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FUZZY GE-FILTERS OF GE-ALGEBRAS

R. BANDARU∗, T. G. ALEMAYEHU AND Y. B. JUN

Abstract. In this paper, notions of ∈t-set and Qt-set of a fuzzy
set f in a GE-algebra X are introduced and defined fuzzy GE-
algebra in terms of ∈t-set. We provided conditions for the ∈t-set
and Qt-set of a fuzzy set f to be GE-subalgebras of X. We pro-
vided conditions for a fuzzy set in a GE-algebra to be a fuzzy
GE-algebra. The concept of fuzzy GE-filter of a GE-algebra is
introduced and investigated its properties. We explored the con-
ditions under which the ∈t-set and Qt-set can be GE-filters. Some
characterizations of fuzzy GE-filters of GE-algebras are given.

1. Introduction

In mathematics, Hilbert algebras occur in the theory of von Neu-
mann algebras in: Commutation theorem and Tomita-Takesaki the-
ory. The concept of Hilbert algebra was introduced in early nineteen
fifties by L. Henkin and T. Skolem for some investigations of implica-
tion in intuitionistic and other nonclassical logics. In 60- ties, these
algebras were studied especially by A. Horn and A. Diego from alge-
braic point of view. Hilbert algebras are an important tool for certain
investigations in algebraic logic since they can be considered as frag-
ments of any propositional logic containing a logical connective impli-
cation (→) and the constant 1 which is considered as the logical value
“true”. Many researchers studied various things about Hilbert algebras
[2, 3, 4, 5, 6, 7, 8, 9, 10]. As a generalization of Hilbert algebras, R.K.
Bandaru et al. [1] introduced the notion of GE-algebras. They have

MSC(2020): Primary: 06F35; Secondary: 03G25, 08A72

Keywords: fuzzy GE-algebra, fuzzy GE-filter, ∈t-set, Qt-set.

Received: 11 November 2022, Accepted: 15 April 2024.

∗Corresponding author .
1



2 BANDARU, ALEMAYEHU AND JUN

studied the various properties and introduced different substructures
of GE-algebras.

The fundamental concept of a fuzzy set, introduced by Zadeh in
1965 [12], provides a natural foundation for treating mathematically
the fuzzy phenomena which exist pervasively in our real world and for
building new branches of fuzzy mathematics. In [11], authors redefined
a fuzzy point in such a way that it takes a crisp singleton, equivalently,
an ordinary point, as a special case. As for the neighborhood structure
of such a fuzzy point, in addition to the relation “∈” between fuzzy
points and fuzzy sets and the corresponding neighborhood systems,
they introduced another important relation “Q” between fuzzy points
and fuzzy sets, called the Q-relation, and the corresponding neighbor-
hood structure, called the Q-neighborhood system. In an ordinary
topological space, as a special case of a fuzzy topological space, these
concepts, neighborhood system and Q-neighborhood system, c-relation
and Q-relation coincide respectively.

With this motivation, in this paper we introduce the notions of ∈t-
set and Qt-set of a fuzzy set f in a GE-algebra X and define fuzzy
GE-algebra in terms of ∈t-set. We provide conditions for the ∈t-set
and Qt-set of a fuzzy set f to be GE-subalgebras of X. We provide
conditions for a fuzzy set in a GE-algebra to be a fuzzy GE-algebra. We
introduce the concept of fuzzy GE-filter of a GE-algebra and investigate
its properties. We explore the conditions under which the ∈t-set and
Qt-set can be GE-filters. We give some characterizations of fuzzy GE-
filters of GE-algebras.

2. Preliminaries

Definition 2.1 ([1]). By a GE-algebra, we mean a set X with a con-
stant “1” and a binary operation “ ∗ ” satisfying the following axioms:

(GE1) a ∗ a = 1,
(GE2) 1 ∗ a = a,
(GE3) a ∗ (b ∗ c) = a ∗ (b ∗ (a ∗ c))

for all a, b, c ∈ X.

A binary relation “ ≤ ” in a GE-algebra X is defined by:

(∀x, y ∈ X)(x ≤ y ⇔ x ∗ y = 1). (2.1)
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Proposition 2.2 ([1]). Every GE-algebra X satisfies the following
items.

