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Abstract. Researchers have long regarded model accuracy as the primary metric for evaluating
the performance of classification algorithms. The current evaluation approach, which relies solely
on model accuracy, often leads to inappropriate evaluation of classifiers, regardless of the dataset’s
separability and complexity. This limitation underscores the need for a new and more comprehen-
sive method. We argue that accuracy-based evaluation can be misleading, even when considering
measures of data separability and complexity. We compare the error rates of well-known classifiers
on Gaussian-generated datasets and show that, paradoxically, many algorithms’ observed errors are
lower than that of the theoretical optimal classifier, leading to an overestimation of their performance.
We consider a model invalid if its error rate is lower than the optimal classifier error, known as the
Bayes error rate. To identify such invalid models, we introduce a procedure and propose an algorithm
for model validation based on the Bayes error rate.

Keywords: Classification, evaluation, validation, Bayes error rate, discriminant analysis and complexity mea-
sure.
AMS Subject Classification 2020: 62R07.

1 Introduction

Model evaluation is the process of finding the optimal classifier for prediction. How do we evaluate
and compare classification models? Researchers typically address this question by comparing the ac-
curacy of different algorithms [12]. While the classifiers’ predictive accuracy reflects the performance
of the algorithms, a fair evaluation also necessitates considering the complexity of the classification
task.
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As an operator, a classifier takes a vector of variables (features) and produces an output decision
that determines its label. The efficiency of algorithms in solving classification problems is defined by
their error rates. Moreover, the performance of a classifier is influenced by both the efficiency of the
algorithms and the complexity (or separability) of the datasets [7].

The concept of complexity in classification problems was introduced in Ho and Basu’s work
while analyzing the difficulties of classification problems [8]. They proposed a measure to describe
the complexity of binary classification problems based on the geometrical complexity of the class
boundary. They categorized proposed measures into three main groups: measures of overlap of fea-
tures, class separability, and density (topology and geometry) measure. After that, the complexity
measure is redefined into six characterized measures: feature-based, linearity, neighborhood, net-
work, dimensionality, and class imbalance [10].

Most researchers ignore the complexity measures to simplify the evaluation process and focus
only on some items according to the confusion matrix [1]. The four main criteria often used in
evaluation are accuracy, sensitivity, precision, and specificity; however, others may also be used [2].
Several libraries and packages have been developed in some programming languages to compute these
measures. One of the developed packages for model evaluation is HungaBunga [15]. This package
employs a brute-force approach to rank all scikit-learn models by accuracy, tuning all possible hyper-
parameters in the process.

Some researchers contend that this evaluation approach can lead to inappropriate decisions if the
separation characteristics of the data are ignored [18]. They illustrate this concern with a paradoxi-
cal example where a classifier achieves the highest accuracy on one dataset but performs poorly on
another. They argue that measures of complexity, such as separability, are intrinsic characteristics
of a dataset [5]. Consequently, they categorized classification tasks based on the complexity of each
dataset and proposed instance-oriented measures for evaluation [19]. However, the computational
complexity involved in assessing classification difficulty limits its applicability to only a few datasets.

In this work, we argue that relying solely on the accuracy criterion can be misleading for evalu-
ating algorithms, even when data complexity measures are considered. We define a model as invalid
if its error rate is lower than the Bayes error rate (BER) or if its accuracy exceeds the Golden Accu-
racy (GSA = 1 - BER). We propose an algorithm for model validation that utilizes BER to assess the
effectiveness and reliability of classification models.

This paper is divided into the following sections. We address BER in Section 2. Misleading in
evaluation of classifiers is expressed in Section 3. An algorithm for model validation is proposed in
Section 4. The work is concluded in Section 5.

2 Bayes error rate

The performance of the best classifier is defined as GSA. For an evaluation to be considered valid, the
error rates of classifiers should be greater than or equal to BER. However, in practice, some classifiers
may exhibit error rates below BER, which is theoretically impossible and thus undesirable. We recall
that Bayes classifier error equals BER and can be calculated in the Gaussian case.

