
Nonlocal Caputo generalized proportional fractional
integro-differential systems: an existence study

Samira Zerbib∗, Khalid Hilal, Ahmed Kajouni

LMACS Laboratory, Sultan Moulay Slimane University, Beni Mellal, Morocco
Email(s): zerbib.sam123@gmail.com, hilalkhalid2005@yahoo.fr, kajjouni@gmail.com

Journal of Mathematical Modeling
Vol. 13, No. 2, 2025, pp. 375–391. Research Article JMM

�
�

�
�

�
�

�
�

Abstract. The objective of this work is to investigate the existence and uniqueness of the solution to
a nonlinear fractional integro-differential equation with a non-local condition involving the generalized
fractional proportional Caputo derivative of two distinct orders. To achieve this, Krasnoselskiis fixed
point theorem is utilized to examine the existence of the solution, followed by the application of Banachs
fixed point theorem to study the uniqueness. Lastly, two illustrative examples are provided to highlight
the main results.
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1 Introduction

Fractional calculus is an extension of the classical notions of integrals and derivatives of non-zero integer
orders to any real order. The theory of fractional calculus dates back several centuries and can be con-
sidered both old and new. It originates from speculations by G.W. Leibniz and L’Hpital around the end
of 1695. Many mathematicians have contributed to the development of fractional calculus [6], including
Euler (1730) and P.S. Laplace (1812). In 1819, the first mention of an arbitrary order derivative appeared
in a text where the French mathematician S.F. Lacroix dedicated a few pages to fractional calculus in a
work on differential calculus. J.B.J. Fourier (1822) is another notable contributor. Between 1832 and
1837, J. Liouville conducted an extensive study of fractional calculus. Later, B. Riemann (1847) pro-
posed an approach to fractional differentiation. Other approaches emerged later, such as those by A.K.
Grnwald (1867-1872), A.V. Letnikov (1868-1872), H. Laurent (1884), Weyl (1917), and M. Caputo in
1967(for more details, see [5]).
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Fractional calculus is recognized as one of the most effective mathematical tools for describing the
memory properties of complex systems and specific materials [19]. In the classical framework, the
memory of a system is typically represented by the integer-order derivative:

dΦ(t)
dt

= lim
∆t−→0

Φ(t)−Φ(t−∆t)
∆t

, 0 < t.

This definition captures the system’s short memory properties, as it relies solely on the function’s values
at two points. In contrast, the fractional approach represents a system’s memory using the fractional-
order derivative [16]:

dθ Φ(t)
dtθ

= lim
τ−→0

τ
−θ

n

∑
k=0

(−1)k
(

θ

k

)
Φ(t− kτ), nτ = t, 0 < θ < 1,

where θ is the fractional derivative order. Unlike the classical derivative, the fractional derivative ac-
counts for the function’s history. Calculating the fractional derivative at a given time t requires in-
corporating all the previous values of the function Φ(t), thereby reflecting the system’s long memory
properties. For more details see [20].

One of the strengths of classical fractional calculus is the wide range of available derivatives and
integrals. However, there has always been a need to further advance this field and introduce new deriva-
tives to enhance our understanding of the universe. In [4], Atangana and Baleanu introduced a frac-
tional derivative in the sense of Caputo with MittagLeffler function contain non-singular kernels, which
notable as ABCfractional derivative. For more details on fractional derivatives with non-singular ker-
nels, see [1, 9, 17, 22]. In 2011, Katugampola introduced what he called generalized fractional opera-
tors [15, 23], designed to unify the Riemann-Liouville and Hadamard fractional operators. These gen-
eralized derivatives were later refined to encompass both the Caputo and Caputo-Hadamard fractional
derivatives [8]. In [11], the authors introduced new fractional operators based on proportional deriva-
tives of one function with respect to another. The kernel in the proposed fractional operators includes an
exponential function and depends on the specific function used.

Fractional differential equations (FDEs) naturally arise in various scientific fields such as physics,
engineering, medicine, electrochemistry, control theory, and more (see [7, 24, 25]). The effectiveness of
these equations in modeling many real-world phenomena has motivated numerous researchers to study
their quantitative and qualitative aspects. Moreover, fractional differential equations with non-local con-
ditions represent a highly relevant and fascinating area of research. The study of these equations is
gaining increasing popularity among researchers, as evidenced by the growing number of published
articles addressing questions of existence and uniqueness of solutions for this type of equation. This
trend reflects the vitality of research in this field. Among the works on the existence and uniqueness of
solutions of fractional differential equations, we can cite:

In [13] the authors studied the existence and uniqueness of solutions of the following two fractional
deformable differential equations:{

DDDζ u(τ) = F (τ,u(τ)), τ ∈ [0,c],
u(0)+h(u) = u0,
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and DDDζ u(τ) = H (u(τ))+F (τ,u(τ))+
∫

τ

0
K (τ,s,u(τ))ds, τ ∈ [0,c],

u(0) = u0,

where DDDζ (·) is the deformable fractional derivative of order 0 < ζ < 1.
The authors of [21] investigated the existence and uniqueness of solution in a Banach space X for the

following fractional perturbed neutral integro-differential problem involving the deformable derivative:DDDζ (u(τ)−M (τ,u(τ))) = L

(
τ,u(τ),

∫
τ

0
K (τ,s,u(τ))ds

)
+F

(
τ,u(τ),

∫
τ

0
K (τ,s,u(τ))ds

)
,

u(0) = u0 ∈ X , τ ∈ [0,c], 0 < ζ < 1,

where L ,F : [0,c]×X ×X −→ X be continuous functions, M : [0,c]×X −→ X is a continuously
differentiable function, and K ∈C(Z ,X), where Z := {(τ,s) : 0 < s < τ < c}.