(∀a ∈ X) (a ∗ 1 = 1) . (2.2)

(∀a, b ∈ X) (a ∗ (a ∗ b) = a ∗ b) . (2.3)

(∀a, b ∈ X) (a ≤ b ∗ a) . (2.4)

(∀a, b, c ∈ X) (a ∗ (b ∗ c) ≤ b ∗ (a ∗ c)) . (2.5)

(∀a ∈ X) (1 ≤ a ⇒ a = 1) . (2.6)

(∀a, b ∈ X) (a ≤ (a ∗ b) ∗ b) . (2.7)

Definition 2.3 ([1]). A subset F of a GE-algebra X is called

• a GE-subalgebra of X if a ∗ b ∈ F for all a, b ∈ F .
• a GE-filter of X if it satisfies:

1 ∈ F, (2.8)

(∀a, b ∈ X)(a ∈ F, a ∗ b ∈ F ⇒ b ∈ F ). (2.9)

A fuzzy set f in a set X of the form

f(b) :=

{
t ∈ (0, 1] if b = a,
0 if b 6= a,

is said to be a fuzzy point with support a and value t and is denoted
by a

t
.

For a fuzzy set f in a set X and t ∈ (0, 1], we say that a fuzzy point
a
t

is

(i) contained in f, denoted by a
t
∈ f, (see [11]) if f(a) ≥ t.

(ii) quasi-coincident with f, denoted by a
t
q f, (see [11]) if f(a)+t >

1.

If a
t
α f is not established for α ∈ {∈, q}, it is denoted by a

t
α f .

3. Fuzzy GE-algebras

In what follows, let X be a GE-algebra unless otherwise specified.
Given t ∈ (0, 1] and a fuzzy set f in X, consider the following sets

(f, t)∈ := {x ∈ X | x
t
∈ f} and (f, t)q := {x ∈ X | x

t
q f}

which are called an ∈t-set and Qt-set of f , respectively, in X.

Definition 3.1. A fuzzy set f in X is called a fuzzy GE-algebra of X
if it satisfies:

x ∈ (f, ta)∈, y ∈ (f, tb)∈ ⇒ x ∗ y ∈ (f,min{ta, tb})∈ (3.1)

for all x, y ∈ X and ta, tb ∈ (0, 1].
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Example 3.2. Let X = {1, 2, 3, 4, 5} be a set with a binary operation
“ ∗ ” given by Table 1.

Table 1. Cayley table for the binary operation “∗”

∗ 1 2 3 4 5
1 1 2 3 4 5
2 1 1 3 3 5
3 1 2 1 1 5
4 1 2 1 1 5
5 1 2 4 4 1

Then it is routine to verify that (X, ∗, 1) is a GE-algebra. Define a
fuzzy set f in X as follows:

f : X → [0, 1], x 7→


0.5 if x = 1,
0.2 if x = 2,
0.3 if x = 5,
0.1 otherwise.

It is routine to verify that f is a fuzzy GE-algebra of X.

Theorem 3.3. A fuzzy set f in X is a fuzzy GE-algebra of X if and
only if it satisfies:

(∀x, y ∈ X)(f(x ∗ y) ≥ min{f(x), f(y)}). (3.2)

Proof. Assume that f is a fuzzy GE-algebra of X. Note that x ∈
(f, f(x))∈ and y ∈ (f, f(y))∈ for all x, y ∈ X. Hence

x ∗ y ∈ (f,min{f(x), f(y)})∈ by (3.1),

and so f(x ∗ y) ≥ min{f(x), f(y)} for all x, y ∈ X.
Conversely, suppose that f satisfies the condition (3.2). Let x, y ∈ X

and ta, tb ∈ (0, 1] be such that x ∈ (f, ta)∈ and y ∈ (f, tb)∈. Then x
ta
∈ f

and y
tb
∈ f , that is, f(x) ≥ ta and f(y) ≥ tb. It follows from (3.2) that

f(x ∗ y) ≥ min{f(x), f(y)} ≥ min{ta, tb}.
Hence x∗y

min{ta,tb}
∈ f , and so x ∗ y ∈ (f,min{ta, tb})∈. Therefore f is a

fuzzy GE-algebra of X. �

Corollary 3.4. If f is a fuzzy GE-algebra of X, then f(1) ≥ f(x) for
all x ∈ X.

Proof. It is straightforward by the combination of (GE1) and (3.2). �

Corollary 3.5. If a fuzzy GE-algebra f of X is order reversing, then
it is constant.
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Proof. Note that x ∗ 1 = 1, i.e., x ≤ 1 for all x ∈ X. Since f is order
reversing, it follows that f(x) ≥ f(1) for all x ∈ X. Hence f(x) = f(1)
for all x ∈ X. Therefore f is constant. �

Theorem 3.6. A fuzzy set f in X is a fuzzy GE-algebra of X if and
only if the ∈t-set of f in X is a GE-subalgebra of X for all t ∈ (0, 1].

