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STRONGLY ψ-2-ABSORBING SECOND SUBMODULES

H. ANSARI-TOROGHY, F. FARSHADIFAR∗ AND S. MALEKI-ROUDPOSHT

Abstract. Let R be a commutative ring with identity and M
be an R-module. Let ψ : S(M) → S(M) ∪ {∅} be a function,
where S(M) denotes the set of all submodules of M . The main
purpose of this paper is to introduce and investigate the notion of
strongly ψ-2-absorbing second submodules ofM as a generalization
of strongly 2-absorbing second and ψ-second submodules of M .

1. Introduction

Throughout this paper, R will denote a commutative ring with iden-
tity and Z will denote the ring of integers. We will denote the set of
ideals of R by S(R) and the set of all submodules of M by S(M), where
M is an R-module.

Let M be an R-module. A proper submodule P of M is said to be
prime if for any r ∈ R and m ∈ M with rm ∈ P , we have m ∈ P or
r ∈ (P :R M) [7]. A non-zero submodule S of M is said to be second
if for each a ∈ R, the endomorphism of M given by multiplication by
a is either surjective or zero [9, 11]. Let φ : S(R) → S(R) ∪ {∅} be
a function. Anderson and Bataineh in [1] defined the notation of φ-
prime ideals as follows: a proper ideal P of R is φ-prime if for r, s ∈ R,
rs ∈ P \ φ(P ) implies that r ∈ P or s ∈ P [1]. In [12], the author
extended this concept to prime submodule. For a function φ : S(M)→
S(M)∪{∅}, a proper submodule N of M is called φ-prime if whenever
r ∈ R and x ∈M with rx ∈ N \ φ(N), then r ∈ (N :R M) or x ∈ N .
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Let M be an R-module and ψ : S(M)→ S(M) ∪ {∅} be a function.
Farshadifar and Ansari-Toroghy in [8], defined the notation of ψ-second
submodules of M as a dual notion of φ-prime submodules of M . A non-
zero submodule N of M is said to be a ψ-second submodule of M if
r ∈ R, K a submodule of M , rN ⊆ K, and rψ(N) 6⊆ K, then N ⊆ K
or rN = 0 [8].

The concept of 2-absorbing ideals was introduced in [6]. A proper
ideal I of R is said to be a 2-absorbing ideal of R if whenever a, b, c ∈ R
and abc ∈ I, then ab ∈ I or ac ∈ I or bc ∈ I. In [3], the authors intro-
duced the notion of strongly 2-absorbing second submodules as a dual
notion of 2-absorbing submodules and investigated some properties of
this class of modules. A non-zero submodule N of M is said to be a
strongly 2-absorbing second submodule of M if whenever a, b ∈ R, K
is a submodule of M , and abN ⊆ K, then aN ⊆ K or bN ⊆ K or
ab ∈ AnnR(N) [3].

Let M be an R-module and ψ : S(M)→ S(M) ∪ {∅} be a function.
The aim of this paper is to introduce and investigate the notion of
strongly ψ-2-absorbing second submodules of M as a generalization of
strongly 2-absorbing second and ψ-second submodules of M .

2. Main results

Definition 2.1. Let M be an R-module, S(M) be the set of all sub-
modules of M , ψ : S(M)→ S(M) ∪ {∅} be a function. We say that a
non-zero submodule N of M is a strongly ψ-2-absorbing second submod-
ule ofM if a, b ∈ R, K a submodule of M , abN ⊆ K, and abψ(N) 6⊆ K,
then aN ⊆ K or bN ⊆ K or ab ∈ AnnR(N).

In Definition 2.1, since abψ(N) 6⊆ K implies that ab(ψ(N)+N) 6⊆ K,
there is no loss of generality in assuming that N ⊆ ψ(N) in the rest of
this paper.

A non-zero submodule N of M is said to be a weakly strongly 2-
absorbing second submodule of M if whenever a, b ∈ R, K is a sub-
module of M , abM 6⊆ K, and abN ⊆ K, then aN ⊆ K or bN ⊆ K or
ab ∈ AnnR(N) [5].

Let M be an R-module. We use the following functions ψ : S(M)→
S(M) ∪ {∅}.

ψi(N) = (N :M AnniR(N)), ∀N ∈ S(M), ∀i ∈ N,

ψσ(N) =
∞∑
i=1

ψi(N), ∀N ∈ S(M).