Building on the previously mentioned works, this paper investigates the existence and uniqueness of
the solution to the following nonlinear fractional integro-differential equation with a non-local condition,
which involves the generalized fractional proportional Caputo derivative with two different orders:

C
ρ Dζ ,G

0+

(
C
ρ Dδ ,G

0+ (χ(τ)−H (τ,χ(τ),Bχ(τ))
)
= F (τ,χ(τ),Bχ(τ)), t ∈Π := [0,b],

(χ(τ)−H (τ,χ(τ),Bχ(τ))
τ=0 = u0, (χ(τ)−H (τ,χ(τ),Bχ(τ))

′

τ=0 = 0,
(χ(τ)−H (τ,χ(τ),Bχ(τ)))

τ=b +ϕ(χ) = u1,

(1)

where 1< ζ < 2, 0< δ < 1, C
ρ Dζ ,G

0+ (·) is the generalized Caputo proportional fractional derivative of order
ζ , G : Π→ R, H ,F : Π×X ×X −→X are continuous functions, ϕ ∈C(X ,X ), and u0, u1 ∈X ,
where X is a Banach space. The operator Bχ(τ) is given by Bχ(τ) :=

∫
τ

0 N (τ,s)χ(s)ds such that
N ∈C(D ,X ), where D := {(τ,s) : 0 < s < τ < b}. We consider

B∗ = max
τ∈[0,b]

∫
τ

0
‖N (τ,s))‖ds.

The key contributions of this study are summarized as follows:

1. We employ the fractional derivative rather than the classical derivative, leveraging the advantages
and outcomes associated with the fractional derivative, as discussed earlier.

2. To the best of our knowledge, this is the first attempt to examine the structure of the nonlinear frac-
tional integro-differential system with a non-local condition that includes the generalized fractional
proportional Caputo derivative with two different orders in the context of the system introduced in
(1).

3. Utilizing the generalized fractional proportional Caputo derivative type and its properties, we pro-
vide the integral solution to the given system (1)(Lemma 5).

4. The primary existence theorems are established using alternative fixed-point principles attributed
to Banach and Krasnoselskii. Furthermore, two illustrative examples are presented in the section
4 to demonstrate the application of the main results.
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5. Additionally, this work extends and enhances previous studies published in the literature, including
those referenced in [3, 18].

This paper is structured as follows. Section 2 introduces the necessary definitions, lemmas, and
notations. Section 3 presents our main results concerning the existence and uniqueness of the solution
to problem (1). In Section 4, we provide two illustrative examples to illustrate the key findings of this
work, and our conclusions are summarized in Section 5.

2 Preliminaries

In this section, we introduce definitions and lemmas related to the generalized Caputo proportional frac-
tional derivative, and we provide the solution formula for the nonlinear fractional integro-differential
system (1). These definitions and lemmas will be used consistently throughout the following sections of
this work.

• Let Π = [0,b] be a finite interval of R. We denote by C(Π,X ) the Banach space of all continuous
functions with the norm ‖χ‖= sup{|χ(τ)| : τ ∈Π}.

• Throughout this paper, we consider the function G : Π→ R to be a strictly positive, increasing,
and differentiable function.

Definition 1 ([11]). Let 0 < ρ < 1, ζ > 0, and f be a continuous function. The left-sided generalized
proportional fractional integral of order ζ with respect to G of the function f is determined by

ρ Iζ ,G
0+ f (τ) =

1
ρζ Γ(ζ )

∫
τ

0
e

ρ−1
ρ

(G (τ)−G (s))G
′
(s)(G (τ)−G (s))ζ−1 f (s)ds,

where Γ(ζ ) =
∫ +∞

0
e−ttζ−1dt is the Euler gamma function.

Definition 2 ([11]). Let ρ ∈ [0,1], Φ, Ψ : [0,1]×R→ [0,∞) be continuous functions with lim
ρ→0+

Φ(ρ,τ) =

0, lim
ρ→1−

Φ(ρ,τ) = 1, lim
ρ→0+

Ψ(ρ,τ) = 1, limρ→1− Ψ(ρ,τ) = 0, and Φ(ρ,τ) 6= 0, ρ ∈ [0,1), Ψ(ρ,τ) 6= 0,

ρ ∈ (0,1], τ ∈R. The proportional derivative of order ρ with respect to G of the function f is determined
by

ρDG f (τ) = Ψ(ρ,τ) f (τ)+Φ(ρ,τ)
f
′
(τ)

G ′
(τ)

.

In particular, if Φ(ρ,τ) = ρ and Ψ(ρ,τ) = 1−ρ , then we have

ρDG f (τ) = (1−ρ) f (τ)+ρ
f
′
(τ)

G ′
(τ)

.

Definition 3 ([11]). Let ρ ∈ (0,1]. The left-sided generalized Caputo proportional fractional derivative
of order n−1 < ζ < n for the continuous function f is defined by

C
ρ Dζ ,G

0+ f (τ) =ρ In−ζ ,G
0+ (ρDn,G f (τ))

=
1

ρn−ζ Γ(n−ζ )

∫
τ

0
e

ρ−1
ρ

(G (τ)−G (s))G
′
(s)(G (τ)−G (s))n−ζ−1(ρDn,G f )(s)ds,
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where n = [ζ ]+1 and ρDn,G = ρDG
ρDG

ρ ... DG︸ ︷︷ ︸
n−times

.

As a simplification, throughout this manuscript, we pose

Ω
ζ−1
G (τ,0) = e

ρ−1
ρ

(G (τ)−g(0))(G (τ)−g(0))ζ−1. (2)

Lemma 1 ([10]). Let τ ∈Π, ρ ∈ (0,1], ζ , δ > 0, and f be a continuous function. Then, we have

ρ Iζ ,G
0+ (ρ Iδ ,G

0+ f (τ)) =ρ Iζ ,G
0+ (ρ Iδ ,G

0+ f (τ)) =ρ Iζ+δ ,G
0+ f (τ).

Lemma 2 ([10]). Let ρ ∈ (0,1] and ζ , δ > 0. Then, we have

(i)
(

ρ Iζ ,G
0+ e

ρ−1
ρ

(G (t)−G (0))(G (t)−G (0))δ−1
)
(τ) = Γ(δ )

ρζ Γ(ζ+δ )
Ω

ζ+δ−1
G (τ,0).

(ii)
(

C
ρ Dζ ,G

0+ e
ρ−1

ρ
(G (t)−G (0))(G (t)−G (0))δ−1

)
(τ) = ρζ Γ(δ )

Γ(δ−ζ )
Ω

δ−ζ−1
G (τ,0).

Lemma 3 ([10]). Let ρ ∈ (0,1], ζ > 0, and f be a continuous function. Then, we have

lim
τ→0

(
ρ Iζ ,G

0+ f (τ)
)
= 0.

Lemma 4 ([12]). Let ρ ∈ (0,1], n−1 < ζ < n, (n = [ζ ]+1). Then, we have

ρ Iζ ,G
0+ (Cρ Dζ ,G

0+ f (τ)) = f (τ)−
n−1

∑
k=0

(ρDk,G f )(0)
ρkΓ(k+1)

Ω
k
G (τ,0).