Proof. Assume that f is a fuzzy GE-algebra of X. Let x, y ∈ (f, t)∈ for
all t ∈ (0, 1]. Then f(x) ≥ t and f(y) ≥ t. It follows from Theorem 3.3
that f(x∗y) ≥ min{f(x), f(y)} ≥ t, i.e., x∗y

t
∈ f . Hence x∗y ∈ (f, t)∈,

and therefore (f, t)∈ is a GE-subalgebra of X.
Conversely, suppose that the ∈t-set of f in X is a GE-subalgebra

of X for all t ∈ (0, 1]. If there are a, b ∈ X such that f(a ∗ b) <
min{f(a), f(b)}, then a

t
∈ f and b

t
∈ f , that is, a, b ∈ (f, t)∈ where

t = min{f(a), f(b)}. Hence a ∗ b ∈ (f, t)∈, and so f(a ∗ b) ≥ t. This is
a contradiction, and thus f(x ∗ y) ≥ min{f(x), f(y)} for all x, y ∈ X.
Therefore f is a fuzzy GE-algebra of X by Theorem 3.3. �

Theorem 3.7. If f is a fuzzy GE-algebra of X, then the set

X0 := {x ∈ X | f(x) > 0}

is a GE-subalgebra of X.

Proof. Let x, y ∈ X0. Then f(x) > 0 and f(y) > 0. Since x ∈
(f, f(x))∈ and y ∈ (f, f(y))∈, it follows from (3.1) that

x ∗ y ∈ (f,min{f(x), f(y)})∈.

Hence f(x ∗ y) ≥ min{f(x), f(y)} > 0, and so x ∗ y ∈ X0. Therefore
X0 is a GE-subalgebra of X. �

In the following example, we can observe the converse of Theorem
3.7 may not be true.

Example 3.8. Consider the GE-algebra (X, ∗, 1) in Example 3.2. De-
fine a mapping f : X → [0, 1] as follows:

f(x) =


0.3 if x = 1,
0.2 if x = 2,
0.5 if x = 5,
0.1 otherwise.

Then X0 = X is a GE-subalgebra of X. But f is not a fuzzy GE-
algebra of X since 5 ∈ X, ta = 0.5 ∈ (0, 1], 0.5 = min{ta, ta} and
f(1) = 0.3 but 5 ∗ 5 = 1 /∈ (f,min{ta, ta})∈.
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Theorem 3.9. If a fuzzy set f in X satisfies:

x ∈ (f, ta)∈, y ∈ (f, tb)∈ ⇒ x ∗ y ∈ (f,max{ta, tb})q (3.3)

for all x, y ∈ X and ta, tb ∈ (0, 1], then the set X0 is a GE-subalgebra
of X.

Proof. Assume that f satisfies the condition (3.3) for all x, y ∈ X and
ta, tb ∈ (0, 1]. Let x, y ∈ X0. Since x ∈ (f, f(x))∈ and y ∈ (f, f(y))∈,
it follows from (3.3) that x ∗ y ∈ (f,max{f(x), f(y)})q. If x ∗ y /∈ X0,
then f(x ∗ y) = 0, and so

f(x ∗ y) + max{f(x), f(y)} = max{f(x), f(y)} ≤ 1.

Hence x∗y
max{f(x),f(y)} q f , i.e., x ∗ y /∈ (f,max{f(x), f(y)})q. This is a

contradiction, and so x ∗ y ∈ X0 which completes the proof. �

Theorem 3.10. Let F be a GE-subalgebra of X and consider a fuzzy
set f in X described as follows.

f : X → [0, 1], x 7→
{
t0 ∈ (0, 1] if x ∈ F,
t1 otherwise

where t0 > t1 in (0, 1]. Then f is a fuzzy GE-algebra of X.

Proof. Straightforward. �

Theorem 3.11. If f is a fuzzy GE-algebra of X, then the set

Xf := {x ∈ X | f(x) = f(1)}
is a GE-subalgebra of X.

Proof. Using Corollary 3.4, we know that

(f, f(1))∈ = {x ∈ X | x
f(1)
∈ f} = {x ∈ X | f(x) ≥ f(1)}

= {x ∈ X | f(x) = f(1)} = Xf

which is a GE-subalgebra of X by Theorem 3.6. �

We provide conditions for a fuzzy set to be a fuzzy GE-algebra.

Theorem 3.12. If a fuzzy set f in X satisfies:

b ∈ (f, tb)∈, c ∈ (f, tc)∈ ⇒ a ∗ b ∈ (f,min{tb, tc})∈ (3.4)

for all tb, tc ∈ (0, 1] and a, b, c ∈ X with a ≤ c, then f is a fuzzy
GE-algebra of X.

Proof. Let x, y ∈ X and ta, tb ∈ (0, 1] be such that x ∈ (f, ta)∈ and
y ∈ (f, tb)∈. Since x ≤ x for all x ∈ X, we have x∗y ∈ (f,min{ta, tb})∈
by (3.4). Therefore f is a fuzzy GE-algebra of X. �
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The following example shows that a fuzzy GE-algebra f of X does
not satisfy the condition (3.4), that is, there exist tb, tc ∈ (0, 1] and
a, b, c ∈ X such that a ≤ c and

b ∈ (f, tb)∈, c ∈ (f, tc)∈ 6⇒ a ∗ b ∈ (f,min{tb, tc})∈. (3.5)

Example 3.13. Let X = {1, 2, 3, 4, 5} be a set with a binary operation
“ ∗ ” given by Table 2. Then it is routine to verify that (X, ∗, 1) is a

Table 2. Cayley table for the binary operation “∗”

∗ 1 2 3 4 5
1 1 2 3 4 5
2 1 1 3 1 1
3 1 5 1 1 5
4 1 2 1 1 2
5 1 1 1 4 1

GE-algebra. Define a fuzzy set f in X as follows:

f : X → [0, 1], x 7→


0.9 if x = 1,
0.8 if x = 2,
0.5 if x = 3,
0.7 otherwise.

It is routine to verify that f is a fuzzy GE-algebra of X. Note that
3 ≤ 1, 2 ∈ (f, 0.8)∈ and 1 ∈ (f, 0.9)∈, but 3 ∗ 2 = 5 /∈ (f, 0.8)∈ =
(f,min{0.8, 0.9})∈. Hence f does not satisfy (3.5).

We provide conditions for the ∈t-set and Qt-set of f to be GE-
subalgebras of X.

Theorem 3.14. If f is a fuzzy set in X that satisfies:

(∀x, y ∈ X) (min{f(x), f(y)} ≤ max{f(x ∗ y), 0.5}) , (3.6)

then the ∈t-set of f is a GE-subalgebra of X for all t ∈ (0.5, 1].

Proof. Let t ∈ (0.5, 1] and x, y ∈ (f, t)∈. Then x
t
∈ f and y

t
∈ f , that

is, f(x) ≥ t and f(y) ≥ t. It follows from (3.6) that

max{f(x ∗ y), 0.5} ≥ min{f(x), f(y)} ≥ t > 0.5.

Hence x∗y
t
∈ f , i.e., x∗y ∈ (f, t)∈. Therefore (f, t)∈ is a GE-subalgebra

of X. �

Theorem 3.15. The converse of Theorem 3.14 is also true, that is,
if the ∈t-set of f is a GE-subalgebra of X for all t ∈ (0.5, 1], then f
satisfies the condition (3.6).
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Proof. Assume that the ∈t-set of f is a GE-subalgebra of X for all
t ∈ (0.5, 1]. If the condition (3.6) is not established, then

s := min{f(a), f(b)} > max{f(a ∗ b), 0.5}

for some a, b ∈ X. Then s ∈ (0.5, 1], a
s
∈ f and b

s
∈ f . Hence

a, b ∈ (f, s)∈ and thus a ∗ b ∈ (f, s)∈ by hypothesis. By the way,
max{f(a ∗ b), 0.5} < s induces a∗b

s
∈ f and so a ∗ b /∈ (f, s)∈. This is a

contradiction, and therefore min{f(x), f(y)} ≤ max{f(x ∗ y), 0.5} for
all x, y ∈ X. �

Theorem 3.16. If f is a fuzzy GE-algebra of X, then the Qt-set of f
is a GE-subalgebra of X for all t ∈ (0, 1].

Proof. Let t ∈ (0, 1] and x, y ∈ (f, t)q. Then x
t
q f and y

t
q f , that is,

f(x) + t > 1 and f(y) + t > 1. It follows from Theorem 3.3 that

f(x ∗ y) + t ≥ min{f(x), f(y)}+ t = min{f(x) + t, f(y) + t} > 1.

Hence x∗y
t
q f , i.e., x ∗ y ∈ (f, t)q. Consequently, (f, t)q is a GE-

subalgebra of X. �

Theorem 3.17. If the Qt-set of f is a GE-subalgebra of X, then f
satisfies:

x ∈ (f, ta)q, y ∈ (f, tb)q ⇒ x ∗ y ∈ (f,max{ta, tb})∈ (3.7)

for all x, y ∈ X and ta, tb ∈ (0, 0.5].

Proof. Let x, y ∈ X and ta, tb ∈ (0, 0.5] be such that x ∈ (f, ta)q and
y ∈ (f, tb)q. Then x, y ∈ (f,max{ta, tb})q and so x∗y ∈ (f,max{ta, tb})q
by hypothesis. Since max{ta, tb} ≤ 0.5, it follows that

f(x ∗ y) > 1−max{ta, tb} ≥ max{ta, tb}

Hence x∗y
max{ta,tb}

∈ f , that is, x ∗ y ∈ (f,max{ta, tb})∈. �

Theorem 3.18. If a fuzzy set f in X satisfies the condition (3.7)
for all x, y ∈ X and ta, tb ∈ (0, 1], then the set X0 which is given in
Theorem 3.7 is a GE-subalgebra of X.