2.1 Bayes classifier

A classification task includesX = (X1, . . . ,Xd)
ᵀ as a feature vector on a d-dimensional space X =

Rd , which is labeled over binary random variable Y [16]. A binary classification classifier is a function
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h : X → Y ∈ Y = {0,1}. Classification error (CE) occurs when an observation of X , i.e., x, is not
correctly assigned to its true class CEh = Pr(h(X) 6= Y ) [9]. According to the Bayes’ theorem, we
recall the following formula:

Pr(Y = y |X = x) =
Pr(Y = y) fX|Y (x | y)

fX(x)
, (1)

where fX|Y (x|y) is the class-conditional distributions Pr(Y = 0) = π0 and Pr(Y = 1) = π1 = 1−π0
are prior label probabilities and we have

Pr(Y = 0 | x)> Pr(Y = 1 | x)⇐⇒ π0 f (x | Y = 0)> π1 f (x | Y = 1) , (2)

[4]. Based on the logical classification strategy, we assign an observation x to the first class with a
greater posterior probability [17], and using (1) and (2), Bayes classifier hB is defined as follows

hB =

{
0 π0 fX|Y (x | Y = 0)≥ π1 fX|Y (x | Y = 1)
1 otherwise

. (3)

Lemma 1. ([17]) The Bayes classifier (3) is optimal. Specifically, for any other classification rule h,
the classification error of the Bayes classifier satisfies CEhB ≤ CEh.

2.2 Discriminant function

According to (1), the discriminant function is defined as

dy(x) = log fX|Y (x | y)+ logPr(Y = y), (4)

and quadratic discriminant g is defined by

g(x) = xᵀAx+aᵀx+ c, (5)

where A is a d×d matrix, a is a column vector with length d, and c is a constant [3].
Gaussian Classifiers: Let the conditional density of classes be Gaussian as follows

fX|Y (x | y) =
1

(2π)
d
2
∣∣Σy
∣∣ 1

2
exp
(
− 1

2
(x−µy)

ᵀΣ−1
y (x−µy)

)
, (6)

where Σy and µy are the covariance matrix and mean vector, respectively. By replacing (6) in (4) and
simplifying, we have

dy(x) =−
1
2
(x−µy)

ᵀΣ−1
y (x−µy)−

1
2

log |Σy|+ logPr(Y = y),

[11]. Suppose that the parameters of Gaussian distributions in (6) are known. Using (5), the Bayes
classifier in (3) is reduced to

gB (x) = xᵀAB x+a
ᵀ
B x+ cB , (7)

where

AB =−1
2
(
Σ
−1
1 −Σ

−1
0

)
, aB = Σ

−1
1 µ1−Σ

−1
0 µ0,
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and

cB =− 1
2
(
µT

1 Σ
−1
1 µ1−µT

0 Σ
−1
0 µ0

)
+

1
2

log
(
|Σ0|
|Σ1|

)
+ log

(
1−π0

π0

)
,

[6]. Discriminant function (7) is known as quadratic discriminant analysis (QDA).

Lemma 2. Let data have multivariate Gaussian distribution with known parameters. The error of
QDA in (7) equals BER for Gaussian models.

Proof. From Lemma 1, we have Pr(hB(X) 6= Y ) = BER, and the proof is complete.

Example 1. (Bivariate Gaussian). Assume the class density function (6) has the following parame-
ters:

µ0 =

[
−0.2
−0.2

]
,µ1 =

[
0.2
0.2

]
, and Σ0 = Σ1 =

[
1 0.7

0.7 1

]
.