To define the solution formula for problem (1), we simplify the process by considering the following
problem and determining its solution formula:

C
ρ Dζ ,G

0+

(
C
ρ Dδ ,G

0+ (χ(τ)−h(τ))
)
= f (τ), t ∈Π = [0,b],

(χ(τ)−h(τ))
τ=0 = u0, (χ(τ)−h(τ))

′

τ=0 = 0,
(χ(τ)−h(τ))

τ=b +ϕ(χ) = u1,

(3)

where 0 < ζ < 1, 1 < δ < 2, C
ρ Dζ ,G

0+ (·) is the generalized Caputo proportional fractional derivative of
order ζ , h, f : Π−→X be continuous functions, and ϕ ∈C(X ,X ).

Lemma 5. Let h, f : Π−→X be continuous functions. Then the problem (3) has a solution given by

χ(τ) =
(∆−ϕ(χ))

Ωδ

G (b,0)
Ω

δ

G (τ,0)+u0e
ρ−1

ρ
(G (τ)−G (0))+

(1−ρ)u0

ρ
Ω

1
G (τ,0)

+
1

ρδ+ζ Γ(δ +ζ )

∫
τ

0
Ω

δ+ζ−1
G (τ,s)G

′
(s) f (s)ds+h(τ), τ ∈ [0,b], (4)

where Ω
(·)
G (τ, .) and ∆ are given by (2) and (9), respectively.
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Proof. Let χ(τ) be a solution of the problem (1). Applying the operator ρ Iζ ,G
0+ (·) to both sides of (3) and

using Lemma 4, we get

C
ρ Dδ ,G

0+ (χ(τ)−h(τ)) = β1e
ρ−1

ρ
(G (τ)−G (0))+ρ Iζ ,G

0+ f (τ), (5)

with β1 ∈ R. Next, Applying the operator ρ Iδ ,G
0+ (·) to both sides of (5), we get

χ(τ)−h(τ) = β1 ρ Iδ ,G
0+ Ω

0
G (τ,0)+β2Ω

0
G (τ,0)+β3

Ω1
G (τ,0)

ρ
+ρ Iζ+δ ,G

0+ f (τ), (6)

with β1, β2, β3 ∈ R. Using Lemma 2(i), then the integral equation (6) becomes

χ(τ)−h(τ) = β1
e

ρ−1
ρ

(G (τ)−G (0))(G (τ)−G (0))δ

ρδ Γ(δ +1)
+β2e

ρ−1
ρ

(G (τ)−G (0))

+β3
e

ρ−1
ρ

(G (τ)−G (0))(G (τ)−G (0))
ρ

+
1

ρδ+ζ Γ(δ +ζ )

∫
τ

0
e

ρ−1
ρ

(G (τ)−G (s))(G (τ)−G (s))δ+ζ−1G
′
(s) f (s)ds. (7)

Putting τ = 0 in the integral equation (7), we get β2 = (χ(τ)−h(τ))
τ=0 = u0. From the integral equation

(7), with β2 = u0 we have

(χ(τ)−h(τ))
′
=

β1

ρδ Γ(δ +1)

(
G ′(τ)(ρ−1)

ρ
Ω

δ

G (τ,0)+δG ′(τ)Ωδ−1
G (τ,0)

)
+

u0G ′(τ)(ρ−1)
ρ

e
ρ−1

ρ
(G (τ)−G (0))

+
β3

ρ

(
G ′(τ)e

ρ−1
ρ

(G (τ)−G (0))+
G ′(τ)(ρ−1)Ω1

G (ρ,0)
ρ

)
+

G ′(τ)(ρ−1)
ρδ+ζ+1Γ(δ +ζ )

∫
τ

0
Ω

δ+ζ−1
G (τ,s)G

′
(s) f (s)ds

+
G ′(τ)

ρδ+ζ Γ(δ +ζ −1)

∫
τ

0
Ω

δ+ζ−2
G (τ,s)G

′
(s) f (s)ds. (8)

Taking τ = 0 in the integral equation (8), we get β3 = u0(1− ρ). Now, taking τ = b, β2 = u0, and
β3 = u0(1−ρ) in the integral equation (7), we have

(χ(τ)−h(τ))
τ=b = β1

Ωδ

G (b,0)
ρδ Γ(δ +1)

+u0e
ρ−1

ρ
(G (b)−G (0))

+u0(1−ρ)
Ω1

G (b,0)
ρ

+ρ Iδ+ζ ,G
0+ f (b).

Using the initial condition (χ(τ)−h(τ))
τ=b +ϕ(χ) = u1, we further get

β1 =
ρδ Γ(δ +1)

Ωδ

G (b,0)

(
u1−ϕ(χ)−u0e

ρ−1
ρ

(G (b)−G (0))−u0(1−ρ)
Ω1

G (b,0)
ρ

−ρ Iδ+ζ ,G
0+ f (b)

)
=

ρδ Γ(δ +1)
Ωδ

G (b,0)
(∆−ϕ(χ)) ,
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where

∆ = u1−u0

(
e

ρ−1
ρ

(G (b)−G (0))+(1−ρ)
Ω1

G (b,0)
ρ

)
−ρ Iδ+ζ ,G

0+ f (b). (9)

Substituting β1, β2, and β3 in (7) we obtain

χ(τ) =
(∆−ϕ(χ))

Ωδ

G (b,0)
Ω

δ

G (τ,0)+u0e
ρ−1

ρ
(G (τ)−G (0))+

(1−ρ)u0

ρ
Ω

1
G (τ,0)

+
1

ρδ+ζ Γ(δ +ζ )

∫
τ

0
Ω

δ+ζ−1
G (τ,s)G

′
(s) f (s)ds+h(τ).

This completes the proof.

With the information from the previous lemma, we are now able to define the solution to the nonlinear
generalized Caputo proportional fractional integro-differential system (1).

Definition 4. If χ is a solution to the problem (1), then χ is also a solution of the following integral
equation:

χ(τ) =
(∆−ϕ(χ))

Ωδ

G (b,0)
Ω

δ

G (τ,0)+u0e
ρ−1

ρ
(G (τ)−G (0))+

(1−ρ)u0

ρ
Ω

1
G (τ,0)

+
1

ρδ+ζ Γ(δ +ζ )

∫
τ

0
Ω

δ+ζ−1
G (τ,s)G

′
(s)F (s,χ(s),Bχ(s))ds+H (τ,χ(τ),Bχ(τ)),

provided that the above integral is finite.

