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ABSTRACT 

Methane is a greenhouse gas that has caused environmental repercussions on the planet. At the national level, 

spatial data are unavailable, so this study aimed to estimate the amount of methane (CH4) emissions in the 

communities of Warints and Yawi through satellite images. The methodological process was non-experimental, 

with a descriptive–longitudinal design; 3 satellite images were taken from the OLI and TIRS 8 sensor from the 

virtual repository (USGS Earth Explorer), years 2013, 2016, and 2020; ArcGIS and ENVI were used during 

preprocessing and processing: Normalized Difference Vegetation Index (NDVI), emissivity, surface temperature, 

and methane emissions were determined through the empirical model based on temperatures. The results were the 

following: for 2013, 2016, and 2020, it was 1.74 × 10-5; 1.01 × 10 -4, and 2.36 × 10 -4 megatons, respectively, with 

an annual emission rate of 45.11%. It is concluded that emissions are inversely proportional regarding community 

centers and bare soils. This model is recommended for estimating the annual methane budget in areas with high 

vegetative incidence at the local and regional levels. 
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INTRODUCTION 

Currently, greenhouse gases along with global warming are receiving importance, due to the environmental 

repercussions they have generated on the planet (El-Hattab et al. 2018) . Methane plays a vital role in these 

processes, maintaining a relative potential 80 times greater than carbon (CO2) to trap heat in the atmosphere over 

a period of 20 years (Arteaga 2017) . Although the emission sources are both natural and anthropogenic, their 

values have increased due to human activity by 60% of total emissions (Sun et al. 2017). The main sources are 

agriculture and livestock, the extractive industry (production of natural gas, oil, burning of biomass and coal; 

Puliafito et al. 2020) . These activities generate emissions both during normal operations and problems during 

operation (Sanucci 2021). There are several ways to estimate the amount of methane in the atmosphere, one of 

them is remote sensing, where satellites are used to observe the flow of gases in a certain area (Akumu et al. 
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2010). Remote sensing provides products related to environmental variables necessary for estimation such as 

surface temperature (TS) and Normalized Difference Vegetation Index (NDVI). The first study regarding the use 

of satellite images was by Agarwal & Garg (2009) , where they presented an empirical model with MODIS data 

based on surface temperature to estimate methane (CH4) in wetlands of Australia. This is where the importance 

of establishing a model based on temperatures arises. Likewise, Akumu et al. (2010) applied this model with 

Landsat ETM+ images in Australia considering the different environmental conditions that the place presented. 

In Ecuador there are very few methane estimation studies with satellite images; they have been based more on the 

field of solid waste, such as the case of Ambuludi et al. (2022) in Pelileo, Tungurahua, through using LandGEM 

model, an equation based on the waste decomposition rate. Noting that the Emissions Database for Global 

Atmospheric Research (EDGAR) of Ecuador only provides generalized and non-spatial numerical data at the 

national level, this study is created with the objective of estimating the amount of methane (CH4) emissions in the 

communities of Warints and Yawi through satellite images with the empirical model based on surface temperature 

(TS) and Normalized Difference Vegetation Index (NDVI), for the periods 2013, 2016 and 2020. as well as 

generating maps that help in decision-making and good judgment, as well as to mitigate this phenomenon, 

contributing to the communities in the sector. 
 

 

MATERIALS AND METHODS 

The research used a non-experimental methodology, with a descriptive – longitudinal design. It is divided into the 

following stages: Definition of the study area, preprocessing (image corrections) and data processing, within the 

processing variables are determined through calculations such as: NDVI, vegetation proportion, emissivity, 

brightness temperature, temperature surface, temperature factor and methane emission values. The 

methodological process is summarized in the following diagram (Fig. 1). 
 