Consider π0 = π1 and the region R as follows

R = {x|π0 fX|Y (x | Y = 0)≥ π1 fX|Y (x | Y = 1)}, (8)

then

BER = Pr(hB(X) 6= Y ) =
∫

Rc
π0 fX|Y (x | Y = 0)dx+

∫
R

π1 fX|Y (x | Y = 1)dx= 0.414131

Example 2. The location parameters in Example 1 were shifted as follows

µ0 =

[
−1
−1

]
and µ1 =

[
1
1

]
,

and so BER is reduced to 0.139038.
Classifier (7) attains the BER. It is defined as the best theoretical model (BTM) classifying data

generated from the Gaussian model. In general, when the class distribution is Gaussian with known
parameters, the QDA error equals BER (Lemma 2).

Example 3. Let f (x|y = y)
y=0,1

∼Cauchy(θy,ζy), be class conditional density function as follows:

f (x|y = y) =
Γ[(1+ k)/2]

Γ(1/2)πk/2|ζy|1/2
[
1+(x−θy)

T
ζ
−1
y (x−θy)

](1+k)/2 ,

where θy is a location vector, ζy is a k× k positive-definite dispersion matrix, and π = 3.14 is a
constant. Assume k = 2,

θ0 =

[
−0.1
−0.1

]
, θ1 =

[
0.1
0.1

]
, and ζ0 = ζ1 =

[
1 0.7

0.7 1

]
,

then by considering R in (8)

BER = Pr(hB(X) 6= Y ) =
∫

Rc
π0 fX|Y (x | Y = 0)dx+

∫
R

π1 fX|Y (x | Y = 1)dx= 0.465609.
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3 Why accuracy-only evaluation can be misleading

An evaluation is not misleading when the accuracy of classifiers is less than the accuracy of BTM.
To show the misleading of classifiers evaluation, we generate datasets from the Gaussian model in
Example 1 with the same complexity (density, separability, and balanced weights). Figure 1 visualizes
the contour and scatter plot of the model and a data sample.
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Figure 1: The Left graphs show contour plots of bivariate Gaussian distributions and the right graph is a scatter plot of
generated data in Example 1.

To analyze the performance of the classifiers, we consider QDA, k-Nearest Neighbors (kNN),
Logistic Regression (LR), Support Vector Machine for Classification (SVC), Gaussian Naive Bayes
(GNB), Linear classifiers with Stochastic Gradient Descent (SGD) training, Decision Tree (DT), Ran-
dom Forest (RF), Gradient Boosting (GB), Ada Boost (AB), Multi-layer Perceptron (MLP), algo-
rithms from Scikit-learn [14] and parameters were taken as the defaults. Accuracy for the classifica-
tion tasks is computed using 10-fold Cross-Validation. A classifier from among these 11 algorithms
that demonstrates the minimum error on a dataset is designated as the Best Empirical Method (BEM).

In Figures 2 and 3, we compare the efficiency of classification algorithms with BTM represented
by a solid blue line and BER depicted by a blue dashed line. As the sample size increases, the error
rate of BEM, indicated by the red line, tends to converge towards the BTM. In most cases, the error
of BEM is lower than both BTM and BER. However, these scenarios lead to potentially misleading
evaluations of classifier performance. A classifier is often selected as superior because its error is the
least. If the error is less than BER, this outcome is theoretically impossible. This discrepancy suggests
a misjudgment in assessing classifier efficiency and necessitates a careful review of evaluation metrics
and methodologies.

We summarize the results of Figure 3 in Table 1, in which BER equals 0.139038. In samples
greater than 300, all algorithms are valid (the accuracy of classifiers is not less than BER); however,
we are misled in evaluating all datasets except 500 and 10000.

Focusing on Figure 4 (top left graph, N = 300), a detail of the top left graph in Figure 2, one can
see that MLP algorithm error is BEM and less than BTM error that leads to decision-making errors.
Top right graph (N = 500), the SVC algorithm error is BEM and less than BER, which means that,
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at the same time, we make a mistake in making a decision (misleading) and have an invalid model.
The results are summarized in Table 2. According to the top left graph in Figure 2, Figure 4, and
BER criterion with the same data complexity, we have misleading in any sample sizes. However, by
increasing sample size, BEM error tends to BTM error.