ψM(N) = M, ∀N ∈ S(M),
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Then it is clear that strongly ψM -2-absorbing second submodules are
weakly strongly 2-absorbing second submodules. Clearly, for any sub-
module and every positive integer n, we have the following implications:

strongly 2−absorbing second⇒ strongly ψn−1−2−absorbing second

⇒ strongly ψn − 2− absorbing second
⇒ strongly ψσ − 2− absorbing second.

For functions ψ, θ : S(M) → S(M) ∪ {∅}, we write ψ ≤ θ if
ψ(N) ⊆ θ(N) for each N ∈ S(M). So whenever ψ ≤ θ, any strongly
ψ-2-absorbing second submodule is a strongly θ-2-absorbing second
submodule.

Remark 2.2. Let M be an R-module and ψ : S(M) → S(M) ∪ {∅}
be a function. Clearly every strongly 2-absorbing second submodule
and every ψ-second submodule of M is a strongly ψ-2-absorbing sec-
ond submodule of M . Also, evidently M is a strongly ψM -2-absorbing
second submodule of itself. In particular, M = Z6⊕Z10 is not strongly
2-absorbing second Z-module but M is a strongly ψM -2-absorbing sec-
ond Z-submodule of M .

In the following theorem, we characterize strongly ψ-2-absorbing sec-
ond submodules of an R-module M .

Theorem 2.3. Let N be a non-zero submodule of an R-module M
and ψ : S(M) → S(M) ∪ {∅} be a function. Then the following are
equivalent:

(a) N is a strongly ψ-2-absorbing second submodule of M ;
(b) for submodule K of M with aN 6⊆ K and a ∈ R, we have

(K :R aN) = AnnR(aN) ∪ (K :R N) ∪ (K :R aψ(N));
(c) for submodule K of M with aN 6⊆ K and a ∈ R, we have

either (K :R aN) = AnnR(aN) or (K :R aN) = (K :R N) or
(K :R aN) = (K :R aψ(N));

(d) for each a, b ∈ R with abψ(N) 6⊆ abN , we have either abN =
aN or abN = bN or abN = 0.

Proof. (a)⇒ (b). Let for a submodule K of M with aN 6⊆ K and a ∈
R, we have b ∈ (K :R aN) \ (K :R aψ(N)). Then since N is a strongly
ψ-2-absorbing second submodule of M , we have b ∈ AnnR(aN) or
bN ⊆ K. Thus (K :R aN) ⊆ AnnR(aN) or (K :R aN) ⊆ K :R N).
Hence,

(K :R aN) ⊆ AnnR(aN) ∪ (K :R N) ∪ (K :R aψ(N)).

As we may assume that N ⊆ ψ(N), the other inclusion always holds.



20 H. ANSARI-TOROGHY, F. FARSHADIFAR AND S. MALEKI-ROUDPOSHT

(b)⇒ (c). This follows from the fact that if an ideal is the union of
two ideals, it is equal to one of them.

(c) ⇒ (d). Let a, b ∈ R such that abψ(N) 6⊆ abN and aN 6⊆ abN .
Then by part (c), we have either (abN :R aN) = AnnR(aN) or (abN :R
aN) = (abN :R N). Hence, abN = 0 or bN ⊆ abN , as needed.

(d) ⇒ (a). Let a, b ∈ R and K be a submodule of M such that
abN ⊆ K and abψ(N) 6⊆ K. If abψ(N) ⊆ abN , then abN ⊆ K implies
that abψ(N) ⊆ K, a contradiction. Thus by part (d), either abN = aN
or abN = bN or abN = 0. Therefore, aN ⊆ K or bN ⊆ K or abN = 0
and the proof is completed. �

A proper submodule N of an R-module M is said to be completely
irreducible if N =

⋂
i∈I Ni, where {Ni}i∈I is a family of submodules of

M , implies that N = Ni for some i ∈ I. It is easy to see that every
submodule of M is an intersection of completely irreducible submodules
of M [10].

Remark 2.4. (See [2].) LetN andK be two submodules of an R-module
M . To prove N ⊆ K, it is enough to show that if L is a completely
irreducible submodule of M such that K ⊆ L, then N ⊆ L.

