
تعداد نشریات | 31 |
تعداد شمارهها | 778 |
تعداد مقالات | 7,448 |
تعداد مشاهده مقاله | 19,524,786 |
تعداد دریافت فایل اصل مقاله | 7,519,758 |
اثر سطوح مختلف اکسید روی در جیره های حاوی سلنیت سدیم بر عملکرد رشد و برخی شاخصهای ایمنی گوساله های شیرخوار هلشتاین | ||
تحقیقات تولیدات دامی | ||
دوره 13، شماره 4، دی 1403، صفحه 95-104 اصل مقاله (780.77 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22124/ar.2024.28264.1845 | ||
نویسندگان | ||
مریم نوبخت* 1؛ میر داریوش شکوری2 | ||
1دانشجوی دکتری، گروه علوم دامی، دانشکده علوم کشاورزی، دانشگاه محقق اردبیلی | ||
2دانشیار، گروه علوم دامی، دانشکده علوم کشاورزی، دانشگاه محقق اردبیلی | ||
چکیده | ||
بهمنظور بررسی تاثیر سطوح مختلف اکسید روی در جیرههای حاوی سلنیت سدیم بر عملکرد رشد و برخی شاخصهای ایمنی گوسالههای هلشتاین، آزمایشی با 36 راس گوساله هلشتاین (با میانگین وزنی برابر با 5/34 کیلوگرم) با شش تیمار و شش تکرار در قالب طرح کاملاً تصادفی انجام شد. تیمارها شامل: 1- شاهد (40 میلیگرم روی و 15/0 میلیگرم سلنیوم)، 2- 3/0 میلیگرم سلنیت سدیم، 3- 40 میلیگرم اکسید روی، 4- 55 میلیگرم اکسید روی، 5- 3/0 میلیگرم سلنیت سدیم و 40 میلیگرم اکسید روی، 6- 3/0 میلیگرم سلنیت سدیم و 55 میلیگرم اکسید روی بودند. طی آزمایش، گوسالهها دسترسی آزاد به جیره آغازین و آب داشتند. مصرف خوراک بهصورت روزانه و وزن بدن در روزهای 20 و 42 پرورش اندازهگیری شد. جهت اندازهگیری گلوکز، کلسترول، تریگلیسیرید، پروتئین کل، اوره، آهن، روی، سلنیوم، کلسیم، فسفر، سوپراکسید دیسموتاز، مالوندیآلدئید، آسپارتات آمینو ترانسفراز، آلانین آمینو ترانسفراز، لنفوسیت، نوتروفیل، مونوسیت و ایمنوگلوبولین G در روزهای 20 و 42 پرورش از گوسالهها خونگیری انجام شد. نتایج نشان داد که مکمل کردن شیر با سلنیوم و روی معدنی، تاثیر معنیداری بر عملکرد رشد، مصرف خوراک و پاسخ ایمنی نداشت (05/0<P). همچنین، اختلاف معنیداری بین متابولیتهای خونی نسبت به گروه شاهد مشاهده نشد (05/0<P). افزودن همزمان سلنیوم و روی باعث کاهش معنیدار آسپارتات آمینو ترانسفراز، مالون دی آلدئید و افزایش معنیدار آنزیم سوپراکسید دیسموتاز شد (05/0P<). بهطور کلی، میتوان نتیجه گرفت که استفاده همزمان سلنیوم و اکسید روی در سطوح 40 و 55 میلیگرم میتواند سبب بهبود وضعیت آنتیاکسیدانی سرم و کاهش تنش اکسیداتیو گوسالههای هلشتاین شود. | ||
کلیدواژهها | ||
اکسید روی؛ پاسخ ایمنی؛ عملکرد رشد؛ سلنیت سدیم؛ گوساله هلشتاین | ||
مراجع | ||
Agarwal, A., & Sekhon, L. )2010(. The role of antioxidant therapy in the treatment of male infertility. Human Fertility, 13)2(, 217–225. doi: 10.3109/14647273.2010.532279 Azizzadeh, M., Mohri, M., & Seifi. H. A. )2005(. Effect of oral zinc supplementation on hematology, serum biochemistry, performance, and health in neonatal dairy calves. Comparative Clinical Pathology, 14)1(, 67–71. doi: 10.1007/s00580-005-0559-1 Chang, M. N., Wei, J. Y., Hao, L. Y., Ma, F. T., Li, H. Y., Zhao, S. G., & Sun, P. )2020(. Effects of different types of zinc supplement on the growth, incidence of diarrhea, immune function, and rectal microbiota of newborn dairy calves. Journal of Dairy Science, 103)2(, 6100-6113. doi: 10.3168/jds.2019-17610 Dadras, H., Hayatbakhsh, M. R., Shelton, W. L., & Golpour, A. )2016(. Effects of dietary administration of Rose hip and Safflower on growth performance, haematological, biochemical parameters and innate immune response of Beluga, Huso huso (Linnaeus, 1758). Fish and Shellfish Immunology, 59)1(, 109-114. doi: 10.1016/j.fsi.2016.10.033 Della, C. M., Santos, L. L., Rodrigues, K. C., Rodrigues, V. C., Martino, H. S., & Pinheiro, H. M. )2014(. Bioavailability of zinc in Wistar rats fed with rice fortified with zinc oxide. Nutrients, 6)6(, 2279-89. doi: 10.3390/nu6062279 Draper, H. H., & Hadley, M. )1990(. Malondialdehyde determination as index of lipid Peroxidation. Methods in Enzymology, 186)2(, 421-431. doi: 10.1016/0076-6879(90)86135-i Juniper, D. T., Phipps, R. H., Ramos- Morales, E., & Bertin, G. )2008(. Selenium persistency and speciation in the tissues of lambs following the withdrawal of dietary highdose selenium-enriched yeast. Animal, 2)3(, 75- 380. doi: 10.1017/S1751731107001395 