3 Existence results

In this section, we present and study the existence of solutions for the given nonlinear generalized Caputo
proportional fractional integro-differential system (1) under the Krasnoselskiis fixed point theorem.

Theorem 1. [2] Let S be a closed, convex and nonempty subset of the Banach algebra X . We consider
the two operators V ,W : S →X such that:

(a) V u+W v ∈S for all u,v ∈S .

(b) V is a contraction on S .

(c) W is completely continuous on S .

Then, the operator Pu = V u+W u has at least a fixed point in S .

To apply the Krasnoselskiis fixed point theorem, we need the following assumptions:

(A1) The function F : Π×X ×X −→X is continuous and there are constants LF , L̂F , and L̃F such
that for all v,w,v′,w′ ∈X and for all τ ∈Π, we have

(i) ‖F (τ,v,w)−F (τ,v′,w′)‖ ≤ LF [‖v− v′‖+‖w−w′‖] .
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(ii) ‖F (τ,v,w)‖ ≤ L̂F + L̃F [‖v‖+‖w‖] .

(A2) The function H : Π×X ×X −→X is continuous and there are constants MH , M̂H , and M̃H

such that for all v,w,v′,w′ ∈X and for all τ ∈Π, we have

(i) ‖H (τ,v,w)−H (τ,v′,w′)‖ ≤MH [‖v− v′‖+‖w−w′‖] .

(ii) ‖H (τ,v,w)‖ ≤ M̂H + M̃H [‖v‖+‖w‖] .

(A3) The function ϕ : X −→X is continuous and there are constants Kϕ , K̂ϕ , and K̃ϕ such that for all
v,w ∈X and for all τ ∈Π, we have

(i) ‖ϕ(v)−ϕ(w)‖ ≤ Kϕ ‖v−w‖ .

(ii) ‖ϕ(v)‖ ≤ K̂ϕ + K̃ϕ ‖v‖ .

Consider the Banach space Q := (C(Π,X ),‖ · ‖). Then we consider the subset S of Q defined as:

S = {χ ∈Q : ‖χ‖ ≤Θ},

with

Θ >
Ψ̂

1− Ψ̃
, such that 1− Ψ̃ 6= 0, (10)

where

Ψ̂ =
(G (b)−G (0))δ

Ωδ

G (b,0)

(
‖ ∆ ‖+K̂ϕ

)
+ ‖ u0 ‖

∣∣∣∣1− 1−ρ

ρ
(G (b)−G (0))

∣∣∣∣
+
(G (b)−G (0))δ+ζ L̂F

ρδ+ζ Γ(δ +ζ +1)
+ M̂H .

Ψ̃ =
(G (b)−G (0))δ K̃ϕ

Ωδ

G (b,0)
+

(G (b)−G (0))δ+ζ L̃F (1+B∗)

ρδ+ζ Γ(δ +ζ +1)
+ M̃H (1+B∗) .

It is clear that S is a convex, closed, bounded, and nonempty subset of the Banach space Q. We now
have all the necessary arguments to establish the existence results for the given nonlinear generalized
Caputo proportional fractional integro-differential system (1). Therefore, we present the following exis-
tence theorem.

Theorem 2. Suppose that all assumptions (A1)-(A3) hold and

(G (b)−G (0)))δ

Ωδ

G (b,0)
Kϕ < 1, (11)

where Ω
(·)
G (.,0) is given by (2). Then, the nonlinear generalized Caputo proportional fractional integro-

differential system (1) has at least a solution χ ∈C(Π,X ).
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Proof. To apply the Krasnoselskiis fixed point theorem, we define the operators V : S −→X , W :
S −→X , and P : S −→X as follows:

(V χ)(τ) =
(∆−ϕ(χ))

Ωδ

G (b,0)
Ω

δ

G (τ,0)+u0e
ρ−1

ρ
(G (τ)−G (0))+

(1−ρ)u0

ρ
Ω

1
G (τ,0).

(W χ)(τ) =
1

ρδ+ζ Γ(δ +ζ )

∫
τ

0
Ω

δ+ζ−1
G (τ,s)G

′
(s)F (s,χ(s),Bχ(s))ds+H (τ,χ(τ),Bχ(τ)).

(Pχ)(τ) = ((V +W )χ)(τ). (12)

Then, the proof is given in the following steps:
Step 1: Let τ ∈ [0,b] and χ, υ ∈S . By using the assumptions (A1)(ii), (A2)(ii), (A3)(ii), and the fact
that

e
ρ−1

ρ
(G (τ)−G (0)) < 1,

we get

‖V χ(τ)+W υ(τ)‖

=

∥∥∥∥∥(∆−ϕ(χ))

Ωδ

G (b,0)
Ω

δ

G (τ,0)+u0e
ρ−1

ρ
(G (τ)−G (0))+

(1−ρ)u0

ρ
Ω

1
G (τ,0)

+
1

ρδ+ζ Γ(δ +ζ )

∫
τ

0
Ω

δ+ζ−1
G (τ,s)G

′
(s)F (s,υ(s),Bυ(s))ds+H (τ,υ(τ),Bυ(τ))

∥∥∥∥∥
≤(G (b)−G (0))δ

Ωδ

G (b,0)

(
‖ ∆ ‖+K̂ϕ + K̃ϕ ‖χ‖

)
+ ‖ u0 ‖

∣∣∣∣1− 1−ρ

ρ
(G (b)−G (0))

∣∣∣∣
+

1
ρδ+ζ Γ(δ +ζ )

∫
τ

0
(G (τ)−G (s))δ+ζ−1G

′
(s)
(

L̂F + L̃F [‖υ‖+‖Bυ‖]
)

ds

+ M̂H + M̃H [‖υ‖+‖Bυ‖]

≤(G (b)−G (0))δ

Ωδ

G (b,0)

(
‖ ∆ ‖+K̂ϕ + K̃ϕΘ

)
+ ‖ u0 ‖

∣∣∣∣1− 1−ρ

ρ
(G (b)−G (0))

∣∣∣∣
+

(G (b)−G (0))δ+ζ

ρδ+ζ Γ(δ +ζ +1)