Theorem 2.5. Let M be an R-module and ψ : S(M) → S(M) ∪ {∅}
be a function. Let N be a strongly ψ-2-absorbing second submodule of
M such that Ann2

R(N)ψ(N) 6⊆ N . Then N is a strongly 2-absorbing
second submodule submodule of M .

Proof. Let a, b ∈ R and K be a submodule of M such that abN ⊆
K. If abψ(N) 6⊆ K, then we are done because N is a strongly ψ-2-
absorbing second submodule of M . Thus suppose that abψ(N) ⊆ K.
If abψ(N) 6⊆ N , then abψ(N) 6⊆ N ∩K. Hence abN ⊆ N ∩K implies
that aN ⊆ N ∩ K ⊆ K or bN ⊆ N ∩ K ⊆ K or abN = 0, as
needed. So let abψ(N) ⊆ N . If aAnnR(N)ψ(N) 6⊆ K, then a(b +
AnnR(N))ψ(N) 6⊆ K. Thus a(b+AnnR(N))N ⊆ K implies that aN ⊆
K or bN = (b+AnnR(N))N ⊆ K or abN = a(b+AnnR(N))N = 0, as
required. So let aAnnR(N)ψ(N) ⊆ K. Similarly, we can assume that
bAnnR(N)ψ(N) ⊆ K. Since Ann2

R(N)ψ(N) 6⊆ N , there exist a1, b1 ∈
AnnR(N) such that a1b1ψ(N) 6⊆ N . Thus there exists a completely
irreducible submodule L of M such that N ⊆ L and a1b1ψ(N) 6⊆ L
by Remark 2.4. If ab1ψ(N) 6⊆ L, then a(b + b1)ψ(N) 6⊆ L ∩K. Thus
a(b + b1)N ⊆ L ∩ K implies that aN ⊆ L ∩ K ⊆ K or bN = (b +
b1)N ⊆ L ∩ K ⊆ K or abN = a(b + b1)N = 0, as needed. So let
ab1ψ(N) ⊆ L. Similarly, we can assume that a1bψ(N) ⊆ L. Therefore,
(a + a1)(b + b1)ψ(N) 6⊆ L ∩ K. Hence, (a + a1)(b + b1)N ⊆ L ∩ K
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implies that aN = (a + a1)N ⊆ K or bN = (b + b1)N ⊆ K or abN =
(a+ a1)(b+ b1)N = 0, as desired. �

Let M be an R-module. A submodule N of M is said to be coidempo-
tent if N = (0 :M Ann2

R(N)). Also, M is said to be fully coidempotent
if every submodule of M is coidempotent [4].

Corollary 2.6. LetM be an R-module and ψ : S(M)→ S(M)∪{∅} be
a function. If M is a fully coidempotent R-module and N is a proper
submodule of M with AnnR(ψ(N)) = 0, then N is a strongly ψ-2-
absorbing second submodule if and only if N is a strongly 2-absorbing
second submodule.

Proof. The sufficiency is clear. Conversely, assume on the contrary that
N 6= M is a strongly ψ-2-absorbing second submodule of M which
is not a strongly 2-absorbing second submodule. Then by Theorem
2.5, Ann3

R(N) ⊆ AnnR(ψ(N)). Hence as AnnR(ψ(N)) = 0, we have
Ann3

R(N) = 0. Thus since N is coidempotent,

N = (0 :M Ann2
R(N)) = (0 :M Ann3

R(N)) = M,

which is a contradiction. �

Proposition 2.7. LetM be an R-module and ψ : S(M)→ S(M)∪{∅}
be a function. Let N be a non-zero submodule of M . If N is a strongly
ψ-2-absorbing second submodule ofM , then for any a, b ∈ R\AnnR(N),
we have abN = aN ∩ bN ∩ abψ(N).

Proof. Let N be a strongly ψ-2-absorbing second submodule of M and
ab ∈ R \ AnnR(N). Clearly, abN ⊆ aN ∩ bN ∩ abψ(N). Now let L
be a completely irreducible submodule of M such that abN ⊆ L. If
abψ(N) ⊆ L, then we are done. If abψ(N) 6⊆ L, then aN ⊆ L or
bN ⊆ L because N is a strongly ψ-2-absorbing second submodule of
M . Hence aN∩bN∩abψ(N) ⊆ L. Now the result follows from Remark
2.4. �

Let Ri be a commutative ring with identity and Mi be an Ri-module
for i = 1, 2. Let R = R1 × R2. Then M = M1 ×M2 is an R-module
and each submodule of M is in the form of N = N1 × N2 for some
submodules N1 of M1 and N2 of M2.