Eryavuz, A., & Dehority, B. A. )2009(. Effects of supplemental zinc concentration on cellulose digestion and cellulolytic and total bacterial numbers in vitro. Animal Feed Science and Technology, 151)3(, 175-183. doi: 10.1016/j.anifeedsci.2009.01.008 Fengtao, M., Yeqianli, W., Hongyang, L., Meinan, W., & Peng, S. )2020(. Effect of the source of zinc on the tissue accumulation of source of zinc and jejunal mucosal zinc transporter in Holstein dairy calves. Journal of Animal Science, 10)2(, 12-46. doi: 10.3390/ani10081246 Gong, J., & Xiao, M. )2016(. Selenium and antioxidant status in dairy cows at different stages of lactation. Biological Trace Elements Research, 171)2(, 89-93. Guyot, H., Spring, P., Andrieu, S., & Rollin, F. )2007(. Comparative responses to sodium selenite and organic selenium supplements in Belgian Blue cows and calves. ELives Sciencs, 111)2(, 259-263. doi: 10.1016/j.livsci.2007.04.018 Haase, H., & Rink, L. (2014). Zinc signals and immune function. Biofactors, 40(1), 27-40. doi: Halliwell, B., & Gutteridge, J. M. (2015). Free radicals in biology and medicine. Oxford University Press, USA. doi: 10.1093/acprof:oso/9780198717478.001.0001 Hou, R., He, Y., Yan, G., Hou, S., Xie, Z., & Liao, C. )2021(. Zinc enzymes in medicinal chemistry. European Journal of Medicinal Chemistry, 226, 113877. doi: 10.1016/j.ejmech.2021.113877 Kamada, H., Nonaka, I., Ueda, Y., & Murai, M. )2007(. Selenium addition to colostrum increase immunoglobulin G absorption by newborn calves. Journal of Dairy Science, 90)2(, 5665-5670. doi: 10.3168/jds.2007-0348 Kumar, M., Garg, A. K., Dass, R. S., Chaturvedi, V. K., Mudgal, V., & Varshney, V. P. (2009). Selenium supplementation influences growth performance, antioxidant status and immune response in lambs. Journal of Animal Feed Science and Technology, 153)2(, 77-87. doi: 10.1016/j.anifeedsci.2009.06.007 Livingstone, C. (2015). Zinc: physiology, deficiency and parenteral nutrition. Nutrition in Clinical Practice, 30(3), 371-82. doi: 10.1177/0884533615570376 Maggini, S., Wintergerst, E. S., Beveridge, S., & Hornig, D. H. )2007(. Selected vitamins and trace elements support immune function by strengthening epithelial barriers and cellular and humoral immune responses. British Journal of Nutrition, 98)1(, 29-35. doi: 10.1017/s0007114507832971 Mandal, G. P., Dass, R. S., Isore, D. P., Garg, A. K., & Ram, G. C. )2007(. Effect of zinc supplementation from two sources on growth, nutrient utilization and immune response in male crossbred cattle (Bos indicus× Bos taurus) bulls. Animal Feed Science and Technology, 138)1(, 1-12. doi: 10.1016/j.anifeedsci.2006.09.014 Mills, C. F., Dalgarno, A. C., Williams, R. B., & Quarterman, J. )1967(. Zinc deficiency and the zinc requirements of calves and lambs. British Journal of Nutrition, 21)03(, 751-768. doi: 10.1079/bjn19670076 Mohri, M., Seifi, H. A., & Khodadadi, J. )2005(. Effects of preweaning parenteral supplementation of vitamin E and selenium on hematology, serum proteins, and weight gain in dairy calves. Comparative Clinical Pathology, 14)1(, 149-154. doi: 10.1007/s00580-005-0581-3 Moeini, M. M., Kiani, A., Karami, H., & Mikaeili, E. (2011). The Effect of selenium administration on the selenium, copper, iron and zinc status of pregnant heifers and their newborn calves. Journal of Agricultural Science and Technology, 13, 53-59. [In Persian] Marreiro, D. D., Cruz, K. J., Morais, J. B., Beserra, J. B., Severo, J. S., & DeOliveira, A. R. )2017(. Zinc and oxidative stress:curren mechanisms. Antioxidants, 6(2), 24-8. doi: 10.3390/antiox6020024 Pal, D. T., Gowda, N. K. S., Prasad, C. S., Amarnath, R., Bharadwaj, U., SureshBabu, G., & Sampath, K. T. (2010). Effect of copper- and zinc-methionine supplementation on bioavailability, mineral status and tissue concentrations of copper and zinc in ewes. Journal of Trace Elements in Medicine and Biology, 24)2(, 89-94. doi: 10.1016/j.jtemb.2009.11.007 Qin, S., Gao, J., & