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NEUTROSOPHIC PRIMARY SUBMODULE,
LOCALIZATION AND RESIDUAL QUOTIENTS

S. AZIMI, N. ZAMANI∗, M.R. HOOSHMANDASL AND A. KHOJALI

Abstract. Let R be a commutative ring with identity, M be a
unital R-module and let L be a complete Heyting algebra. In this
paper, among results on colon structures of L-neutrosophic sub-
modules and L-neutrosophic ideals, we introduce and study the
notion of primary (and prime) L-neutrosophic submodules and give
connections with primary (prime) behavior of its t, i and f compo-
nents. Then, for a multiplicatively closed subset S of R, we define
the notion of localization formation for an L-neutrosophic submod-
ule λ of M and study its behavior. Some types of L-neutrosophic
quotients will also be investigated.

1. Introduction

Fuzzy set theory originated with the 1965 publication of the paper
 ̋Fuzzy sets ̋ by Lotfi Zadeh [19]. This seminal paper opened up new
insights in a vast range of science and generalized into various basic
mathematical concepts including algebra. The first attempt to the
natural fuzzification of the main concepts of algebra was done by A.
Rosenfeld. His well-cited paper [12] was the starting point and inspi-
ration for most of the subsequent work in the field of fuzzy algebra.
So that, fuzzy invariant subgroups, fuzzy ideals and submodules, fuzzy
Galois theory and most of the fuzzy versions of the crisp abstract alge-
bra came to exist. Most of the work done in the three decades leading
up to 2000 on fuzzy (commutative) algebra is summarized in the book
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by J. Mordeson and D. S. Malik [9] and we refer to it for unexplained
notation.
The fuzzy theory approach deals only the degree of membership but
sometimes, in order to obtain the results in more realistic way, it may
necessary to deal with non-membership function. To overcome the
above fact, Atanassov [1] presented the intuitionistic fuzzy set in 1983
which is a generalization of the fuzzy set. The intuitionistic fuzzy set
deals with the non-membership function of the element in the set and
as compared to fuzzy set it is based on more intuition. Intuitionistic
fuzzy structures began with the work by Biswas [2], where he applied
the concept of intuitionistic fuzzy set to group theory and studied the
intuitionistic subgroups of a group. In the last few years considerable
works have been done on fuzzy and intuitionistic fuzzy structures in
general and, fuzzy and intuitionistic fuzzy prime and primary ideals
and sub-modules in particular [5, 14, 14].

In real life, we sometimes encounter the concept of degree of un-
certainty that cannot be explained by fuzzy logic or intuitive logic.
To overcome this problem, Smarandache introduced the concept of
the neutrosophic set [3, 15, 17]. The theory of neutrosophic sets is a
powerful tool to deal with incomplete, indeterminate and inconsistent
information which exist in the real world [6, 10]. A type of neotroso-
phistic algebraic structures based on numerical components t =truth,
i =indeterminacy and f = falsity (which is different from the neutro-
sophic algebraic structures based on neutrosophic numbers) was intro-
duced and studied by F. Smarandache and Vasantha [16]. Then, based
on this definition and structure V. Çetkin and H. Aygün introduced and
studied some of the properties of neutrosophic submodules [4]. How-
ever, on the author’s knowledge, there is not any other contribution on
the structure of neutrosophic submodules and thus the results appeared
may throw a light on the subject. In this paper we define the concepts
of colons and primary (prime) neutrosophic submodules, and study
their properties. Then, we introduce and study the idea of localization
formation and types of quotients neutrosophic submodules. In section
2, we recall some preliminaries and pay attention to colon neutrosophic
ideals and submodules. It contains some key lemmas on products and
sums of neutrosophic submodules and a theorem (Theorem 2.4) saying
that colons of neutrosophic submodules (ideals) are neutrosophic ideals
(submodules). Section 3 contains the notion of primary neutrosophic
submodules π from which we give a result for this kind of objects π in
terms of its component functions tπ, iπ and fπ. Section 4 deals with the
important notion of localization. For a multiplicatively closed subset S
of a commutative ring R, and for an L-neutrosophic submodule λ of the
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R-module M we define and give somehow lower ([S]λ) and upper (λ[S])
approximations for λ, such that [S]λ ⊑ λ ⊑ λ[S]. Then we formulate
the localization object S−1λ and study its behaviour and the relations
with [S]λ and λ[S]. In the final section 5, we study quotient rings, quo-
tient modules and L-single valued neutrosophic quotients. Throughout
the paper, R is a commutative ring with identity element 1 ̸= 0 and
M is a unital R-module with zero element θ. Let (L,∨,∧,≤, 0, 1) be
a complete Heyting algebra with minimal and maximal element 0 and
1, respectively.

2. L-neutrosophic residual quotients

Let U be an arbitrary non-empty set. Following [18], an L-single
valued neutrosophic subset of U is defined as

λ = {< x, tλ(x), iλ(x), fλ(x) > |x ∈ U},
where tλ, iλ, fλ : U → L is (the so called) truth membership function,
indeterminacy membership function and falsity membership function,
respectively. The class of all L-single valued neutrosophic subsets of
U will be denoted by LSV N(U) and for each λ ∈ LSV N(U) we may,
for simplicity, denote λ by (tλ, iλ, fλ). For x ∈ U the triple λ(x) :=
(tλ(x), iλ(x), fλ(x)) is called an L-single valued neutrosophic element
of λ, and for two L-single valued neutrosophic elements λ(x) and µ(y)
in λ and µ, put
λ(x) ⊼ µ(y) = (tλ(x) ∧ tµ(y), iλ(x) ∨ iµ(y), fλ(x) ∨ fµ(y)) (∗)

and
λ(x)∨̄µ(y) = (tλ(x) ∨ tλ(y), iλ(x) ∧ iµ(y), fλ(x) ∧ fµ(y)), (?)

for their meet and joint. For a subset V ⊆ U and t, i, f ∈ L we define
(t, i, f)V ∈ LSV N(U) as

(t, i, f)V (x) =

{
(t, i, f) if x ∈ V
(0, 1, 1) otherwise. (2.1)

When, V = {x}, then (t, i, f)x := (t, i, f){x} with

(t, i, f)x(y) =

{
(t, i, f) if y = x
(0, 1, 1) otherwise, (2.2)

is called an L-single valued neutrosophic point (abbreviated neutro-
sophic point) (of value (t, i, f)) in U .
Following [4], for each λ ∈ LSV N(U) and each ` ∈ L, we consider the `-
level sets of λ as: (tλ)ℓ = {x ∈ U |tλ(x) ≥ `}, (iλ)ℓ = {x ∈ U |iλ(x) ≤ `},
(fλ)ℓ = {x ∈ U |fλ(x) ≤ `}. Also, λ1 = {x ∈ U |λ(x) = (1, 0, 0)}.
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Definition 2.1. (Extension Principle) Let U,W be two non-empty
sets and H : U → W be a surjective map. Let λ, ν be single valued
neutrosophic subsets of U,W respectively. Then we can define H(λ) :
W → L3 and H−1(ν) : U → L3 as

H(λ)(y) := (tH(λ)(y), iH(λ)(y), fH(λ)(y))
= (∨{tλ(x)|x ∈ U,H(x) = y},∧{iλ(x)|x ∈ U,H(x) = y},

∧{fλ(x)|x ∈ U,H(x) = y}),
for all y ∈ W , and

H−1(ν)(x) = ν(H(x)) = (tν(H(x)), iν(H(x)), fν(H(x))),

for all x ∈ U .
Definition 2.2. ([8]) Let λ = (tλ, iλ, fλ), µ = (tµ, iµ, fµ) ∈ LSV N(U).

(i) λ is L-neutrosophic subset of µ, denoted by λ ⊑ µ, if for all
x ∈ X, λ(x) ⪯ µ(x); i.e., tλ(x) ≤ tµ(x), iλ(x) ≥ iµ(x) and
fλ(x) ≥ fµ(x). If λ ⊑ µ and µ ⊑ λ, we set λ = µ. For
t, i, f ∈ L and for x ∈ U , we put (t, i, f)x ∈ λ if (t, i, f)x ⊑ λ.
So, λ = µ if and only if

∀t, i, f ∈ L,∀x ∈ U, (t, i, f)x ∈ λ ⇔ (t, i, f)x ∈ µ.

(ii) The union of λ and µ, is defined as an L-neutrosophic subset
α = (tα, iα, fα) ∈ LSV N(U), where for each x ∈ U , tα(x) =
tλ(x) ∨ tµ(x), iα(x) = iλ(x) ∧ tµ(x), and fα(x) = fλ(x) ∧ fµ(x).
We simply write λ ⋓ µ for α. For a family λj, j ∈ J , of L-
neutrosophic subsets of X, we put
(⋓j∈Jλj)(x) := (∨j∈Jtλj

(x),∧j∈J iλj
(x),∧j∈Jfλj

(x)).

(iii) The intersection of λ and µ is as β = (tβ, iβ, fβ) ∈ LSV N(U),
where for each x ∈ U , tβ(x) = tλ(x)∧tµ(x), iβ(x) = iλ(x)∨tµ(x),
and fβ(x) = fλ(x) ∨ fµ(x).

(iv) The complement of λ ∈ LSV N(U) is λc = (fλ, 1 − iλ, tλ) ∈
LSV N(U).

(v) If λ ∈ LSV N(U), then we say that λ has the supinf property,
if every subset of λ(U) (i.e., the image of λ), has a supinf; i.e.,
for any subset V of U , there exists v0 ∈ V such that

(tλ(v0), iλ(v0), fλ(v0)) = (∨v∈V tλ(v),∧v∈V iλ(v),∧v∈V fλ(v)).

For any unexplained facts and results about the neutrosophic single
valued sets we refer to [8, 18].
Let X be a subset of the R-module M and Let I be an ideal of R. We
recall that < X > denotes the submodule of M generated by X, and
for an element x ∈ X, < x > is the cyclic submodule of M generated
by {x}. The set Rad(I) := {r ∈ R|rn ∈ R, for somen ∈ N} denotes the
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radical of I. For a submodule N of M , N : M = {r ∈ R|rM ⊆ N} is
the residual quotient of M by N , which is an ideal of R. In this section
we will study the residual quotients of L-single valued neutrosophic
subsets of M and R. The next definition will be needed in the sequel.

Definition 2.3. Let λ = (tλ, iλ, fλ), µ ∈ LSV N(M) and let α =
(tα, iα, fα) ∈ LSV N(R). We define α ·λ, and the neutrosophic residual
quotients λ : µ and λ : α as follows:

(1) (α · λ)(x) = {< x,∨(tα(r) ∧ tλ(y)),∧(iα(r) ∨ iλ(y)),∧(fα(r) ∨
fλ(y)) > |r ∈ R, y ∈ M, ry = x}, for all x ∈ M.

(2) (λ : µ) = ⋓{α|α ∈ LSV N(R), α · µ ⊑ λ}.
(3) (λ : α) = ⋓{ν|ν ∈ LSV N(M), α · ν ⊑ λ}.

Here we should note that by Definition 2.2(ii),

⋓ {α|α ∈ LSV N(R), α · µ ⊑ λ}
=

(
∨ {tα|α ∈ LSV N(R), α · µ ⊑ λ},∧{tα|α ∈ LSV N(R), α · µ ⊑ λ},

∧ {tα|α ∈ LSV N(R), α · µ ⊑ λ}
)
,

and a similar definition is considered for ⋓{ν|ν ∈ LSV N(M), α·ν ⊑ λ}.
We also note that α · λ, λ : α ∈ LSV N(M), λ : µ ∈ LSV N(R), and it
is easy to see that α · (λ ∪ µ) = (α · λ) ∪ (α · µ).

Definition 2.4. (cf.[4]) Let λ ∈ LSV N(M). We will call λ an L-single
valued neutrosophic submodule of M (L-neutrosophic submodule for
short) if the following conditions hold.
(LM1) λ(θ) = (1, 0, 0),
(LM2) λ(x+ y) ⪰ λ(x) ⊼ λ(y), for all x, y ∈ M ,
(LM3) λ(rx) ⪰ λ(x) for all r ∈ R and all x ∈ M .

Here note, for example in (LM2), that we have tλ(x + y) ≥ tλ(x) ∧
tλ(y), iλ(x+ y) ≤ iλ(x) ∨ iλ(y) and fλ(x+ y) ≤ fλ(x) ∨ fλ(y).
The set of all L-neutrosophic submodules of M will be denoted by
LNS(M) and λ ∈ LNS(M) is nonconstant if λ ̸= (1, 0, 0)M . Also, for
M = R,LNI(R) denotes the set of all L-single valued neutrosophic
ideals of R and ξ ∈ LNI(R) is nonconstant if ξ(x) ̸= (1, 0, 0)R. By the
notation as in Definition 2.1, it is easy to see that when U and W are
two R-modules, λ ∈ LNS(U), ν ∈ LNS(W ) and H : U → W is an
epimorphism, then H(λ) ∈ LNS(W ) and H−1(ν) ∈ LNS(U).
The next theorem shows that, when λ ∈ LNS(M), in the parts (2)
and (3) of Definition 2.3 we can restrict the union in a relatively small
sets. To prove this we need the following auxiliary lemma. Note that
for r ∈ R, x ∈ M and t, i, f ∈ L, < (t, i, f)r >∈ LNI(R) is defined
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as (t, i, f)<r> ∪ (1, 0, 0)0, and < (t, i, f)x >∈ LNS(M) is defined as
(t, i, f)<x> ∪ (1, 0, 0)θ.

Lemma 2.5. Assume that λ ∈ LNS(M), ν ∈ LSV N(M), α ∈
LSV N(R), r ∈ R, x ∈ M and t, i, f ∈ L.

(1) If (t, i, f)r · ν ⊑ λ, then (t, i, f)<r> · ν ⊑ λ.
(2) If α · (t, i, f)x ⊑ λ, then α · (t, i, f)<x> ⊑ λ.

Proof. We prove (1); and (2) can be proven by a similar argument. Let
y ∈ M . Then, by Definition 2.3(1),

((t, i, f)<r> · ν)(y)
= ( ∨

s∈R,z∈M
sz=y

(t<r>(s) ∧ tν(z)), ∧
s∈R,z∈M

sz=y

(i<r>(s) ∨ iν(z)),

∧
s∈R,z∈M

sz=y

(f<r>(s) ∨ fν(z))

= ( ∨
s∈<r>,z∈M

sz=y

(tr ∧ tν(rz)), ∧
s∈<r>,z∈M

sz=y

(ir∨iν(rz)), ∧
s∈<r>,z∈M

sz=y

(fr∨fν(rz))

⪯ ( ∨
a∈R,z∈M
arz=y

(tr ∧ tν(rz)), ∧
a∈R,z∈M
arz=y

(ir ∨ iν(rz)), ∧
a∈R,z∈M
arz=y

(fr ∨ fν(rz))

⪯ ( ∨
a∈R,z∈M
a(rz)=y

((t, i, f)r · ν)(rz)

⪯ ∨
a∈R,z∈M,
a(rz)=y

λ(rz) (by assumption in (1) )

⪯ ∨
a∈R,z∈M
a(rz)=y

λ(arz)

= λ(y).

Thus (t, i, f)<r> · ν ⊑ λ. □

Theorem 2.6. Assume that µ ∈ LSV N(M), λ ∈ LNS(M) and α ∈
LSV N(R). Then

(1) λ : α = ⋓{ν|ν ∈ LNS(M), α · ν ⊑ λ}.
(2) λ : µ = ⋓{α|α ∈ LNI(R), α · µ ⊑ λ}.

Proof. (1) First, we show that λ : α = ⋓{(t, i, f)x|(t, i, f) ∈ L3, x ∈
M,α · (t, i, f)x ⊑ λ}. To prove the nontrivial direction ⊑, assume that
ν ∈ LSV N(M) and that α · ν ⊑ λ. Fix x ∈ M and put ν(x) =
(tν(x), iν(x), fν(x)) = (t, i, f). Then, (t, i, f)x is an L-neutrosophic
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point in M and by Definition 2.3(1),
(α · (t, i, f)x)(y)
= ( ∨

r∈R,z∈M
rz=y

(tα(r) ∧ tx(z)), ∧
r∈R,z∈M

rz=y

(iα(r)∨ix(z)), ∧
r∈R,z∈M

rz=y

(fα(r)∨fx(z))

= ( ∨
r∈R
rx=y

(tα(r) ∧ tx(x)), ∧
r∈R
rx=y

(iα(r) ∨ ix(x)), ∧
r∈R
rx=y

(fα(r) ∨ fx(x))

⪯ (α.ν)(y) ⪯ λ(y),

for each y ∈ M . This means that (t, i, f)x ∈ λ : α and thus
λ : α ⊑ ⋓{(t, i, f)x|(t, i, f) ∈ L3, x ∈ M,α · (t, i, f)x ⊑ λ}.

Now, we always have ⋓{ν|ν ∈ LNS(M), α · ν ⊑ λ} ⊑ λ : α. To prove
the opposite inclusion, let x ∈ M and let (t, i, f) ∈ L3 be such that
α · (t, i, f)x ⊑ λ. Put ν =< (t, i, f)x >. Then, we have

α · ν = (α · ((1, 0, 0)θ ∪ (t, i, f)<x>))
= (α · (1, 0, 0)θ) ∪ (α · (t, i, f)<x>)
⊑ [(1, 0, 0)θ ∪ (α · (t, i, f)<x>)]
⊑ [(1, 0, 0)θ ∪ λ] = λ;

where the first inclusion is by the definition of α · (1, 0, 0)θ and the
second inclusion is by Lemma 2.1(2). Therefore,

λ : α = ⋓{(t, i, f)x|(t, i, f) ∈ L3, x ∈ M,α · (t, i, f)x ⊑ λ}
⊑ ⋓{ν|ν ∈ LNS(M), α · ν ⊑ λ}.

The proof of part (1) now is complete.
Part (2) is proved in a similar method. Here as an auxiliary statement
one could first show that

λ : µ = ⋓{(t, i, f)r|(t, i, f) ∈ L3, r ∈ R, (t, i, f)r · µ ⊑ λ}.
□

We omit the straightforward proof of the following lemma.

Lemma 2.7. Let µ, ν ∈ LSV N(M). For each x ∈ M , put
(µ+ ν)(x)

= ( ∨
y,z∈M
y+z=x

(tµ(y) ∧ tν(z)), ∧
y,z∈M
y+z=x

(iµ(y) ∨ iν(z)), ∧
y,z∈M
y+z=x

(fµ(y) ∨ fν(z))).

Then,
(1) µ ⊑ µ+ ν = ν + µ,
(2) if µ, ν ∈ LNS(M), then µ+ ν ∈ LNS(M).

Theorem 2.8. Assume that λ ∈ LNS(M), µ ∈ LSV N(M) and α ∈
LSV N(R). Then

(1) λ : α ∈ LNS(M),
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(2) λ : µ ∈ LNI(R).

Proof. We only prove (1), and (2) can be proven by a similar argument.
Using Definition 2.3(1), it is clear that α · (1, 0, 0)θ ⊑ (1, 0, 0)θ ⊑ λ. So,
by Definition 2.3(3), (1, 0, 0)θ ⊑ (λ : α) and thus (λ : α)(θ) = (1, 0, 0).
This means that (LM1) of Definition 2.4 holds.
To prove (LM2), let x, y ∈ M . Then,
(λ : α)(x+ y)
= (⋓{ν|ν ∈ LNS(M), α · ν ⊑ λ})(x+ y) (by Theorem 2.6,)
=

(
∨ {tν(x+ y)|ν ∈ LNS(M), α · ν ⊑ λ},

∧{iν(x+ y)|ν ∈ LNS(M), α · ν ⊑ λ},
∧{fν(x+ y)|ν ∈ LNS(M), α · ν ⊑ λ}

)
⪰
(
∨{t(ν1+ν2)(x+y)|ν1, ν2∈LNS(M), α · (ν1+ν2)⊑α · ν1 + α · ν2⊑λ},

∧{i(ν1+ν2)(x+y)|ν1, ν2∈LNS(M), α · (ν1+ν2)⊑α · ν1 + α · ν2⊑λ},
∧{f(ν1+ν2)(x+y)|ν1, ν2∈LNS(M), α · (ν1+ν2)⊑α · ν1 + α · ν2⊑λ}

)
⪰

(
∨{t(ν1+ν2)(x)∧ t(ν1+ν2)(y)|ν1, ν2 ∈ LNS(M), α · ν1⊑λ, α · ν2 ⊑ λ},

∧{i(ν1+ν2)(x) ∨ i(ν1+ν2)(y)|ν1, ν2 ∈ LNS(M), α · ν1 ⊑ λ, α · ν2 ⊑ λ},
∧{f(ν1+ν2)(x)∨f(ν1+ν2)(y)|ν1, ν2 ∈ LNS(M), α · ν1 ⊑ λ, α · ν2 ⊑ λ}

)
⪰ (∨{tν1(x) ∧ tν2(y)|ν1, ν2 ∈ LNS(M), α · ν1 ⊑ λ, α · ν2 ⊑ λ},
∧{iν1(x) ∨ iν2(y)|ν1, ν2 ∈ LNS(M), α · ν1 ⊑ λ, α · ν2 ⊑ λ},
∧{fν1(x) ∨ fν2(y)|ν1, ν2 ∈ LNS(M), α · ν1 ⊑ λ, α · ν2 ⊑ λ})

(by Lemma (2.7)(2))
= (∨{ν1(x)|ν1 ∈ LNS(M), α · ν1 ⊑ λ})

∧(∨{ν2(y)|ν2 ∈ LNS(M), α · ν2 ⊑ λ})
= (λ : α)(x) ∧ (λ : α)(y).

For (LM3), let r ∈ R, x ∈ M . Then,

(λ : α)(rx) =
(
∨ {ν(rx)|ν ∈ LNS(M), α · ν ⊑ λ},

⪰ ∨{ν(x)|ν ∈ LNS(M), α · ν ⊑ λ}
= (λ : α)(x).

□

3. Primary L-neutrosophic submodules

In this section we study some properties of primary L-neutrosophic
submodules of M . Recall from [7, Definition 3.1] that a submodule
P ̸= M of M is called primary provided that for each r ∈ R and
x ∈ M ; rx ∈ P gives that x ∈ P or rn ∈ (M : P ) for some n ∈ N.
Inspired by this concept, for ξ = (tξ, iξ, fξ) ∈ LSV N(R), we define the
L-neutrosophic nil radical N(ξ) ∈ LSV N(R) of ξ as

N(ξ)(r) = (∨n∈Ntξ(r
n),∧n∈Niξ(r

n),∧n∈Nfξ(r
n)),∀r ∈ R.



NEUTROSOPHIC PRIMARY SUBMODULE 61

By adopting an argument similar to the one in the proof of [9, Theorem
3.8.3], one can see that if ξ ∈ LNI(R), then N(ξ) ∈ LNI(R), and that
N(N(ξ)) = N(ξ).

Definition 3.1. Let π ∈ LNS(M) be nonconstant. We say that π is a
primary (resp. prime) L-single valued neutrosophic submodule of M ,
if for each α ∈ LNI(R) and each ν ∈ LNS(M), α · ν ⊑ π, gives that
either α ⊑ N(π : (1, 0, 0)M) (resp. α ⊑ (π : (1, 0, 0)M)) or ν ⊑ π. A
primary (prime) L-single valued neutrosophic submodule of R is called
a primary (prime) L-neutrosophic ideal of R. In the following we use
the expression  ̋primary (prime) L-neutrosophic submodule (ideal) ̋
instead of  ̋primary (prime) L-single valued neutrosophic submodule
(ideal) ̋.

Theorem 3.2. Let π ∈ LSV N(M) be a primary L-neutrosophic sub-
module of M . Then, for each ` ∈ L, (tπ)ℓ, (iπ)ℓ and (fπ)ℓ are all
primary submodules of M and for each y ∈ M \ (tπ)1 ∪ (iπ)1 ∪ (fπ)1,
all tπ(y), iπ(y) and fπ(y) are prime elements of L.

Proof. Suppose that π is a primary L-neutrosophic submodule of M
and let ` ∈ L. By [4, Proposition 3.13], with L instead of [0, 1], all
(tπ)ℓ, (iπ)ℓ, (fπ)ℓ are submodules of M . Thus it remain only to prove
that these level sets are primary sub-mudules of M .
To do this, we first consider (tπ)ℓ. Let r ∈ R, x ∈ M such that
rx ∈ (tπ)ℓ, and let x /∈ (tπ)ℓ. We show that rn ∈ ((tπ)ℓ : M) for some
n ∈ N. As x /∈ (tπ)ℓ, we have (tπ)(x) < `. Let ν =< (`, 0, 0)x > and
α =< (1, 0, 0)R > · Then, for each y ∈ M ,

(α · ν)(y)
= ( ∨

s∈R,z∈M
sz=y

(tα(s) ∧ tν(z)), ∧
s∈R,z∈M

sz=y

(iα(s)∨iν(z)), ∧
s∈R,z∈M

sz=y

(fα(s)∨fν(z)))

= (1, 0, 0)M(y)
⪯ π(y).