Proof. Let x, y ∈ X0. Then x
1
q f and y

1
q f . Thus

x ∗ y ∈ (f,max{1, 1})∈ = (f, 1)∈

by (3.7). If x ∗ y /∈ X0, then f(x ∗ y) = 0 < 1 and so x ∗ y /∈ (f, 1)∈, a
contradiction. Hence x ∗ y ∈ X0 which completes the proof. �
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4. Fuzzy GE-filters

Definition 4.1. A fuzzy set f in X is called a fuzzy GE-filter of X if
it satisfies:

(∀t ∈ (0, 1]) ((f, t)∈ 6= ∅ ⇒ 1 ∈ (f, t)∈) , (4.1)

x ∗ y ∈ (f, tb)∈, x ∈ (f, ta)∈ ⇒ y ∈ (f,min{ta, tb})∈ (4.2)

for all x, y ∈ X and ta, tb ∈ (0, 1].

Example 4.2. Let X = {1, 2, 3, 4, 5} be a set with a binary operation
“ ∗ ” given by Table 3.

Table 3. Cayley table for the binary operation “∗”

∗ 1 2 3 4 5
1 1 2 3 4 5
2 1 1 1 4 4
3 1 2 1 5 5
4 1 2 1 1 1
5 1 2 1 1 1

Then (X, ∗, 1) is a GE-algebra (see [1]). Define a fuzzy set f in X as
follows:

f : X → [0, 1] x 7→


0.7 if x = 1,
0.4 if x = 2,
0.5 if x = 5,
0.3 otherwise.

It is routine to verify that f is a fuzzy GE-filter of X.

Theorem 4.3. A fuzzy set f in X is a fuzzy GE-filter of X if and only
if it satisfies:

(∀x ∈ X)(f(1) ≥ f(x)). (4.3)

(∀x, y ∈ X)(f(y) ≥ min{f(x ∗ y), f(x)}). (4.4)

Proof. Assume that f is a fuzzy GE-filter of X. Suppose there exists
a ∈ X such that f(1) < f(a). Let t0 = 1

2
(f(1) + f(a)). Then f(1) < t0

and 0 < t0 < f(a) ≤ 1. Hence a ∈ (f, t0)∈ and so (f, t0)∈ 6= ∅.
Thus 1 ∈ (f, t0)∈, that is, f(1) ≥ t0, which is contradiction. Hence
f(1) ≥ f(x) for all x ∈ X. Let x, y ∈ X be such that f(x) = t1
and f(x ∗ y) = t2. Then x ∈ (f, t1)∈ and x ∗ y ∈ (f, t2)∈. Since
f is a fuzzy GE-filter of X, we have y ∈ (f,min{t1, t2})∈. Hence
f(y) ≥ min{t1, t2} = min(f(x), f(x ∗ y)).
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Conversely, assume that f satisfies (4.3) and (4.4). Let t ∈ (0, 1]
and x ∈ (f, t)∈. Then f(x) ≥ t and hence f(1) ≥ f(x) ≥ t. Thus
1 ∈ (f, t)∈. Let x, y ∈ X be such that x ∈ (f, t1)∈ and x ∗ y ∈ (f, t2)∈.
Then f(x) ≥ t1 and f(x ∗ y) ≥ t2. Therefore f(y) ≥ min{f(x), f(x ∗
y)} ≥ min{t1, t2} by (4.4). Hence y ∈ (f,min{t1, t2})∈. Thus f is a
fuzzy GE-filter of X. �

Proposition 4.4. Every fuzzy GE-filter f of X satisfies:

(∀x, y ∈ X)(∀ta ∈ (0, 1]) (x ≤ y, x ∈ (f, ta)∈ ⇒ y ∈ (f, ta)∈) , (4.5)

(∀x, y, z ∈ X)(∀ta, tb ∈ (0, 1])

(
z ≤ y ∗ x, y ∈ (f, tb)∈, z ∈ (f, ta)∈
⇒ x ∈ (f,min{ta, tb})∈

)
.