Study area 

The communities of Warints and Yawi are in the Limón Indanza canton in the parish of San Antonio, bordering 

to the north with the Santiago de Méndez canton; to the south with San Juan Bosco; to the east with Peru and to 

the west with the province of Azuay. These communes are separated by a distance of approximately 1.9 km and 

120 km from the capital city of Macas. They are located at the geographical coordinates 3° 4' 23.98" S and 78° 

20' 19.35" W. The altitude is between 1,200 and 1,600 m above sea level. The climate is temperate and humid, 

the average temperature is between 18 °C and 22 ºC. The amount of precipitation is between 1500 mm and 3000 

mm (PDOT 2015) . In this study, an area of 107.62 km2 was taken as an area of analysis, since these are two 

communities that are not yet restricted in national registries. 
 

Data source and preprocessing 

Earth Explorer website of the Landsat 8 satellite, OLI and TIRS 8 sensors, extracting data from 11 spectral bands 

such as thermals, with a cloudiness of 30% and a resolution of 30 × 30 m pixelation; A Universal Transverse 

Mercator (UTM) projection was considered, zone 17 S with trajectory: 009, line: 069 of the following dates: 

September 2, 2013, January 14, 2016 and August 4, 2020 (due to the large number of clouds that the Ecuadorian 

Amazon presents was extracted only for three dates). Before starting the data analysis, preprocessing was applied, 

thus eliminating the interruptions that the data presented in terms of aerosol and radiance effects (Janampa & 

Ponce 2022) . Consequently, radiometric and atmospheric corrections were established through the ENVI 5.3 

application, using the Radiometric tools. Calibration and Flash, consecutively. A cut was made due to the 

extension of the image with its extension Subset Data from ROIs. Finally, to have a clearer idea about its 

vegetation, a combination of bands was applied (Fig. 3), this being the most optimal to perceive healthy vegetation 

and grasslands (Suárez & Acosta 2020). 
 

Processing of satellite images 

The methodology of the present study was based on the study by  Akumu et al. (2010) , thus establishing an 

empirical model that allowed methane emissions to be estimated depending on the surface temperature of the area 

(Cortez 2015). 

 

Normalized Difference Vegetation Index (NDVI) 

To calculate the empirical emission model, preprocessing is taken into account, to also determine the NDVI, 

whose values are determined through bands 5 and 4 (near infrared band and red band, respectively). The NDVI is 
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the phytosanitary indicator that allows distinguishing areas with vegetation from other areas possessing vegetation 

as well as distinguishing healthy vegetation from aged or stressed vegetation (Bautista et al. 2019) . NDVI values 

range from -1 to 1, with higher values indicating more vegetation present and lower values indicating less 

vegetation present (Sucapuca Mamani 2021). Calculating NDVI is vitally important for calculating the proportion 

of vegetation (V) and is closely related to emissivity (𝜀). Equation 1 (Avdan & Jovanovska 2016) was used for its 

calculation. 
 

𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅(𝐵𝑎𝑛𝑑𝑎 5) − 𝑅(𝐵𝑎𝑛𝑑𝑎 4)

𝑁𝐼𝑅(𝐵𝑎𝑛𝑑𝑎 5) + 𝑅(𝐵𝑎𝑛𝑑𝑎 4)
 (1) 

 
 

where 𝑁𝐼𝑅 represents the near-infrared band of Band 5 and 𝑅 represents the red band of Band 4. 
 

 

 
Fig. 1. Sequential process for estimating methane (CH4) emissions in the Warints and Yawi communities through satellite 

images. 
 

 
Fig. 2. Location map of the Warints and Yawi communities, Limón Indanza. 
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(a)      (b)    

 
(c) 

Fig. 3. Combination of bands 6-5-2 of the OLI and TIRS 8 sensor from the Warints and Yawi communities; (a) September 2, 

2013; (b) January 14, 2016; and (c) August 4, 2020. 

 

 

Vegetation proportion (Pv) 

This variable will be necessary to determine the emissivity values, being established from the NDVI values. Using 

the ArcGIS software, the maximum and minimum values of its pixels were determined. Equation 2 provided by 

Avdan & Jovanovska (2016) was used.  
 