This means that α · ν ⊑ π. As tπ(x) < `, ν ̸⊑ π, and π is a primary
neutrosophic submodule of M , we must have α ⊑ N(π : (1, 0, 0)M).
This in turn implies

< (`, 0, 0)R > (r) ⪯ N(π : (1, 0, 0)M)(r)
= (∨n∈Nt(π:(1,0,0)M )(r

n),∧n∈Ni(π:(1,0,0)M )(r
n),∧n∈Nf(π:(1,0,0)M )(r

n)).

In particular, ` ≤ t(π:(1,0,0)M )(r
n) for some n ∈ N, meaning that ` ≤

∨{tξ(rn)|ξ ∈ LNI(R), ξ · (1, 0, 0)M ⊑ π}. So, there exists ξ ∈ LNI(R)
such that ` ≤ tξ(r

n) and ξ · (1, 0, 0)M ⊑ π. This gives that for each
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z ∈ M ,
( ∨
s∈R,y∈M
sy=rnz

(tξ(s) ∧ 1M(y)), ∧
s∈R,y∈M
sy=rnz

(iξ(s) ∨ 0M(y)), ∧
s∈R,y∈M
sy=rnz

(fξ(s) ∨ 0M(y)))

= (ξ · (1, 0, 0)M)(rnz) ⪯ π(rnz).

Thus, in particular, tξ(rn) = tξ(r
n) ∧ 1M(z) ≤ tπ(r

nz). So ` ≤ tπ(r
nz)

and rnz ∈ (tπ)ℓ. As z is arbitrary, this means that rn ∈ ((tπ)ℓ : M)
and the proof of this part is complete.
Now, we settle (iπ)ℓ and show that this is also a primary submodule of
M . Let r ∈ R, x ∈ M such that rx ∈ (iπ)ℓ, and let x /∈ (iπ)ℓ. As x /∈
(iπ)ℓ, we have ` < (iπ)(x). Let µ =< (0, `, 1)x > and β =< (0, 1, 1)R >.
Then, for each y ∈ M , we have
(β · µ)(y)
= ( ∨

s∈R,z∈M
sz=y

(tβ(s) ∧ tµ(z)), ∧
s∈R,z∈M

sz=y

(iβ(s)∨iµ(z)), ∧
s∈R,z∈M

sz=y

(fβ(s)∨fµ(z)))

= (0, 1, 1)M(y) ⪯ π(y).

This gives that β · µ ⊑ π. As µ ̸⊑ π (note that ` < (iπ)(x)) and π is
a primary L-neutrosophic submodule of M , we must have β ⊑ N(π :
(1, 0, 0)M). This in turn gives that
< (0, `, 1)R > (r)

⪯ ( ∨
n∈N

t(π:(0,1,1)M )(r
n), ∧

n∈N
i(π:(0,1,1)M )(r

n), ∧
n∈N

f(π:(0,1,1)M )(r
n)).

In particular ` ≥ i(π:(0,1,1)M )(r
n) = ∧{iζ(rn)|ζ ∈ LNI(R), ζ ·(1, 0, 0)M ⊑

π} for some n ∈ N. Hence, ` ≥ iζ(r
n) and ζ · (1, 0, 0)M ⊑ π for some

n ∈ N and some ζ ∈ LNI(R). Therefore, for each z ∈ M ,
( ∨
s∈R,y∈M
sy=rnz

(tζ(s) ∧ 1M(y)), ∧
s∈R,y∈M
sy=rnz

(iζ(s))∨0M(y)), ∧
s∈R,y∈M
sy=rnz

(fζ(s)∨0M(y))

= (ζ · (1, 0, 0)M)(rnz) ⪯ π(rnz).

This, in turn gives that iζ(rn) = iζ(r
n)∨0M(z) ≥ ∧s∈R,y∈M,sy=rnz(iζ(s)∨

0M(y)) ≥ iπ(r
nz). So, ` ≥ iπ(r

nz) and we have rnz ∈ (iπ)ℓ by the
paragraph preceding definition 3.1. Thus, rn ∈ ((iπ)ℓ : M) as desired.
A similar argument as for (iπ)ℓ shows that (fπ)ℓ is a also primary
submodule of M .
Now, let y ∈ M \ (tπ)1 ∪ (iπ)1 ∪ (fπ)1. We show that all tπ(y), iπ(y)
and fπ(y) are prime elements of L. First, assume that 1 ̸= (tπ)(y) := c
is not a prime element in L. Then, there exist a, b ∈ L such that
a ∧ b ≤ c, a ≰ c and b ≰ c. This gives that (1, 0, 0)θ ∪ (b, 0, 0)M ̸⊑ π
and (1, 0, 0)0 ∪ (a, 0, 0)R ̸⊑ N(π : (1, 0, 0)M). On the other hand, we
see that(
(1, 0, 0)0∪(a, 0, 0)R

)
·
(
(1, 0, 0)θ∪(b, 0, 0)M

)
⊑ (1, 0, 0)θ∪(c, 0, 0)M ⊑ π.
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As π is a primary L-neutrosophic submodule of M , this is a contradic-
tion, and c = (tπ)(y) must be a prime element of L.
Second, we consider s = iπ(y) and assume that s is not a prime element
of L. Then, there exist u, v ∈ L such that u ∧ v ≤ s, u ≰ s, v ≰ s. So,
(0, 1, 1)θ ∪ (0, v, 1)M ̸⊑ π and (0, 1, 1)0 ∪ (0, u, 1)R ̸⊑ N(π : (1, 0, 0)M).
But, we see that(
(0, 1, 1)0∪(0, u, 1)R

)
·
(
(0, 1, 1)θ∪(0, v, 1)M

)
⊑ (1, 0, 0)θ∪(0, s, 1)M ⊑ π.

As π is a primary L-neutrosophic submodule of M , this is a contradic-
tion, and s = iπ(y) must be a prime element of L.
A similar argument shows that fπ(y) must be a prime element of L. □

The following remark will be used in the sequel. Its proof is straight-
forward.

Remark 3.3. Let λ ∈ LNS(M) such that λ = (1, 0, 0)λ1 ∪ (t, i, f)M .
Then,

λ : (1, 0, 0)M = (1, 0, 0)(λ1:M)∨̄(t, i, f)R

and that

N(λ : (1, 0, 0)M) = (1, 0, 0)Rad(λ1:M) ∪ (t, i, f)R.

Lemma 3.4. Let λ ∈ LNS(M) be a primary L-neutrosophic submodule
of M . Then, λ = 1λ1 ∪ (t, i, f)M , where λ1 is a primary submodule of
M and t, i, f are prime elements in L.

Proof. Assume that λ is a primary L-neotrosophic submodule of M .
We note that by [4, Proposition 3.13], λ1 = (tλ)1 ∩ (iλ)0 ∩ (fλ)0 is
a submodule of M , and by definition of a primary L-neotrosophic
submodule, |λ(M)| ≥ 2. Let x, y /∈ λ1 and let λ(x) = (t, i, f). As
(t, i, f) = λ(x) ≤ λ(rx), for all r ∈ R, we have (t, i, f)⟨x⟩ ⊑ λ. Now,

((1, 0, 0)0 ∪ (t, i, f)R) · ⟨(1, 0, 0)x⟩
= ((1, 0, 0)0 · ⟨(1, 0, 0)x⟩) ∪

(
(t, i, f)R · ⟨(1, 0, 0)x⟩

= (1, 0, 0)θ ∪ ⟨(t, i, f)x⟩
= ⟨(t, i, f)x⟩ ⊑ λ.

and ⟨(1, 0, 0)x⟩ ⊈ λ. Since λ is a primary L-neutrosophic submodule of
M , we should have

(1, 0, 0)0 ∪ (t, i, f)R ⊑ N
(
λ : (1, 0, 0)M

)
.
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Now, Put Ξ = {ξ ∈ LNI(R)|ξ · (1, 0, 0)M ⊑ λ}. Then,
λ(x)
= (t, i, f) =