(
L̂F + L̃F Θ(1+B∗)

)
+ M̂H + M̃H Θ(1+B∗)

≤(G (b)−G (0))δ

Ωδ

G (b,0)

(
‖ ∆ ‖+K̂ϕ

)
+ ‖ u0 ‖

∣∣∣∣1− 1−ρ

ρ
(G (b)−G (0))

∣∣∣∣
+

(G (b)−G (0))δ+ζ L̂F

ρδ+ζ Γ(δ +ζ +1)
+ M̂H

+Θ

[
(G (b)−G (0))δ K̃ϕ

Ωδ

G (b,0)
+

(G (b)−G (0))δ+ζ L̃F (1+B∗)

ρδ+ζ Γ(δ +ζ +1)
+ M̃H (1+B∗)

]
≤Ψ̂+ΘΨ̃ < Θ. (13)

Therefore, V (χ)+W (υ) ∈S for all χ, υ ∈S .
Step 2: We show that V is a contraction. Let τ ∈ [0,b] and χ, υ ∈S . By using the assumption (A3)(i),
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and the fact that

e
ρ−1

ρ
(G (τ)−G (0)) < 1,

we get

‖V χ(τ)−V υ(τ)‖=
Ωδ

G (τ,0)
Ωδ

G (b,0)
‖ϕ(χ)−ϕ(υ)‖ ≤ (G (b)−G (0)))δ

Ωδ

G (b,0)
Kϕ ‖χ−υ‖ .

Thanks to condition (11), deduce that the operator V is a contraction.
Step 3: We show that the operator W is completely continuous.
(i) W is continuous:
Let τ ∈ [0,b] and χn be a sequence of S such that χn −→ χ as n−→ ∞ in S . Then we have

‖W χn(τ)−W χ(τ)‖

≤ 1
ρδ+ζ Γ(δ +ζ )

∫
τ

0
Ω

δ+ζ−1
G (τ,s)G

′
(s)‖F (s,χn(s),Bχn(s))−F (s,χ(s),Bχ(s))‖ds

+‖H (τ,χn(τ),Bχn(τ))−H (τ,χ(τ),Bχ(τ))‖ .

Thanks to the continuity of the functions F and H and the Lebesgue dominated convergence theorem,
we obtain

‖W χn(τ)−W χ(τ)‖ −→ 0, as n−→ ∞.

This implies that the operator W is continuous.
(ii) W is uniformly bounded:
Let τ ∈ [0,b] and χ ∈S . Then, by using the assumptions (A1)(ii), (A2)(ii), and the fact that

e
ρ−1

ρ
(G (τ)−G (0)) < 1,

we get

‖W χ(τ)‖

≤ 1
ρδ+ζ Γ(δ +ζ )

∫
τ

0
Ω

δ+ζ−1
G (τ,s)G

′
(s)‖F (s,χ(s),Bχ(s))‖ds+‖H (τ,χ(τ),Bχ(τ))‖

≤ 1
ρδ+ζ Γ(δ +ζ )

∫
τ

0
(G (τ)−G (s))δ+ζ−1G

′
(s)
(

L̂F + L̃F [‖χ‖+‖Bχ‖]
)

ds

+ M̂H + M̃H [‖χ‖+‖Bχ‖]

≤(G (b)−G (0))δ+ζ

ρδ+ζ Γ(δ +ζ +1)

(
L̂F + L̃F Θ(1+B∗)

)
+ M̂H + M̃H Θ(1+B∗) .

Therefore, the operator W is uniformly bounded.
(iii) W is equicontinuous:
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Let τ1,τ2 ∈ [0,b], (τ1 < τ2), and χ ∈S , by using our assumptions, we get

‖(W χ)(τ2)− (W χ)(τ1)‖

=

∥∥∥∥ 1
ρδ+ζ Γ(δ +ζ )

∫
τ2

0
Ω

δ+ζ−1
G (τ2,s)G

′
(s)F (s,χ(s),Bχ(s))ds+H (τ2,χ(τ2),Bχ(τ2))

− 1
ρδ+ζ Γ(δ +ζ )

∫
τ1

0
Ω

δ+ζ−1
G (τ1,s)G

′
(s)F (s,χ(s),Bχ(s))ds−H (τ1,χ(τ1),Bχ(τ1))

∥∥∥∥
=

∥∥∥∥ 1
ρδ+ζ Γ(δ +ζ )

∫
τ2

τ1

Ω
δ+ζ−1
G (τ2,s)G

′
(s)F (s,χ(s),Bχ(s))ds+H (τ2,χ(τ2),Bχ(τ2))

+
1

ρδ+ζ Γ(δ +ζ )

∫
τ1

0

(
Ω

δ+ζ−1
G (τ2,s)−Ω

δ+ζ−1
G (τ1,s)

)
G
′
(s)F (s,χ(s),Bχ(s))ds

−H (τ1,χ(τ1),Bχ(τ1))‖

≤

(
L̂F + L̃F Θ(1+B∗)

)
ρδ+ζ Γ(δ +ζ )

∥∥∥∥∫ τ2

τ1

(G (τ2)−G (s))δ+ζ−1G
′
(s)ds

+
∫

τ1

0

(
(G (τ2)−G (s))δ+ζ−1− (G (τ1)−G (s))δ+ζ−1

)
G
′
(s)ds

∥∥∥∥
+‖H (τ2,χ(τ2),Bχ(τ2))−H (τ1,χ(τ1),Bχ(τ1))‖

≤

(
L̂F + L̃F Θ(1+B∗)

)
ρδ+ζ Γ(δ +ζ +1)

∥∥∥(G (τ2)−G (0))δ+ζ − (G (τ1)−G (0))δ+ζ

∥∥∥
+‖H (τ2,χ(τ2),Bχ(τ2))−H (τ1,χ(τ1),Bχ(τ1))‖ .

By using the continuity of the functions H ,G ,χ , and by Lebesgue dominated convergence theorem,
from the above inequality, we get ‖(W χ)(τ2)− (W χ)(τ1)‖ → 0 as τ1 → τ2. Therefore, the operator
W is equicontinuous. From (ii) and (iii), and by the Arzela-Ascoli theorem, it follows that W (S ) is
relatively compact. Moreover, since W (S ) is continuous, it is completely continuous. From Theorem 1,
the operator P has at least one fixed point in S . Hence, the nonlinear generalized Caputo proportional
fractional integro-differential system (1) has at least one solution χ ∈C(Π,X ).