𝑃𝑣 =  (
𝑁𝐷𝑉𝐼 − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛

𝑁𝐷𝑉𝐼𝑚𝑎𝑥 − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛

)
2

 (2) 

 

where 𝑁𝐷𝑉𝐼𝑚𝑖𝑛 and 𝑁𝐷𝑉𝐼𝑚𝑎𝑥  are the minimum and maximum values of the NDVI map generated above. 

 

Surface emissivity (ɛλ) 

Emissivity was calculated from vegetation potential values and used to determine surface temperature. Emissivity 

is defined as the ratio between the energy emitted by a surface at a given wavelength as well as temperature and 

the energy emitted by a black body at the same wavelength and temperature (Sucapuca Mamani 2021). The 

emissivity was calculated using the formula provided by Stathopoulou et al. (2007) , where vegetation values are 

used. This proportionality variable is based on Planck's law where it scales the blackbody glow to predict its 

emitted value and its atmospheric thermal efficiency (Sucapuca Mamani 2021). The characteristics of the satellite 

images were adapted to the emissivity through formulations with simplified Equation 3 (Hantson et al. 2011). 

 

ελ = 0.004 × Pv + 0.986 (3) 

 

where 0.004 is the emissivity constant of the vegetation and soil, while 0.986 is the surface roughness. 

 

Radiance at brightness temperature (TB) 

The ArcGIS software was used for its calculation through the Raster calculator. Equation 5 established in the 

study by Coelho & Correa (2013) was applied, thus using band 10 as radiance values; thermal calibration constants 

were used. This is of vital importance since it occurs at the top of the atmosphere (Zhang et al. 2012). 
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𝑇𝐵 =
𝑘2

ln [(
𝑘1

𝐿𝜆
) + 1]

− 273.15 (5) 

where 𝑇𝐵 is in ℃, 𝑘1 is the band-specific thermal conversion constant (in watts/square meter × ster × 𝜇) and 𝑘2 in 

degrees Kelvin, 𝐿𝜆 is the spectral radiance. The constants 𝑘1and 𝑘2 were taken from the metadata of each satellite 

image. 
 
 

Surface temperature (Ts) 

The Earth's surface temperature was determined from surface brightness and emissivity temperature data. Three 

maps of land surface temperatures were created between the months of January, August and September. During 

the three months, the presence of clouds in different proportions was evident, altering their defining values. For 

its calculation, Equation 6 described by Avdan & Jovanovska (2016) for the sensor brightness and emissivity 

values were used. 
 

𝑇𝑠 =
𝑇𝐵

{1 + [(
𝜆 ∗ 𝑇𝐵

𝜌
) ∗ ln 𝜀𝜆]}

 
(6) 

 

where 𝑇𝑠 is in ℃, 𝜆 is the wavelength of the emitted radiation (for which the maximum response and the average 

of the limiting wavelength were used (= 10.895), 𝜌 is a constant determined by Equation 7. 

 

𝜌 = ℎ ∗
𝑐

𝜎
= 1.438 ∗ 10−2𝑚𝐾 (7) 

 

where 𝜎 is Boltzmann's constant (1.38 × 10−23 J/K), ℎ is Planck's constant (6.626 × 10−34 J s), and 𝑐 is the speed 

of light (2.998 × 108 m/s). 
 

Estimated methane emission 

The empirical model was a determination of the surface temperature to establish the temperature factor using the 

satellite thermal zone formula was expressed in Equation 8. 

 

𝐹𝑡 =
𝑒0,334 (Ts−23)

1
+ 𝑒0,334(Ts−23) (8) 

where 𝑒 is the Euler value. The methane estimation model used is presented in Equation 9. Experiments have 

shown that the optimal temperature for most methanogens ranges between 30 °C and 40 °C. The flow value is 

extracted from the EDGAR database of Ecuador (EDGAR 2020), being an estimate determined to understand the 

levels of methane emitted by various countries in the world. 

 

𝐸𝐶𝐻4 = 𝐸𝑡 ∗ 𝐹𝑡 (9) 

where 𝐸𝐶𝐻4 is the estimated CH4 emission, 𝐸𝑡  is the observed CH4 flux and 𝐹𝑡  is the temperature factor 

(dimensionless). 
 