(
(1, 0, 0)0 ∪ (t, i, f)R

)
(1)

≤ N
(
λ : (1, 0, 0)M

)
(1)

=
(
∨n∈N{t(λ:(1,0,0)M )(1

n),∧n∈N{i(λ:(1,0,0)M )(1
n),∧n∈N{f(λ:(1,0,0)M )(1

n)
)

= (∨n∈N ∨ξ∈Ξ tξ(1
n),∧n∈N ∧ξ∈Ξ iξ(1

n),∧n∈N ∧ξ∈Ξ fξ(1
n))

= (∨ξ∈Ξ ∨n∈N tξ(1
n),∧ξ∈Ξ ∧n∈N iξ(1

n),∧ξ∈Ξ ∧n∈N fξ(1
n))

=
(
∨{tN(ξ)(1)|ξ ∈ Ξ},∧{iN(ξ)(1)|ξ ∈ Ξ},∧{fN(ξ)(1)|ξ ∈ Ξ}

)
= (∨{tξ(1)|ξ ∈ Ξ},∧{iξ(1)|ξ ∈ Ξ},∧{fξ(1)|ξ ∈ Ξ})
= ( ∨

ξ∈Ξ
(tξ(e) ∧ (1, 0, 0)M(y)), ∧

ξ∈Ξ
(iξ(1) ∨ (0, 1, 1)M(y)),

∧
ξ∈Ξ

(fξ(1) ∨ (0, 1, 1)M(y)))

⪯ ⋓{ξ · (1, 0, 0)M(y)|ξ ∈ Ξ} ⪯ λ(y).

As x, y are arbitrary, we see that λ(x) = λ(y) and,
λ(M) = {x ∈ M |λ(x) = (t, i, f)} ∪ {x ∈ M |λ(x) = (1, 0, 0)}.

Thus λ = (1, 0, 0)λ1 ∪ (t, i, f)M . To prove λ1 is a primary submodule of
M , let rx ∈ λ1 for some r ∈ R and x ∈ M . This gives that ⟨(1, 0, 0)x⟩ ·
⟨(1, 0, 0)r⟩ ⊑ λ, and thus either ⟨(1, 0, 0)x⟩ ⊑ λ or ⟨(1, 0, 0)r⟩ ⊑ N(λ :
(1, 0, 0)M). This, in turn, gives that x ∈ λ1 or rmM ⊆ λ1 for some
m ∈ N. Hence the claim is true.
Next assume that t is not a prime element of L. Then, there exists
u, v ∈ L such that u ≰ t, v ≰ t, and u ∧ v ≤ t. We see that(

(1, 0, 0)0 ∪ (u, 0, 0)R
)
·
(
(1, 0, 0)θ ∪ (v, 0, 0)M

)
= [(1, 0, 0)0 · (1, 0, 0)θ] ∪ [(1, 0, 0)0 · (v, 0, 0)M ]

∪[(u, 0, 0)R · (1, 0, 0)θ] ∪ [(u, 0, 0)R · (v, 0, 0)M ]
⊑ (1, 0, 0)θ ∪ (t, i, f)M ⊑ λ,

but neither (1, 0, 0)θ ∪ (v, 0, 0)M ⊑ λ nor and (1, 0, 0)0 ∪ (u, 0, 0)R ⊑
N(λ : (1, 0, 0)M). This contradicts with the assumption that λ is a
primary L-neutrosophic submodule of M .
Now, we show that i is also a prime element of L. If it is not, then
there exists j, k ∈ L, such that j ≰ i, k ≰ i, but j ∧ k ≤ i. Then, we
see that

((0, 1, 1)0 ∪ (0, j, 1)R) · ((0, 1, 1)θ ∪ (0, k, 1)M)
= (0, 1, 1)0 · (0, 1, 1)θ ∪ (0, 1, 1)0 · (0, k, 1)M

∪(0, j, 1)R · (0, 1, 1)θ ∪ (0, j, 1)R(0, k, 1)M
⊑ (0, 1, 1)θ ∪ (t, i, f)M ⊑ λ,

but neither (0, 1, 1)θ ∪ (0, k, 1)M ⊑ λ nor (0, 1, 1)0 ∪ (0, j, 1)R ⊑ N(λ :
(1, 0, 0)M). With this contradiction i must be a prime element of L. A
similar argument shows that f is also a prime element of L. □
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Theorem 3.5. Assume that λ ∈ LNS(M) is a primary L-neutrosophic
submodule of M . Then, λ1 is a primary submodule of M and (λ :
(1, 0, 0)M)(1) is a prime triple of L.
Proof. By Lemma 3.2, λ = 1λ1 ∪ (t, i, f)M , where λ1 is a primary
submodule of M and t, i, f are prime elements in L. Also, according
the remark preceding the same lemma, and Theorem 2.2(2) we have(

λ : (1, 0, 0)M
)
(1) =

(
(1, 0, 0)(λ1:M) ⋓ (t, i, f)R

)
(1) = (t, i, f),

a prime triple, and the claim follows. □
By a minor modification in the proofs of the above results one can

deduce the following results concerning the prime L-neutrosophic sub-
modules of M .

Theorem 3.6. Let π ∈ LSV N(M) be a prime L-neutrosophic sub-
module of M . Then, for each ` ∈ L, (tπ)ℓ, (iπ)ℓ, (fπ)ℓ are all prime sub-
modules of M and for each y ∈ M \ (tπ)1∪ (iπ)1∪ (fπ)1, all tπ(y), iπ(y)
and fπ(y) are prime elements of L.
Lemma 3.7. Let λ ∈ LNS(M) be a prime L-neutrosophic submodule
of M . Then, λ = 1λ1 ∪ (t, i, f)M , where λ1 is a prime submodule of M
and t, i, f are prime elements in L.
Theorem 3.8. Assume that λ ∈ LNS(M) is a prime L-neutrosophic
submodule of M . Then, λ1 is a prime submodule of M and (λ :
(1, 0, 0)M)(1) is a prime triple of L.

We were not able to prove the converses of the above theorems and
lemmas 3.1-3.6. Therefore, to give a proof for the inverse direction of
the above results, or finding conditions under which the inverse of these
results also holds true, could be the goal of further studies.

4. Localization in L-single valued neutrosophic
submodules

Recall that for a multiplicative closed subset S of R, S−1R (resp.
S−1M) denotes the ring of fractions of R (resp. the module of fractions
of M) with respect to S. We note that, the set 0(S) = {r ∈ R|rs =
0, for some s ∈ S} = ∪s∈S(0 :R s) is an ideal of R and the map u : R →
S−1R, with u(r) = r/1 is a ring homomorphism with its kernel 0(S).
If I is an ideal of R, then the ideal generated by {u(r)|r ∈ I} is called
the extended ideal of I in S−1R and it is denoted by Ie. If J is an ideal
of S−1R, then J c = {r ∈ R|r/1 ∈ J} is an ideal of R and it is called
the contracted ideal of J .
In a similar way, the set O(S) = {x ∈ M |sx = 0, for some s ∈ S} =
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∪s∈S(θ :M s) is a submodule of M and the map M/O(S) ↪→ S−1M
is an R-monomorphism, so that one can consider M̄ := M/O(S) as a
submodule of S−1M . Let Π : M → M̄ , be the natural homomorphism
x → x̄ = x+O(S), for all x ∈ M . By [14, 9.11 (v)], each submodule of
S−1M is of the form S−1N for some submodule N of M . Moreover, by
[14, Theorem 3.4], there is a one to one correspondence between the set
of all prime (resp. primary) submodules P of M with (P : M)∩S = ∅
and the set of all prime (resp. primary) submodules of S−1M given
by P → S−1P . In what follows we will mainly deal with the L-single
valued neutrosophic analogues of this concepts.
For λ ∈ LNS(M), we assign two L-single valued neutrosophic subsets
[S]λ and λ[S] of M and an L-single valued neutrosophic subset S−1λ
of S−1M defined by

[S]λ = ∩s∈S
(
(1, 0, 0)s · λ

)
, ([)

λ[S](x) = (∨s∈S(tλ(sx),∧s∈Siλ(sx),∧s∈Sfλ(sx)) (†)
and
(S−1λ)(x/s) =

{< x/s, t(S−1λ)(x/s), i(S−1λ)(x/s), f(S−1λ)(x/s)|x/s ∈ S−1M}, (\)

where for each x ∈ M and s ∈ S

t(S−1λ)(x/s) = ∨{` ∈ L|x̄/s ∈ S−1((tΠ(λ))ℓ)},
i(S−1)λ)(x/s) = ∧{` ∈ L|x̄/s ∈ S−1((iΠ(λ))ℓ)},
f(S−1λ)(x/s) = ∧{` ∈ L|x̄/s ∈ S−1((fΠ(λ))ℓ)}.