(4.6)

Proof. Let x, y ∈ X and ta ∈ (0, 1] be such that x ≤ y and x ∈ (f, ta)∈.
Then x∗y = 1, and so f(y) ≥ min{f(x∗y), f(x)} = min{f(1), f(x)} =
f(x) ≥ ta by Theorem 4.3. Hence y

ta
∈ f , that is, y ∈ (f, ta)∈. Let

x, y, z ∈ X and ta, tb ∈ (0, 1] be such that z ≤ y ∗ x, y ∈ (f, tb)∈ and
z ∈ (f, ta)∈. Then z ∗ (y ∗ x) = 1, f(y) ≥ tb and f(z) ≥ ta. Hence

f(x) ≥ min{f(y ∗ x), f(y)}
≥ min{min{f(z ∗ (y ∗ x)), f(z)}, f(y)}
= min{min{f(1), f(z)}, f(y)}
= min{f(y), f(z)} ≥ min{ta, tb}

and so x
min{ta,tb}

∈ f , i.e., x ∈ (f,min{ta, tb})∈. �

The combination of (2.7) and (4.5) induces the following corollary.

Corollary 4.5. Every fuzzy GE-filter f of X satisfies:

(∀x, a ∈ X)(∀t ∈ (0, 1])(a ∈ (f, t)∈ ⇒ (a ∗ x) ∗ x ∈ (f, t)∈).

Proposition 4.6. If f is a fuzzy GE-filter of X, then (4.5) and (4.6)
are equivalent to the following facts, respectively.

(∀x, y ∈ X)(x ≤ y ⇒ f(y) ≥ f(x)), (4.7)

(∀x, y, z ∈ X)(z ≤ y ∗ x ⇒ f(x) ≥ min{f(y), f(z)}). (4.8)

Proof. Suppose that (4.5) is valid and let x, y ∈ X be such that x ≤ y.
Since x ∈ (f, f(x))∈, we have y ∈ (f, f(x))∈ by (4.5). Thus f(y) ≥
f(x). Suppose that (4.6) is valid and let x, y, z ∈ X be such that
z ≤ y ∗x. Since y ∈ (f, f(y))∈ and Since z ∈ (f, f(z))∈, it follows from
(4.6) that x ∈ (f,min{f(y), f(z)})∈. Hence f(x) ≥ min{f(y), f(z)}.

Conversely, suppose that (4.7) and (4.8) are valid. Let x, y ∈ X
and ta ∈ (0, 1] be such that x ≤ y and x ∈ (f, ta)∈. Then f(y) ≥
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f(x) ≥ ta by (4.7), and so y ∈ (f, ta)∈. Now, let x, y, z ∈ X and
ta, tb ∈ (0, 1] be such that z ≤ y ∗ x, y ∈ (f, tb)∈ and z ∈ (f, ta)∈.
Then f(x) ≥ min{f(y), f(z)} ≥ min{tb, ta} by (4.8). Therefore x ∈
(f,min{ta, tb})∈. �

Proposition 4.7. Every fuzzy GE-filter f of X satisfies:

y ∈ (f, tb)∈ ⇒ x ∗ y ∈ (f, tb)∈, (4.9)

y ∈ (f, tb)∈, z ∈ (f, tc)∈ ⇒ (y ∗ (z ∗ x)) ∗ x ∈ (f,min{tb, tc})∈ (4.10)

for all x, y, z ∈ X and tb, tc ∈ (0, 1].

Proof. Let x, y ∈ X be such that y ∈ (f, tb)∈ for tb ∈ (0, 1]. Then

f(x ∗ y) ≥ min{f(y ∗ (x ∗ y)), f(y)} = min{f(1), f(y)} = f(y) ≥ tb

by (2.4) and Theorem 4.3. Hence x∗y ∈ (f, tb)∈. Now let x, y, z ∈ X be
such that y ∈ (f, tb)∈ and z ∈ (f, tc)∈ for tb, tc ∈ (0, 1]. Then f(y) ≥ tb
and f(z) ≥ tc. Using (GE3), (2.4), Theorem 4.3, and (4.4), we get

f(z ∗ ((y ∗ (z ∗ x)) ∗ x)) = f(z ∗ ((y ∗ (z ∗ x)) ∗ (z ∗ x)))

≥ f((y ∗ (z ∗ x)) ∗ (z ∗ x))

≥ min{f(y), f(y ∗ ((y ∗ (z ∗ x)) ∗ (z ∗ x)))}
= min{f(y), f(1)} = f(y).

It follows from (4.4) that

f((y ∗ (z ∗ x)) ∗ x) ≥ min{f(z), f(z ∗ ((y ∗ (z ∗ x)) ∗ x))}
≥ min{f(y), f(z)}.

Hence (y ∗ (z ∗ x)) ∗ x ∈ (f,min{tb, tc})∈. �

Let f be a fuzzy set in X that satisfies two conditions (4.9) and
(4.10). Let t ∈ (0, 1] be such that (f, t)∈ 6= ∅. Then there exists
y ∈ (f, t)∈, and so 1 = y ∗ y ∈ (f, t)∈ by (GE1) and (4.9). Let x, y ∈ X
be such that x ∈ (f, ta)∈ and x ∗ y ∈ (f, tb)∈. Then

y = 1 ∗ y = ((x ∗ y) ∗ (x ∗ y)) ∗ y ∈ (f,min{tb, tc})∈
by (GE2), (GE1) and (4.10). Therefore we have the following theorem.