We now proceed to demonstrate the uniqueness of the solution to the nonlinear generalized Caputo
proportional fractional integro-differential system (1). This leads to the following theorem

Theorem 3. Let assumptions (A1)-(A3) hold. Then the nonlinear generalized Caputo proportional frac-
tional integro-differential system (1) has a unique solution χ ∈C(Π,X ) provided that

Λ =
(G (b)−G (0))δ

Ωδ

G (b,0)
Kϕ +MH (1+B∗)+

(G (b)−G (0))δ+ζ

ρδ+ζ Γ(δ +ζ +1)
LF (1+B∗)< 1. (14)

Proof. Let operator P be given by (12). Based on the same arguments of the Step 1, we find that
P(S )⊂S , where S = {χ ∈Q : ‖χ‖ ≤ Θ}, and Θ satisfied (10). Let τ ∈ [0,b], χ, υ ∈S , by using
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the assumptions (A1)(i), (A2)(i), and (A3)(i), we have

‖Pχ(τ)−Pυ(τ)‖

=

∥∥∥∥∥Ωδ

G (τ,0)ϕ(χ)

Ωδ

G (b,0)
+

1
ρδ+ζ Γ(δ +ζ )

∫
τ

0
Ω

δ+ζ−1
G (τ,s)G

′
(s)F (s,χ(s),Bχ(s))ds+H (τ,χ(τ),Bχ(τ))

−
Ωδ

G (τ,0)ϕ(υ)

Ωδ

G (b,0)
− 1

ρδ+ζ Γ(δ +ζ )

∫
τ

0
Ω

δ+ζ−1
G (τ,s)G

′
(s)F (s,υ(s),Bυ(s))ds−H (τ,υ(τ),Bυ(τ))

∥∥∥∥∥
≤ (G (b)−G (0))δ

Ωδ

G (b,0)
‖ϕ(χ)−ϕ(υ)‖+‖H (τ,χ(τ),Bχ(τ))−H (τ,υ(τ),Bυ(τ))‖

+
1

ρδ+ζ Γ(δ +ζ )

∫
τ

0
(G (τ)−G (s))δ+ζ−1G

′
(s)‖F (s,χ(s),Bχ(s))−F (s,υ(s),Bυ(s))‖ds

≤
(G (b)−G (0))δ Kϕ

Ωδ

G (b,0)
‖χ−υ‖+MH

[
‖χ−υ‖+

∫ s

0
‖N (s, t)‖‖χ−υ‖dt

]
+

LF

ρδ+ζ Γ(δ +ζ )

∫
τ

0
(G (τ)−G (s))δ+ζ−1G

′
(s)
[
‖χ−υ‖+

∫ s

0
‖N (s, t)‖‖χ−υ‖dt

]
ds

≤

(
(G (b)−G (0))δ

Ωδ

G (b,0)
Kϕ +MH (1+B∗)+

(G (b)−G (0))δ+ζ

ρδ+ζ Γ(δ +ζ +1)
LF (1+B∗)

)
‖χ−υ‖

=:Λ‖χ−υ‖ .

Thanks to condition (14), the operator P is a contraction. Hence P has a unique fixed point χ ∈
C(Π,X ) , which is the unique solution of the nonlinear generalized Caputo proportional fractional
integro-differential system (1) in C(Π,X ).

4 Applications

In this section, we provide two practical examples to illustrate the application of our main results.

Example 1. Let Π = [0,1], ρ = δ = 1
2 , ζ = 3

2 , G (τ) = τ ,

F (τ,χ(τ),Bχ(τ)) =
τ2

2

(
eτ +

π

16(τ2 +2)
|χ(τ)|

(1+ |χ(τ)|)

)
+

π

64
Bχ(τ),

H (τ,χ(τ),Bχ(τ)) =
τ2

8

(
1+

|χ(τ)|
2(1+ |χ(τ)|)

)
+

1
(τ +4)2 Bχ(τ),

ϕ(χ) =
|χ(1

2)|
9(1+ |χ(1

2)|)
+

3
17

,

where

Bχ(τ) =
∫

τ

0
τ

2es|χ(s)|ds.

B∗ = max
τ∈[0,1]

∫
τ

0
τ

2esds = e−1≈ 1.718.
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We consider the following nonlinear generalized Caputo proportional fractional integro-differential sys-
tem: 

C
1
2
D

3
2 ,τ

0+

(
C
1
2
D

1
2 ,τ

0+

(
χ(τ)− τ2

8

(
1+ |χ(τ)|

2(1+|χ(τ)|)

)
+ 1

(τ+4)2 Bχ(τ)
))

= τ2

2

(
eτ + π

16(τ2+2)
|χ(τ)|

(1+|χ(τ)|)

)
+ π

64Bχ(τ), τ ∈Π = [0,1],(
χ(τ)− τ2

8

(
1+ |χ(τ)|

2(1+|χ(τ)|)

)
+ 1

(τ+4)2 Bχ(τ)
)

τ=0
= u0 ∈ R,(

χ(τ)− τ2

8

(
1+ |χ(τ)|

2(1+|χ(τ)|)

)
+ 1

(τ+4)2 Bχ(τ)
)′

τ=0
= 0,(

χ(τ)− τ2

8

(
1+ |χ(τ)|

2(1+|χ(τ)|)

)
+ 1

(τ+4)2 Bχ(τ)
)

τ=1
+

|χ( 1
2 )|

9(1+|χ( 1
2 )|)

+ 3
17 = u1 ∈ R.

(15)

First, let us check assumptions (A1), (A2), and (A3). For all τ ∈ [0,1] and v, w ∈ R, we have

‖F (τ,v,Bv)−F (τ,w,Bw)‖ ≤ τ2

2
π

16(τ2 +2)
‖ v−w ‖

(1+ ‖ v ‖)(1+ ‖ w ‖)
+

π

64
‖Bv−Bw‖

≤ π

64
[‖ v−w ‖+ ‖Bv−Bw ‖] .

‖F (τ,v,Bv)‖=
∥∥∥∥τ2

2

(
eτ +

π

16(τ2 +2)
|v|

(1+ |v|)

)
+

π

64
Bv
∥∥∥∥

≤ e
2
+

π

64
[‖ v ‖+ ‖Bv ‖] .