We call these sets the lower approximation, the upper approximation
and the localization of λ with respect to S. It is easy to see that
(S−1λ)(x/1) = (S−1λ)(x/s) = (S−1λ)(ux/1), for x ∈ M and for s, u ∈
S.
Using the Extension Principle (and our abbreviated notation), one sees
that

(S−1λ)(x/s) = ((t(S−1λ)(x/s), i(S−1λ)(x/s), f(S−1λ)(x/s)),

where
t(S−1λ)(x/s) =
∨{` ∈ L|∃r, u ∈ S, y ∈ M, rux− rsy ∈ O(S),∨e∈O(S)tλ(y + e) ≥ `},
i(S−1λ)(x/s) =
∧{` ∈ L|∃r, u ∈ S, y ∈ M, rux− rsy ∈ O(S),∧e∈O(S)iλ(y + e) ≤ `},
f(S−1λ)(x/s) =
∧{` ∈ L|∃r, u ∈ S, y ∈ M, rux− rsy ∈ O(S),∧e∈O(S)fλ(y + e) ≤ `}.

Theorem 4.1. Let λ ∈ LNS(M). Then,
(i) [S]λ, λ[S] ∈ LNS(M) and we have [S]λ ⊑ λ ⊑ λ[S].
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(ii) S−1λ ∈ LNS(S−1M).
(iii) The elements of LNS(S−1M) are extended, i.e., for each Λ ∈

LNS(S−1M), there exists λ ∈ LNS(M) such that Λ = S−1λ.

Proof. Parts (i) and (ii) are straightforward and we only prove (iii).
Let H : M → S−1M be the homomorphism H(x) = x/1. We show
that Λ = S−1(H−1(Λ)). Note that by the paragraph immediately after
definition 2.2, H−1(Λ) ∈ LNS(M), and by definition 2.2(LM3) it is
concluded that Λ(x/s) = Λ(x/1) = Λ(ux/1) for each x ∈ M and each
s, u ∈ S. So, let t, i, f ∈ L, x ∈ M such that (t, i, f)x/1 ∈ S−1(H−1(Λ)).
Then, (S−1(H−1(Λ)))(x/1) ≥ (t, i, f). But,
(S−1(H−1(Λ)))(x/1) ≥ (t, i, f)
⇔ ∨{` ∈ L|∃ȳ ∈ M̄, s ∈ S, x̄/1 = ȳ/s,∨e∈O(S)tH−1(Λ)(y + e) ≥ `} ≥ t,
∧{` ∈ L|∃ȳ ∈ M̄, s ∈ S, x̄/1 = ȳ/s,∧e∈O(S)iH−1(Λ)(y + e) ≤ `} ≤ i,
∧{` ∈ L|∃ȳ ∈ M̄, s ∈ S, x̄/1 = ȳ/s,∧e∈O(S)fH−1(Λ)(y + e) ≤ `} ≤ f
⇔ ∨{` ∈ L|∃ȳ ∈ M̄, s ∈ S, x̄/1 = ȳ/s,∨e∈O(S)tΛ(H(y + e)) ≥ `} ≥ t,
∧{` ∈ L|∃ȳ ∈ M̄, s ∈ S, x̄/1 = ȳ/s,∧e∈O(S)iΛ(H(y + e)) ≤ `} ≤ i,
∧{` ∈ L|∃ȳ ∈ M̄, s ∈ S, x̄/1 = ȳ/s,∧e∈O(S)fΛ(H(y + e)) ≤ `} ≤ f
⇔ ∨{` ∈ L|∃ȳ ∈ M̄, s ∈ S, x̄/1 = ȳ/s, tΛ(H(y)) ≥ `} ≥ t,
∧{` ∈ L|∃ȳ ∈ M̄, s ∈ S, x̄/1 = ȳ/s, iΛ(H(y)) ≤ `} ≤ i,
∧{` ∈ L|∃ȳ ∈ M̄, s ∈ S, x̄/1 = ȳ/s, fΛ(H(y)) ≤ `} ≤ f
⇔ ∨{` ∈ L|∃ȳ ∈ M̄, s ∈ S, x̄/1 = ȳ/s, tΛ(y/1) ≥ `} ≥ t,
∧{` ∈ L|∃ȳ ∈ M̄, s ∈ S, x̄/1 = ȳ/s, iΛ(y/1) ≤ `} ≤ i,
∧{` ∈ L|∃ȳ ∈ M̄, s ∈ S, x̄/1 = ȳ/s, fΛ(y/1) ≤ `} ≤ f
⇔ ∨{` ∈ L|∃ȳ ∈ M̄, s ∈ S, x̄/1 = ȳ/s, tΛ(x/1) ≥ `} ≥ t,
∧{` ∈ L|∃ȳ ∈ M̄, s ∈ S, x̄/1 = ȳ/s, iΛ(x/1) ≤ `} ≤ i,
∧{` ∈ L|∃ȳ ∈ M̄, s ∈ S, x̄/1 = ȳ/s, fΛ(x/1) ≤ `} ≤ f
⇔ tΛ(x/1) ≥ t, iΛ(x/1) ≤ i, fΛ(x/1) ≤ f
⇔ Λ(x/1) ≥ (t, i, f)
(t, i, f)x/1 ∈ Λ.

This proves the claim. □

Theorem 4.2. Let α ∈ LNI(R), α1 = {x ∈ R|α(x) = (1, 0, 0)} and
let λ ∈ LNS(M) has the supremum property.

(i) If S ∩ (λ : (1, 0, 0)M)1 = ∅, then [S]λ = λ.
(ii) If S ∩ (λ : (1, 0, 0)M)1 ̸= ∅, then S−1λ = (1, 0, 0)S−1M .
(iii) If S ∩ α1 ̸= ∅„ then (α · λ)[S] = λ[S].
(iv) S−1(λ[S]) = S−1λ.

Proof. (i) Let s ∈ S. Then, s /∈ (λ : (1, 0, 0)M))1. It is easy to see that
(1, 0, 0)s · λ = λ for all s ∈ S. Thus, [S]λ = λ.
(ii) We only need to show that (1, 0, 0)S−1M ⊑ S−1λ. To do this, it



68 AZIMI, ZAMANI, HOOSHMANDASL AND KHOJALI

suffices to show that for each x ∈ M , (S−1λ)(x/1) = (1, 0, 0). By our
assumption, there exists s ∈ S ∩ (λ : (1, 0, 0)M)1. This, in particular,
gives that

(1, 0, 0)s(s) ⊑ ∪{α(s)|α ∈ LNI(R), α · (1, 0, 0)M ⊑ λ} = (1, 0, 0)

and hence (1, 0, 0)sM = (1, 0, 0)s · (1, 0, 0)M ⊑ λ. Now, assume that
(S−1λ)(x/1) = (t, i, f). Then

∨{` ∈ L|x̄/1 ∈ S−1((tΠ(λ))ℓ)} = t
∧{` ∈ L|x̄/1 ∈ S−1((iΠ(λ))ℓ)} = i
∧{` ∈ L|x̄/1 ∈ S−1((fΠ(λ))ℓ)} = f.

This, by the above observation, gives that
∨{` ∈ L|x̄/1 ∈ S−1((tΠ((1,0,0)sM ))ℓ)} ≤ t
∧{` ∈ L|x̄/1 ∈ S−1((iΠ((1,0,0)sM )))ℓ)} ≥ i
∧{` ∈ L|x̄/1 ∈ S−1((fΠ((1,0,0)sM )))ℓ)} ≥ f.

Therefore,
∨{` ∈ L|∃u, v ∈ S, y ∈ M,uvx̄ = uȳ,∨e∈O(S)1sM(y + e) ≥ `} ≤ t
∧{` ∈ L|∃u, v ∈ S, y ∈ M,uvx̄ = uȳ,∧e∈O(S)0sM(y + e) ≤ `} ≥ i
∧{` ∈ L|∃u, v ∈ S, y ∈ M,uvx̄ = uȳ,∧e∈O(S)0sM(y + e) ≤ `} ≥ f.