Table 1. Average CH4 emission from the Emissions Database for Global Atmospheric Research (EDGAR) in Megatonnes 

(Mt) of Ecuador. 

Year Observed CH4 flux Reference 

2013 0.83 

EDGAR (2020) 2016 0.88 

2020 0.97 
 

Analysis of data 

In this research, all data processing was carried out in ArcGIS 10.8 software. The coordinate system and basic 

spatial processing were established. The spatial distribution of CH4 emissions was presented using the surface 

temperature-based model in ArcGIS 10.8 with the Raster Calculator tool. Statistical analyzes of CH4 emission 

were performed using zone statistics, thus determining maximum, minimum, average and standard deviation 

values. In addition to the rate of annual issue for the different periods. The spatial data obtained were processed 

in Excel 2019, through frequency statistics techniques. 
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RESULTS 

Correlation analysis of surface temperature and NDVI 

The NDVI values reached minimum values of up to -0.003, this is because there are areas with clouds or bodies 

of water, as it is a populated area (community). There are mostly areas without vegetation cover and therefore the 

NDVI values predominate between -0.003 and 0.6. The maximum NDVI values reach up to 0.6 and in a few 

places up to 0.7, such as protected forest areas. Mostly in community settlements, low NDVI values are observed. 

The spatio-temporal reduction of vegetation areas is also observed, mainly in September. Fig. 4 shows the NDVI 

maps that were obtained from the three satellite images worked on. 

 

 
 

  (a)  (b) 

 
(c) 

Fig. 4. Spatial distribution of NDVI; (a) September 2, 2013; (b) January 14, 2016; and (c) August 4, 2020. 

 

As a result of the analysis of the maps, the statistical values of the NDVI for 2013, 2016 and 2020 were determined 

(Table 2). It was found that the minimum NDVI value was -0.033 corresponding to the rivers within the 

communities and cloud cover; with a maximum value of 0.6 belonging to native forest areas. 
 

Table 2. Statistical values of the NDVI of the study area for 2013, 2016 and 2020. Vmin: Minimum values, Vmax: Maximum 

values, µ NDVI: average NDVI, and σ: Standard deviation. 

Year Vmin Vmax µ NDVI σ 

2013 0.116 0.537 0.419 4,657 

2016 0.046 0.596 0.431 8,240 

2020 -0.003 0.599 0.427 6,159 

 

 

The results of the surface temperature with higher values are seen in August 2020, most of them present similar 

trends according to their intensity distribution in certain sectors. Fig. 5 shows that in the part where the 

communities are located, the temperature is higher in bare soils and lower values in vegetative areas. Table 3 

depicts the results of the analysis of the three maps. Minimum temperature values of 5.9 °C and maximum values 

of 26 °C were determined, with an annual average of 17.5, 21.7 and 22.9, for 2013, 2016 and 2020, respectively. 

Within the correlation between NDVI and surface temperature, an inverse trend was obtained to the spatial set as 

illustrated in Figs. 4 and 5. The NDVI values in grasslands were higher, while the temperature in communal spaces 

and bare areas were much higher than grasses. Given that water is a special case, here, the values are lower, since 
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the influence of surface-based vegetation comes from underlying areas that store transpiration due to evaporation 

and heat exchange. This caloric capacity that lacks vegetative cover, remains dry from not evapotranspirating, 

thus altering the variables under study. 
 

Table 3. Statistical values of the surface temperature in ℃ in the study area for 2013, 2016 and 2020. Vmin: Minimum values, 

Vmax: Maximum values, µ T: Average temperature, and σ: Standard deviation. 

Year Vmin Vmax µT σ 

2013 5.9 18 17.5 1.29 

2016 9.7 24 21.7 2.07 

2020 8.1 26 22.9 1.43 

 
 (a) (b) 

 
(c) 

Fig. 5. Spatial distribution of surface temperature; (a) September 2, 2013; (b) January 14, 2016; and (c) August 4, 2020. 