Theorem 4.8. If a fuzzy set f in X satisfies two conditions (4.9) and
(4.10), then f is a fuzzy GE-filter of X.

Theorem 4.9. A fuzzy set f in X is a fuzzy GE-filter of X if and only
if it satisfies (4.1) and

(∀x, y, z ∈ X)(∀ta, tb ∈ (0, 1])

(
y ∈ (f, tb)∈, x ∗ (y ∗ z) ∈ (f, ta)∈
⇒ x ∗ z ∈ (f,min{ta, tb})∈

)
.

(4.11)
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Proof. Assume that f is a fuzzy GE-filter of X. Let x, y, z ∈ X and
ta, tb ∈ (0, 1] be such that y ∈ (f, tb)∈ and x ∗ (y ∗ z) ∈ (f, ta)∈. Then
y ∗ (x ∗ z) ∈ (f, ta)∈ by (2.5) and (4.5). It follows from (4.2) that
x ∗ z ∈ (f,min{ta, tb})∈.

Conversely, suppose that f satisfies (4.1) and (4.11). Let y, z ∈ X
and ta, tb ∈ (0, 1] be such that y ∈ (f, tb)∈ and y ∗ z ∈ (f, tb)∈. Then
1 ∗ (y ∗ z) = y ∗ z ∈ (f, tb)∈ by (GE2), and so z = 1 ∗ z ∈ (f, tb)∈ by
(GE2) and (4.11). Hence f is a fuzzy GE-filter of X. �

Theorem 4.10. If f and g are fuzzy GE-filters of X, then so is their
intersection.

Proof. Let f and g be fuzzy GE-filters of X. Then

(f ∩ g)(1) = min{f(1), g(1)} ≥ min{f(x), g(x)} = (f ∩ g)(x)

and

(f ∩ g)(y) = min{f(y), g(y)}
≥ min{min{f(x), f(x ∗ y)},min{g(x), g(x ∗ y)}}
= min{min{f(x), g(x)},min{f(x ∗ y), g(x ∗ y)}}
= min{(f ∩ g)(x) (f ∩ g)(x ∗ y)}

for all x, y ∈ X. It follows from Theorem 4.3 that f ∩ g is a fuzzy
GE-filter of X. �

The following example shows that the union of fuzzy filters may not
be a fuzzy filter.

Example 4.11. Let X = {1, 2, 3, 4, 5, 6, 7, 8} be a set with a binary
operation “ ∗ ” given by Table 4.

Table 4. Cayley table for the binary operation “∗”

∗ 1 2 3 4 5 6 7 8
1 1 2 3 4 5 6 7 8
2 1 1 1 4 6 6 1 1
3 1 2 1 5 5 5 8 8
4 1 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1 1
6 1 1 1 1 1 1 1 1
7 1 2 1 6 6 6 1 1
8 1 2 5 5 5 5 3 1
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Then (X, ∗, 1) is a GE-algebra. Let f and g be fuzzy sets in X defined
by

f : X → [0, 1], x 7→

 0.9 if x = 1,
0.8 if x = 3,
0.5 otherwise,

and

g : X → [0, 1], x 7→

 0.95 if x = 1,
0.8 if x = 8,
0.4 otherwise,

respectively. It is routine to verify that f and g are fuzzy GE-filters of
X.
The union f ∪ g of f and g is given as follows.

f ∪ g : X → [0, 1], x 7→

 0.95 if x = 1,
0.8 if x ∈ {3, 8},
0.5 otherwise.

But f∪g is not a fuzzy GE-filter of X since 8 ∈ (f∪g, 0.63)∈ and 8∗7 =
3 ∈ (f ∪ g, 0.58)∈, but 7 /∈ (f ∪ g, 0.58)∈ = (f ∪ g,min{0.63, 0.58})∈.

We explore the conditions under which the ∈t-set and Qt-set can be
GE-filters.