Hence,
1 = ∨{` ∈ L| ∨e∈O(S) 1sM(sx+ e) ≥ `} ≤ t
0 = ∧{` ∈ L| ∧e∈O(S) 0sM(sx+ e) ≤ `} ≥ i
0 = ∧{` ∈ L| ∧e∈O(S) 0sM(sx+ e) ≤ `} ≥ f.

Thus 1S−1M(x/1) = (1, 0, 0) ⪯ (t, i, f). As we always have (t, i, f) ⪯
(1, 0, 0), the result follows.
(iii) We note that (α·λ) ⊑ λ by Definition 2.1(1) and so (α·λ)[S] ⊑ λ[S]
by definition (†).
For the reverse inclusion, fix u ∈ S ∩ α1, and let x ∈ M , (t, i, f) ∈ L3

be such that (λ[S])(x) ⪰ (t, i, f). This means that
(∨s∈S(tλ(sx),∧s∈Siλ(sx),∧s∈Sfλ(sx)) ⪰ (t, i, f)

and thus by the supinf property of λ there exist s ∈ S, such that
(tλ(sx), iλ(sx), fλ(sx)) ≥ (t, i, f). Now,

(α · λ)[S](x) = (∨v∈St(α·λ)(vx),∧v∈Si(α·λ)(vx),∧v∈Si(α·λ)(vx))
⪰ (t(α·λ)(sux), i(α·λ)(sux), f(α·λ)(sux))
⪰ (tα(u) ∧ tλ(sx), iα(u) ∨ iλ(sx), fα(u) ∨ fλ(sx))
⪰ (tλ(sx), iλ(sx), fλ(sx) ≥ (t, i, f).

This completes this part.
(iv) As λ ⊑ λ[S], the inclusion S−1λ ⊑ S−1(λ[S]) follows immedi-
ately from definition (\), and we only prove the nontrivial direction
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S−1(λ[S]) ⊑ S−1λ. Note that for each e ∈ O[S], there exists ue ∈ S
such that uee = θ. Let x ∈ M . Then,
S−1(λ[S])(x/1)
=

(
∨{ℓ ∈ L|x̄/1 ∈ S−1((tΠ(λ[S]))ℓ)},∧{ℓ ∈ L|x̄/1 ∈ S−1((iΠ(λ[S]))ℓ)},

∧{ℓ ∈ L|x̄/1 ∈ S−1((fΠ(λ[S]))ℓ)}
)

= (∨{ℓ ∈ L|∃s′, u ∈ S, z ∈ M, s′ux̄ = uz̄,∨e∈O(S)tλ[S](z + e) ≥ℓ)},
∧{ℓ ∈ L|∃s′, u ∈ S, z ∈ M, s′ux̄ = uz̄,∧e∈O(S)iλ[S](z + e) ≤ℓ)},
∧{ℓ ∈ L|∃s′, u ∈ S, z ∈ M, s′ux̄ = uz̄,∧e∈O(S)fλ[S](z + e) ≤ℓ)})
= (∨{ℓ∈L|∃s′, u ∈ S, z ∈ M, s′ux̄ = uz̄,∨e∈O(S) ∨s∈S tλ(ssz + e) ≥ℓ)},
∧{ℓ∈L|∃s′, u ∈ S, z ∈ M, s′ux̄ = uz̄,∧e∈O(S) ∧s∈S iλ(sz + se) ≤ℓ)},
∧{ℓ∈L|∃s′, u ∈ S, z ∈ M, s′ux̄ = uz̄,∧e∈O(S) ∧s∈S fλ(sz + se) ≤ℓ)}) ⪯
(∨{ℓ ∈L|∃s′, u∈S, z∈M, s′ux̄=uz̄,∨e∈O(S)∨s∈S∨ue∈Stλ(suez + suee)≥ℓ)},
∧{ℓ∈L|∃s′, u ∈ S, z ∈ M, s′ux̄=uz̄,∧e∈O(S)∧s∈S∧ue∈Siλ(suez + suee)≤ℓ)},
∧{ℓ∈L|∃s′, u ∈ S, z ∈ M, s′ux̄=uz̄,∧e∈O(S)∧s∈S∧ue∈Sfλ(suez+suee)≤ℓ)})
⪯ (∨{ℓ∈L|∃s′, u ∈ S, z ∈ M, s′ux̄=uz̄,∨e∈O(S) ∨s∈S ∨ue∈Stλ(suez) ≥ℓ)},
∧{ℓ∈L|∃s′, u ∈ S, z ∈ M, s′ux̄=uz̄,∧e∈O(S) ∧s∈S ∧ue∈Siλ(suez) ≤ℓ)},
∧{ℓ∈L|∃s′, u ∈ S, z ∈ M, s′ux̄=uz̄,∧e∈O(S) ∧s∈S ∧ue∈Sfλ(suez) ≤ℓ)}).
Now, as λ has the supinf property, this last expression equals
(∨{` ∈ L|∃s′, u, w ∈ S, z ∈ M, s′ux̄ = uz̄, tλ(wz) ≥ℓ)},
∧{` ∈ L|∃s′, u, w ∈ S, z ∈ M, s′ux̄ = uz̄, iλ(wz) ≤ℓ)},
∧{` ∈ L|∃s′, u, w ∈ S, z ∈ M, s′ux̄ = uz̄, fλ(wz) ≤ℓ)})
⪯ (∨{` ∈ L|∃s′, u, w ∈ S, z ∈ M, s′ ux̄ = uz̄,∨e∈O(S)tλ(wz + e) ≥ℓ)},

∧{` ∈ L|∃s′, u, w ∈ S, z ∈ M, s′ux̄ = uz̄,∧e∈O(S)iλ(wz + e) ≤ℓ)},
∧{` ∈ L|∃s′, u, w ∈ S, z ∈ M, s′ux̄ = uz̄,∧e∈O(S)fλ(wz + e) ≤ℓ)})

⪯ (∨{` ∈ L|∃s′, u, w ∈ S, z ∈ M, s′ux̄ = uz̄, tΠ(λ)(wz̄) ≥ℓ)},
∧{` ∈ L|∃s′, u, w ∈ S, z ∈ M, s′ux̄ = uz̄, iΠ(λ)(wz̄) ≤ℓ)},
∧{` ∈ L|∃s′, u, w ∈ S, z ∈ M, s′ux̄ = uz̄, fΠ(λ)(wz̄) ≤ℓ)})

=
(
∨{` ∈ L|∃v ∈ S, x̄/1 = wz̄/v, wz̄ ∈ (tΠ(λ))ℓ},
∧{` ∈ L|∃v ∈ S, x̄/1 = wz̄/v, wz̄ ∈ (iΠ(λ))ℓ},
∧{` ∈ L|∃v ∈ S, x̄/1 = wz̄/v, wz̄ ∈ (fΠ(λ))ℓ}

)
=

(
∨{` ∈ L|x̄/1 ∈ S−1((tΠ(λ))ℓ)},∧{` ∈ L|x̄/1 ∈ S−1((iΠ(λ))ℓ)},
∧{` ∈ L|x̄/1 ∈ S−1((fΠ(λ))ℓ)}

)
= S−1(λ)(x/1).

Thus for each s ∈ S and each x ∈ M ,
S−1(λ[S])(x/s) = S−1(λ[S])(x/1) ≤ S−1(λ)(x/1) = S−1(λ)(x/s),

and the result follows. □
Now the proof of the following theorem is straightforward.