Then, assumption (A1) holds with LF = L̃F = π

64 and L̂F = e
2 . We have

‖H (τ,v,Bv)−H (τ,w,Bw)‖ ≤ τ2

16
‖ v−w ‖

(1+ ‖ v ‖)(1+ ‖ w ‖)
+

1
(τ +4)2 ‖Bv−Bw‖

≤ 1
16

[‖ v−w ‖+ ‖Bv−Bw ‖] .

‖H (τ,v,Bv)‖=
∥∥∥∥τ2

8

(
1+

|v|
2(1+ |v|)

)
+

1
(τ +4)2 Bv

∥∥∥∥
≤ 1

8
+

1
16

[‖ v ‖+ ‖Bv ‖] .

Therefore, assumption (A2) holds with MH = M̃H = 1
16 and M̂H = 1

8 . We have

‖ϕ(v)−ϕ(w)‖ ≤ 1
9

‖ v−w ‖
(1+ ‖ v ‖)(1+ ‖ w ‖)

≤ 1
9
‖ v−w ‖ .

‖ϕ(v)‖=
∥∥∥∥ |v|

9(1+ |v|)
+

3
17

∥∥∥∥≤ 3
17

+
1
9
‖ v ‖ .

Hence, assumption (A3) holds with Kϕ = K̃ϕ = 1
9 and K̂ϕ = 3

17 .
Condition (11) also holds:

(G (1)−G (0)))δ

Ωδ

G (1,0)
Kϕ =

1
e−1

1
9
≈ 0.302 < 1.
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We observe that all conditions of Theorem 2 are satisfied. Then the nonlinear generalized Caputo pro-
portional fractional integro-differential system (15) has at least a solution χ ∈C(Π,R).

The uniqueness of the solution to the problem (15) amounts to condition (14) that holds as follows:

Λ =
(G (1)−G (0))δ

Ωδ

G (1,0)
Kϕ +MH (1+B∗)+

(G (1)−G (0))δ+ζ

ρδ+ζ Γ(δ +ζ +1)
LF (1+B∗)

=
1

e−1
1
9
+

e
16

+
1

1
4 Γ(3)

π

64
e≈ 0.7386 < 1.

This implies that the nonlinear generalized Caputo proportional fractional integro-differential system
(15) has a unique solution χ ∈C(Π,R).

Example 2. Let Π = [1,e], ρ = δ = 1
2 , ζ = 5

3 , G (τ) = ln(τ),

F (τ,χ(τ),Bχ(τ)) =
1
2

(
τ

2
+

sin
(

π

5 χ(τ)
)

9(eτ +2)

)
+

π

90
Bχ(τ),

H (τ,χ(τ),Bχ(τ)) =
τ

4

(
1+

e−τ

8(τ4 +2)
sin
(

π

4
χ(τ)

))
+

eπ

2(eτ +4)3 Bχ(τ),

ϕ(χ) =
sin
(
χ
(1

2

))
13

+
1
18

,

where

Bχ(τ) =
∫

τ

1

s
τ2 +3

|χ(s)|ds,

B∗ = max
τ∈[1,e]

∫
τ

1

s
τ2 +3

ds =
e2−1

6
' 1,0648.

Therefore, we have the following nonlinear generalized Caputo proportional fractional integro-differential
system: 

C
1
2
D

5
3 ,ln(τ)
1+

[
C
1
2
D

1
2 ,ln(τ)
0+

(
χ(τ)− τ

4

(
1+ e−τ

8(τ4+2) sin
(

π

4 χ(τ)
))

+ eπ

2(eτ+4)3 Bχ(τ)
)]

= 1
2

(
τ

2 +
sin( π

5 χ(τ))
9(eτ+2)

)
+ π

90Bχ(τ), τ ∈Π = [1,e],(
χ(τ)− τ

4

(
1+ e−τ

8(τ4+2) sin
(

π

4 χ(τ)
))

+ eπ

2(eτ+4)3 Bχ(τ)
)

τ=1
= u0 ∈ R,(

χ(τ)− τ

4

(
1+ e−τ

8(τ4+2) sin
(

π

4 χ(τ)
))

+ eπ

2(eτ+4)3 Bχ(τ)
)′

τ=1
= 0,(

χ(τ)− τ2

8

(
1+ |χ(τ)|

2(1+|χ(τ)|)

)
+ 1

(τ+4)2 Bχ(τ)
)

τ=e
+

sin(χ( 1
2))

13 + 1
18 = u1 ∈ R.

(16)

Similar to the previous example first we show that assumptions (A1), (A2), and (A3) hold.
For all τ ∈ [1,e] and v, w ∈ R we have

‖F (τ,v,Bv)−F (τ,w,Bw)‖ ≤ 1
2

π

45(eτ +2)
‖ v−w ‖+ π

90
‖Bv−Bw‖

≤ π

90
[‖ v−w ‖+ ‖Bv−Bw ‖] .
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‖F (τ,v,Bv)‖=

∥∥∥∥∥1
2

(
τ

2
+

sin
(

π

5 v
)

9(eτ +2)

)
+

π

90
Bv

∥∥∥∥∥
≤ e

4
+

π

90
[‖ v ‖+ ‖Bv ‖] .

Then, assumption (A1) holds with LF = L̃F = π

90 and L̂F = e
4 . We have

‖H (τ,v,Bv)−H (τ,w,Bw)‖ ≤ eπ

128
‖ v−w ‖+ eπ

2(eτ +4)3 ‖Bv−Bw‖

≤ eπ

128
[‖ v−w ‖+ ‖Bv−Bw ‖] .

‖H (τ,v,Bv)‖=
∥∥∥∥τ

4

(
1+

e−τ

8(τ4 +2)
sin
(

π

4
v
))

+
eπ

2(eτ +4)3 Bv
∥∥∥∥

≤ e
4
+

eπ

128
[‖ v ‖+ ‖Bv ‖] .

Therefore, assumption (A2) holds with MH = M̃H = eπ

128 and M̂H = e
4 . Also we have

‖ϕ(v)−ϕ(w)‖ ≤ 1
13
‖ v−w ‖ .

‖ϕ(v)‖ ≤ 1
18

+
1
13
‖ v ‖ .

Hence, assumption (A3) holds with Kϕ = K̃ϕ = 1
13 and K̂ϕ = 1

18 .
Condition (11) holds since:

(G (e)−G (1)))δ

Ωδ

G (e,1)
Kϕ =

e
13
≈ 0.2090 < 1.