Theorem 4.12. Given a fuzzy set f in X, its ∈t-set (f, t)∈ is a GE-
filter of X for all t ∈ (0.5, 1] if and only if f satisfies:

(∀x ∈ X)(f(x) ≤ max{f(1), 0.5}), (4.12)

(∀x, y ∈ X)(min{f(x), f(x ∗ y)} ≤ max{f(y), 0.5}). (4.13)

Proof. Assume that the ∈t-set (f, t)∈ of f is a GE-filter of X for all
t ∈ (0.5, 1]. If there exists a ∈ X such that f(a) � max{f(1), 0.5},
then t := f(a) ∈ (0.5, 1], a

t
∈ f and 1

t
∈ f , that is, a ∈ (f, t)∈ and

1 /∈ (f, t)∈. This is a contradiction, and thus f(x) ≤ max{f(1), 0.5}
for all x ∈ X. If (4.13) is not valid, then

min{f(a), f(a ∗ b)} > max{f(b), 0.5}
for some a, b ∈ X. If we take t := min{f(a), f(a ∗ b)}, then t ∈ (0.5, 1],
a
t
∈ f and a∗b

t
∈ f . Hence a ∈ (f, t)∈ and a ∗ b ∈ (f, t)∈, which

imply that b ∈ (f, t)∈. Thus b
t
∈ f , and so f(b) ≥ t > 0.5 which is a

contradiction. Therefore min{f(x), f(x ∗ y)} ≤ max{f(y), 0.5} for all
x, y ∈ X.

Conversely, suppose that f satisfies (4.12) and (4.13). Let (f, t)∈ 6= ∅
for all t ∈ (0.5, 1]. Then there exists a ∈ (f, t)∈ and thus a

t
∈ f , i.e.,

f(a) ≥ t. It follows from (4.12) that max{f(1), 0.5} ≥ f(a) ≥ t > 0/5.
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Thus 1
t
∈ f , i.e., 1 ∈ (f, t)∈. Let t ∈ (0.5, 1] and x, y ∈ X be such

that x ∈ (f, t)∈ and x ∗ y ∈ (f, t)∈. Then x
t
∈ f and x∗y

t
∈ f , that is,

f(x) ≥ t and f(x ∗ y) ≥ t. Using (4.13), we get

max{f(y), 0.5} ≥ min{f(x), f(x ∗ y)} ≥ t > 0.5

and so y
t
∈ f , i.e., y ∈ (f, t)∈. Therefore (f, t)∈ is a GE-filter of X for

all t ∈ (0.5, 1]. �

Theorem 4.13. A fuzzy set f in X is a fuzzy GE-filter of X if and
only if the nonempty ∈t-set (f, t)∈ of f in X is a GE-filter of X for all
t ∈ (0, 1].

Proof. Suppose that f is a fuzzy GE-filter of X. Let t ∈ (0, 1] be such
that (f, t)∈ 6= ∅. Then there exists a ∈ (f, t)∈, and so a

t
∈ f . It follows

from (4.3) that f(1) ≥ f(a) ≥ t. Hence 1 ∈ (f, t)∈. Let x, y ∈ X be
such that x ∈ (f, t)∈ and x∗y ∈ (f, t)∈. Then f(x) ≥ t and f(x∗y) ≥ t,
which imply from (4.4) that

f(y) ≥ min{f(x ∗ y), f(x)} ≥ t.

Hence y ∈ (f, t)∈. Consequently, (f, t)∈ is a GE-filter of X for all
t ∈ (0, 1].

Conversely, assume that the nonempty ∈t-set (f, t)∈ is a GE-filter of
X for all t ∈ (0, 1]. If f(1) < f(a) for some a ∈ X, then a ∈ (f, f(a))∈
and 1 /∈ (f, f(a))∈. This is a contradiction, and thus f(1) ≥ f(x) for all
x ∈ X. If there exist a, b ∈ X such that f(b) < min{f(a), f(a∗b)}, then
a ∈ (f, t)∈, a ∗ b ∈ (f, t)∈ but b /∈ (f, t)∈ for t := min{f(a), f(a ∗ b)}.
This is a contradiction, and hence f(y) ≥ min{f(x), f(x ∗ y)} for all
x, y ∈ X. Therefore f is a fuzzy GE-filter of X by Theorem 4.3. �

Theorem 4.14. If f is a fuzzy GE-filter of X, then the nonempty
Qt-set (f, t)q of f is a GE-filter of X for all t ∈ (0, 1].

Proof. Let f be a fuzzy GE-filter of X and assume that (f, t)q 6= ∅ for
all t ∈ (0, 1]. Then there exists a ∈ (f, t)q, and so a

t
q f , i.e., f(a)+t > 1.

Hence f(1) + t ≥ f(a) + t > 1, i.e., 1 ∈ (f, t)q. Let x, y ∈ X be such
that x ∈ (f, t)q and x ∗ y ∈ (f, t)q. Then x

t
q f and x∗y

t
q f , that is,

f(x) + t > 1 and f(x ∗ y) + t > 1. It follows that

f(y) + t ≥ min{f(x), f(x ∗ y)}+ t = min{f(x) + t, f(x ∗ y) + t} > 1.

Hence y
t
q f , and therefore y ∈ (f, t)q. Consequently, (f, t)q is a GE-

filter of X for all t ∈ (0, 1]. �
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