Theorem 2.8. Let R = R1×R2 be a ring and M = M1×M2 be an R-
module, where M1 is an R1-module and M2 is an R2-module. Suppose
that ψi : S(Mi)→ S(Mi)∪ {∅} be a function for i = 1, 2. Then N1× 0
is a strongly ψ1 × ψ2-2-absorbing second submodule of M , where N1 is
a strongly ψ1-2-absorbing second submodule of M1 and ψ2(0) = 0.
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Proof. Let (a1, a2), (b1, b2) ∈ R and K1×K2 be a submodule of M such
that (a1, a2)(b1, b2)(N1 × 0) ⊆ K1 ×K2 and

(a1, a2)(b1, b2)((ψ
1 × ψ2)(N1 × 0)) = a1b1ψ

1(N1)× a2b2ψ2(0)

= a1b1ψ
1(N1)× 0 6⊆ K1 ×K2

Then a1b1N1 ⊆ K1 and a1b1ψ
1(N1) 6⊆ K1. Hence, a1b1N1 = 0 or

a1N1 ⊆ K1 or b1N1 ⊆ K1 since N1 is a strongly ψ1-2-absorbing second
submodule of M1. Therefore, we have (a1, a2)(b1, b2)(N1×0) = 0×0 or
(a1, a2)N1×0 ⊆ K1×K2 or (b1, b2)N1×0 ⊆ K1×K2, as requested. �

Theorem 2.9. Let M be an R-module and ψ : S(M) → S(M) ∪ {∅}
be a function. Then we have the following.

(a) If (0 :M t) ⊆ tψ((0 :M t)), then (0 :M t) is a strongly 2-absorbing
second submodule if and only if it is a strongly ψ-2-absorbing
second submodule.

(b) If (tM :R ψ(tM)) ⊆ AnnR(tM), then the submodule tM is
strongly 2-absorbing second if and only if it is strongly ψ-2-
absorbing second.

Proof. (a) Suppose that (0 :M t) is a strongly ψ-2-absorbing second
submodule of M , a, b ∈ R, and K is a submodule of M such that
ab(0 :M t) ⊆ K. If abψ((0 :M t)) 6⊆ K, then since (0 :M t) is strongly
ψ-2-absorbing second, we have a(0 :M t) ⊆ K or b(0 :M t) ⊆ K or
ba ∈ AnnR((0 :M t)) which implies (0 :M t) is strongly 2-absorbing
second. Therefore we may assume that abψ((0 :M t)) ⊆ K. Clearly,
a(b + t)(0 :M t) ⊆ K. If a(b + t)ψ((0 :M t)) 6⊆ K, then we have
(b + t)(0 :M t) ⊆ K or a(0 :M t) ⊆ K or a(b + t) ∈ AnnR((0 :M t)).
Since at ∈ AnnR((0 :M t)) therefore b(0 :M t) ⊆ K or a(0 :M t) ⊆ K
or ab ∈ AnnR((0 :M t)). Now suppose that a(b + t)ψ((0 :M t)) ⊆ K.
Then since abψ((0 :M t)) ⊆ K, we have taψ((0 :M t)) ⊆ K and so
tψ((0 :M t)) ⊆ (K :M a). Now (0 :M t) ⊆ tψ((0 :M t)) implies that
(0 :M t) ⊆ (K :M a). Thus a(0 :M t) ⊆ K, as needed. The converse is
clear.

(b) Let tM be a strongly ψ-2-absorbing second submodule of M and
assume that a, b ∈ R and K be a submodule of M with abtM ⊆ K.
Since tM is strongly ψ-2-absorbing second submodule, we can suppose
that abψ(tM) ⊆ K, otherwise tM is strongly 2-absorbing second. Now
abtM ⊆ tM ∩K. If abψ(tM) 6⊆ tM ∩K, then as tM is strongly ψ-2-
absorbing second submodule, we are done. So let abψ(tM) ⊆ tM ∩K.
Then abψ(tM) ⊆ tM . Thus (tM :R ψ(tM)) ⊆ AnnR(tM) implies that
ab ∈ AnnR(tM), as requested. The converse is clear. �
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