Theorem 4.3. Let λ ∈ LNS(M). If λ is an L-neutrosophic single val-
ued primary (prime) submodule of M such that S∩(λ : (1, 0, 0)M)1 = ∅,
then S−1λ is an L-neutrosphic single valued primary (prime) submodule
of S−1M . The converse is also true when λ has the supinf property.
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5. Quotients and L-single valued neutrosophic quotients

In this section, the aim is to construct and study the concepts of quo-
tient ring by an L-single valued neutrosophic ideal, quotient module by
an L-single valued neutrosophi submodule, and L-single valued neutro-
sophic submodule of a quotient module. To do so, let ξ ∈ LNI(R),
λ ∈ LNS(M) and let N be an R-submodule of M .
For each r ∈ R, (1, 0, 0)r + ξ ∈ LNS(R) defined by

((1, 0, 0)r+ξ)(a) := ξ(r−a) = (tξ(r−a), iξ(r−a), fξ(r−a)), for all a ∈ R

will be called a coset of ξ by r and it will be denoted by r+ ξ for brief.
Similarly, for each x ∈ M , (1, 0, 0)x + λ ∈ LSNS(M) defined by

((1, 0, 0)x + λ)(y) = λ(x− y), for all y ∈ M

will be considered a coset of λ by x, and will be denoted by x + λ.
It is easy to see that for each x, y ∈ M , x + λ = y + λ if and only
if λ(x − y) = (1, 0, 0), and that the set R/λ = {x + λ|x ∈ M}, with
operations as (x+λ)+(y+λ) = (x+y)+λ and r(x+λ) = rx+λ is an R-
module called the quotient module of M by λ. It is clear that θ+λ = λ
is the zero element of M/λ, and for each x ∈ M , −(x + λ) = −x + λ.
Similar statements holds true for R, and we can construct the quotient
ring R/ξ = {r+ξ|r ∈ R} of R by ξ. The proof of the following theorem
is straightforward now.

Theorem 5.1. With the above notation R/ξ1 ∼= R/ξ as two rings and
M/λ1

∼= M/λ as two R-modules.

Let M,N be two R-modules and H : M → N be a homomorphism
of R-modules. Let λ ∈ LNS(M). We say that λ is H-invariant if for
all x, y ∈ M , H(x) = H(y) imply that λ(x) = λ(y).
In the following theorem, we collect the behavior of the L-single val-
ued neutrosophic submodules under a module homomorphism. As the
proofs are easy, we will leave most parts of it.

Theorem 5.2. Let M,N be two R-modules and H : M → N be an
epimorphism of R-modules. Assume that λ ∈ LNS(M), ν ∈ LNS(N)
and that λ is constant on Ker(H). Then,

(i) H(λ) ∈ LNS(N), and H(λ1) = H(λ)1.
(ii) H−1(ν) ∈ LNS(M) and it is constant on Ker(H) (here the

assumption that λ is constant on Ker(H) is not needed).
(iii) H−1(ν1) = (H−1(ν))1.
(iv) (H−1oH)(λ) = λ.
(v) (HoH−1)(ν) = ν.
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(vi) if λ is an H-invariant primary L-neutrosophic submodule of M ,
then H(λ) is a primary L-neutrosophic submodule of N .

(vii) if ν is a primary L-neutrosophic submodule of N , then H−1(ν)
is a primary L-neutrosophic submodule of M .

Proof. We only prove part (i). To show that H(λ) ∈ LNS(N), we
prove the condition (LM2), and two others conditions can be proved
by an statment. So, let x, y ∈ M such that H(x), H(y) ∈ N . Then,
H(λ)(H(x) +H(y))
= (tH(λ)(H(x+ y)), iH(λ)(H(x+ y)), fH(λ)(H(x+ y)))
= (∨{tλ(z)|z ∈ M,H(z) = H(x+ y)},
∧{iλ(z)|z ∈ M,H(z) = H(x+ y)},
∧{fλ(z)|z ∈ M,H(z) = H(x+ y)})

⪰ (∨{tλ(u+ v)|u, v ∈ M,H(u) = H(x), H(v) = H(y)},
∧{iλ(u+ v)|u, v ∈ M,H(u) = H(x), H(v) = H(y)},
∧{fλ(u+ v)|u, v ∈ M,H(u) = H(x), H(v) = H(y)})

⪰ (∨{tλ(u) ∧ tλ(v)|u, v ∈ M,H(u) = H(x), H(v) = H(y)},
∧{iλ(u) ∨ iλ(v)|u, v ∈ M,H(u) = H(x), H(v) = H(y)},
∧{fλ(u) ∨ fλ(v)|u, v ∈ M,H(u) = H(x), H(v) = H(y)})

= ((∨(tλ(u)|u ∈ M,H(u) = H(x)) ∧ (∨(tλ(v)|v ∈ M,H(v) = H(y)) ,
(∧(iλ(u)|u ∈ M,H(u) = H(x)) ∨ (∧(iλ(v)|v ∈ M,H(v) = H(y))),
(∧(iλ(u)|u ∈ M,H(u) = H(x))) ∨ (∧(iλ(v)|v ∈ M,H(v) = H(y))))
= H(λ)(H(x)) ∧H(λ)(H(y)).

To prove H(λ1) = H(λ)1, let x ∈ M and H(x) ∈ H(λ1). Then,
H(λ)(H(x)) = (tH(λ)(H(x)), iH(λ)(H(x)), fH(λ)(H(x)))

= (∨{tλ(y)|y ∈ M,H(y) = H(x)},∧{iλ(y)|y ∈ M,H(y) = H(x)},
∧{fλ(y)|y ∈ M,H(y) = H(x)})

= (1, 0, 0),

and thus H(λ1) ⊆ H(λ)1.
For the opposite direction, assume that x ∈ M and H(x) ∈ N , such
that
(1, 0, 0) = H(λ)(H(x)

= (∨{tλ(y)|y ∈ M,H(y) = H(x)},∧{iλ(y)|y ∈ M,H(y) = H(x)},
∧{fλ(x)|y ∈ M,H(y) = H(x)}) .

So, by the supinf property of λ, there exist some y ∈ M such that
(1, 0, 0) = (tλ(y), iλ(y), fλ(y)) and H(x) = H(y). This means that
H(x) ∈ H(λ1). □

Using some parts of the above theorem we can formulate the follow-
ing theorem we state without proof.
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Theorem 5.3. Let M,N be two R-modules and let H : M → N
be an epimorphism of R-modules. Then, there is a one-to-one order
preserving correspondence between the elements of LNS(M) that are
constant on Ker(H) and the elements of LNS(N). Moreover, this
correspondence maps H-invariant primary L-neutrosophic submodules
of M to the primary neutrosophic submodules of N .

Now, let λ ∈ LNS(M), N be a submodule of M and put M̄ = M/N .
For each x̄ = x+N ∈ M̄ , set

(λ/N)(x̄) =
(
∨ {tλ(y)|y ∈ x̄},∧{iλ(y)|y ∈ x̄},∧{fλ(y)|y ∈ x̄}

)
.

Obviously, (λ/N) ∈ LSV N(M/N). In the following theorem we prove
that (λ/N) ∈ LNS(M/N). We call it quotient L-(single valued) neu-
trosophic submodule of λ with respect to N .

Theorem 5.4. With the above notation, (λ/N) ∈ LNS(M/N).

Proof. First note that
(λ/N)(θ̄) =

(
∨ {tλ(y)|y ∈ N},∧{iλ(y)|y ∈ N},∧{fλ(y)|y ∈ N}

)
= (1, 0, 0),

and (LM1) holds. Now, for x, y ∈ M ,
(λ/N)(x̄+ ȳ)
=

(
∨ {tλ(z)|z ∈ x̄+ ȳ},∧{iλ(z)|z ∈ x̄+ ȳ},∧{fλ(z)|z ∈ x̄+ ȳ}

)
= (∨{tλ(x+ y + u)|u ∈ N},∧{iλ(x+ y + u)|u ∈ N},

∧{fλ(x+ y + u)|u ∈ N})
⪰ (∨{tλ(x+ y + u+ v)|u, v ∈ N},∧{iλ(x+ y + u+ v)|u, v ∈ N},

∧{fλ(x+ y + u+ v)|u, v ∈ N})
⪰ (∨{tλ(x+ u) ∧ tλ(y + v)|u, v ∈ N},∧{iλ(x+ u) ∨ iλ(y + v)|u, v ∈ N},

∧{fλ(x+ u) ∨ fλ(y + v)|u, v ∈ N}) (as λ ∈ LNS(M),)
= (∨{tλ(x+ u)|u ∈ N},∧{iλ(x+ u)|u ∈ N},∧{fλ(x+ u)|u ∈ N}) ∧̄
(∨{tλ(y + v)|v ∈ N},∧{iλ(y + v)|v ∈ N},∧{fλ(y + v)|v ∈ N})

(by assumption on L and (∗))
= (∨{tλ(u)|u ∈ x̄},∧{iλ(u)|ux̄},∧{fλ(u)|u ∈ x̄})

∧̄ (∨{tλ(v)|v ∈ ȳ},∧{iλ(v)|vȳ},∧{fλ(v)|v ∈ ȳ})
= (λ/N)(x̄)∧̄(λ/N)(ȳ).

This proves (LM2). Part (LM3) is proved easily. □
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