerical examples have been analyzed using the proposed approach. Results of 

mixed-mode stress intensity factors (SIFs) have been compared with the reference results and 

proved the accuracy, robustness and efficiency of the proposed orthotropic enriched EFG. 
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