We note that all conditions of Theorem 2 are satisfied. Then the system (16) has at least a solution
χ ∈C(Π,R). Condition (14) for the uniqueness of the solution of problem (15) also holds:

Λ =
(G (e)−G (1))δ

Ωδ

G (e,1)
Kϕ +MH (1+B∗)+

(G (e)−G (1))δ+ζ

ρδ+ζ Γ(δ +ζ +1)
LF (1+B∗)

=
e

13
+

2,0648× eπ

128
+

2,0648×π

90× (1
2)

13
6 Γ(19

6 )

≈ 0.4847 < 1.

This implies that the nonlinear generalized Caputo proportional fractional integro-differential system
(16) has a unique solution χ ∈C(Π,R).

5 Conclusions

This study explored the existence and uniqueness of the solution to a nonlinear fractional integro-
differential equation with a non-local condition, involving the generalized Caputo proportional fractional
derivative of two different orders, 1 < ζ < 2 and 0 < δ < 1. To demonstrate the existence and uniqueness
of the solution, we applied Krasnoselskiis and Banachs fixed point theorems, respectively. Finally, we
provided two examples to illustrate our main results.



390 S. Zerbib, K. Hilal, A. Kajouni

References

[1] A. Atangana, D. Baleanu, New fractional derivative with non-local and non-singular kernel,
Therm. Sci. 20 (2016) 757.

[2] T.A. Burton, Fixed-point theorem of Krasnoselskii, Appl. Math. Lett. 11 (1998) 85-88.

[3] M. Bohner, S. Hristova, Stability for generalized Caputo proportional fractional delay integro-
differential equations, Bound. Value Probl. 2022 (2022) 14.

[4] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog.
Fract. Differ. Appl. 1 (2015) 73–85.

[5] S.A. David, J.L. Linares, E.M.D.J.A. Pallone, Fractional order calculus: historical apologia, basic
concepts and some applications, Rev. Bras. Ensino Fis. 33 (2011) 4302–4302.

[6] R. Gorenflo, F. Mainardi, Fractional Calculus: Integral and Differential Equations of Fractional
Order, Springer Vienna, 1997

[7] K. Hilal, A. Kajouni, S. Zerbib, Hybrid fractional differential equation with nonlocal and impulsive
conditions, Filomat 37 (2023) 3291–3303.

[8] F. Jarad, T. Abdeljawad, D. Baleanu, On the generalized fractional derivatives and their Caputo
modification J. Nonlinear Sci. Appl. 10 (2017) 2607–2619.

[9] F. Jarad, T. Abdeljawad, Z. Hammouch, On a class of ordinary differential equations in the frame
of Atangana-Baleanu fractional derivative, Chaos Solit. Fractals 117 (2018) 16–20.

[10] F. Jarad, T. Abdeljawad, S. Rashid, Z. Hammouch, More properties of the proportional fractional
integrals and derivatives of a function with respect to another function, Adv. Differ. Equ. 2020
(220) 303.

[11] F. Jarad, M.A. Alqudah, T. Abdeljawad, On more general forms of proportional fractional opera-
tors, Open Math. 18 (2020) 167–176.

[12] I. Mallah, I. Ahmed, A. Akgul, F. Jarad, S. Alha, On ψ-Hilfer generalized proportional fractional
operators, AIMS Math. 7 (2021) 82–103.

[13] M. Mebrat, G.M.N. Guerekata, A Cauchy problem for some fractional differential equation via
deformable derivatives J. Nonlinear Evol. Equ. Appl. 4 (2020) 55–63.

[14] U.N. Katugampola, New approach to generalized fractional integral, Appl. Math. Comput. 218
(2011) 860–865.

[15] U.N. Katugampola, A new approach to generalized fractional derivatives, Bull. Math. Anal. Appl.
6 (2014) 1–15.

[16] I. Podlubny, Matrix approach to discrete fractional calculus, Fract. Calc. Appl. Anal. 3 (2000)
359–386.



Nonlocal Caputo generalized proportional fractional integro-differential systems 391

[17] K. Shah, M.A. Alqudah, F. Jarad, T. Abdeljawad, Semi-analytical study of pine wilt disease
model with convex rate under Caputo-Fabrizio fractional order derivative,Chaos Solit. Fractals
135 (2020) 109754.

[18] A. Rahmani, W.S. Du, M.T. Khalladi, M. Kostic, D. Velinov, Proportional Caputo Fractional Dif-
ferential Inclusions in Banach Spaces, Symmetry 14 (2022) 1941.

[19] S.Z. Rida, A.M.A. El-Sayed, A.A.M. Arafa, Effect of bacterial memory dependent growth by using
fractional derivatives reaction-diffusion chemotactic model, J. Stat. Phys. 140 (2010) 797–811.

[20] H.G. Sun, W. Chen, H. Wei, Y.Q. Chen, A comparative study of constant-order and variable-order
fractional models in characterizing memory property of systems, Eur. Phys. J. Spec. Top. 193 (2011)
185–192.

[21] R. Sreedharan, S.R. Balachandar, R. Udhayakumar, S. Etemad, I. Avc, S. Rezapour, On the frac-
tional perturbed neutral integro-differential systems via deformable derivatives: an existence study,
Bound. Value Probl. 2024 (2024) 74.

[22] M. Yavuz, N. Ozdemir, Comparing the new fractional derivative operators involving exponential
and Mittag-Leffler kernel, Discrete Contin. Dyn. Syst. 13 (2020) 995–1006.

[23] M. Yavuz, N. Ozdemir, European vanilla option pricing model of fractional order without singular
kernel, Fractal Fract. 2 (2018) 3.

[24] S. Zerbib, N. Chefnaj, K. Hilal, A. Kajouni, Study of p-Laplacian hybrid fractional differential
equations involving the generalized Caputo proportional fractional derivative, Comput. Methods.
Differ Equ., 2024, https://doi.org/10.22034/cmde.2024.61552.2665.

[25] S. Zerbib, K. Hilal, A. Kajouni, Some new existence results on the hybrid fractional differential
equation with variable order derivative, Results Nonlinear Anal. 6 (2023) 34–48.

https://doi.org/10.22034/cmde.2024.61552.2665

	1 Introduction
	2 Preliminaries
	3 Existence results
	4 Applications
	5 Conclusions