 

CH4 emissions 

The statistical values determined the average methane emissions to be 1.18 × 10-4 Megatons (Mt) for 2013, 2016 

and 2020. The year exhibiting higher values was 2020 with 2.36 × 10-4 Mt, while the lowest was 2013, with 1.74 

× 10-5 Mt. There were significant differences in CH4 emissions between the grids (Fig. 6). The highest emissions 

(>2.67 × 10-4 Mt) were recorded in communes and bare soils, while the lowest within forested areas and pastures, 

thus presenting regional differences. 

 

Table 4. Statistical values of CH4 emissions in Megatons/year in the study area for 2013, 2016 and 2020; Vmin: Minimum 

values, Vmax: Maximum values, µT: Average temperature, and σ: Standard deviation. 

Year Vmin Vmax µT σ 

2013 1.30 × 10-6 5.36 × 10-5 1.74 × 10-5 6.29 × 10-6 

2016 2.11 × 10-4 4.29 × 10-6 1.01 × 10-4 3.48 × 10-5 

2020 2.76 × 10-6 2.67 × 10-4 2.36 × 10-4 2.86 × 10-5 

 

DISCUSSION 

According to the results of the surface temperature, the values agree with El-Hattab et al. (2018) , where it was 

mentioned that rural areas present higher temperature data. This may occur due to bare soils and the type of soil. 

NDVI values are inversely related to temperature as stated  by Zhang et al. (2012), which may be due to the 

amount of vegetation in the area that regulates the temperature. Likewise, based on the results of the water masses 

(Coelho & Correa 2013), they have a notable influence on the conditioning variables, having a direct effect on the 
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ambient temperature. So that, by elevating the ecological level within the communes, the tropical effect will 

increase. The methane estimation was carried out by testing the empirical model based on the surface temperature 

of the land and vegetation, which until a few years ago was applied to wetlands. During the summer, emissions 

will decrease due to precipitation and lower temperatures (Agarwal & Garg 2009), being applied in Tungurahua, 

Ecuador to estimate the amount of CH4 emissions in a Landfill (Ambuludi et al. 2022). The model was applied 

for the first time in Mexico by Cortez (2015), in agreement with the fact that the method is reliable and can be 

adjusted according to the climatic conditions of each area. 
 

 
Fig. 6. Estimation of CH4 emissions by the USEPA Mexican Model for 2013, 2016 and 2020. 

 
 

A drawback with this type of model is the quality of the images that are available, since the more clouds there are, 

the less veracity of the results there is. This includes the lower monthly availability of cloud-free satellite images, 

necessary to acquire information (Ayasse et al. 2019). 

 

 

 
 (a) (b) 

 
(c) 

Fig. 7. Spatial distribution of the methane estimation of the Warints and Yawi communities; (a) September 2, 2013; (b) 

January 14, 2016; and (c) August 4, 2020. 
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Methane emissions increase in winter (Zhang et al. 2012) , due to intense rainfall, thus elevating the surface area 

of humid areas. The value of the annual emission growth rate for the period 2013-2020 experienced a value greater 

than 45% according to Sun et al. (2017). This is due to population growth and consequently deforestation that has 

caused the stripping of the native cover of the area. 

 
 

CONCLUSION 

The estimated methane (CH4) emissions for the communities of Warints and Yawi were obtained through satellite 

images, for the years 2013, 2016 and 2020. It was 1.74 × 10-5, 1.01 × 10-4 and 2.36 × 10-4 megatons, respectively, 

for an area of 107.62 km2. In the period 2013-2020, an annual emission rate of 45.11% was obtained. The study 

found a high variability of methane emissions in the communes and bare soils, while the lowest were recorded 

within forested and pasture areas, presenting regional differences. Surface temperature and NDVI were the main 

factors within methane emissions, presenting average values of up to 26° C and 0.6, respectively, being 

uncertainties due to changes in flow and climatic conditions. This model is suitable for estimating the annual 

methane budget in areas with high vegetative incidence at both the local and regional levels. 
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