Figure 5 shows the performance of classifiers on the dataset generated from a bivariate Cauchy
distribution with the parameters in Example 3. MLP and GB are invalid models and potentially can
be misleading.
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Figure 2: Comparison of classification errors: BEM error is depicted by a red line with solid circles, BER by a blue
dashed line, and BTM error by a blue line with inverted triangles. Data samples were generated from Example 1 using
different seeds but maintained consistent complexity. Errors falling below the BER line are paradoxical. Instances where
BEM error is less than BTM error can lead to misleading and incorrect decision.
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Figure 3: Comparison of classification errors: BEM error is depicted by a red line with solid circles, BER by a blue
dashed line, and BTM error by a blue line with inverted triangles. Data samples were generated from Example 2 using
different seeds but maintained consistent complexity. Errors falling below the BER line are paradoxical. Instances where
BEM error is less than BTM error can lead to misleading and wrong decisions.

Table 1: Results summary of the left graph of Figure 3. The misleading cases and invalid models are high-
lighted in red for each dataset.

Sample Size Best Empirical Underestimate Valid Underestimate w.r.t. Misleading
Method w.r.t. BER Best Theoretical Method

300 MLP Yes No Yes Yes
500 QDA No Yes No No
800 LR No Yes Yes Yes
1200 SVC No Yes Yes Yes
2400 LR No Yes Yes Yes
4000 SVC No Yes Yes Yes
7000 MLP No Yes Yes Yes
10000 QDA No Yes No No

Table 2: Summary of graph results as shown in Figure 4. Cases and models that did not meet validation criteria
are highlighted in red.

Sample Size Best Empirical Underestimate Valid Underestimate w.r.t. Best Misleading
Method w.r.t. BER w.r.t. Best Theoretical Method Misleading

300 MLP Yes No Yes Yes
500 SVC Yes No Yes Yes
800 SVC Yes No Yes Yes
1200 LR Yes No Yes Yes
2400 LR No Yes Yes Yes
4000 GNB Yes No Yes Yes
7000 LR Yes No Yes Yes
10000 LR Yes No Yes Yes
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Figure 4: Performance of classifiers based on different samples from the top left graph in Figure 2. BTM and BEM errors
are depicted in blue and red, respectively. A blue dashed line represents the BER. The models with the error under the BER
line are paradoxical. Classifiers whose error is less than BTM are where we go wrong.
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Figure 5: Evaluating performance of classifiers on generated data from bivariate Cauchy distributions in Example 3. The
models with the error under the BER line are paradoxical.

4 Model validation

The validity of the models is determined by comparing them with BER. Models with errors less than
BER are considered invalid. The estimated BER ( ˆBER) equals 0.00±0.01 for the Iris dataset so that
all algorithms will be valid. The validation process is done through Algorithm 1.

Algorithm 1 Model Validation

1: Compute ˆBER for a given dataset.
2: Compute the classification error of the candidate classifier.
3: If the classification error in step 2 is less than ˆBER, the classification is invalid.
4: Repeat step 2 to find a list of valid models.
5: Select a classifier with minimum classification error in step 4.

Remark. To accurately estimate BER and its margin of error, one can employ the advanced method-
ology developed by Noshad et al. [13].

5 Discussion

In this note, we show that by considering the same complexity measures on datasets, the accuracy
criterion derived from the confusion matrix for evaluating classifiers is misleading. In small samples,
the evaluation of models leads to overestimation. The misleadingness of this approach in large sam-
ples still exists; however, the strength is that the error of BEM tends to the error of BTM. Another
unacceptable observation is that the accuracy of the classification algorithms is paradoxically less
than BER, which is theoretically impossible and leads to invalid evaluation. To solve this issue, it
is necessary to compare the error of algorithms with the BER. However, it is impossible to calcu-
late or compute this value in high-dimensional cases. Therefore, we propose that the evaluation and
validation of classification algorithms should include comparisons with the BER to ensure accurate,
non-misleading results.
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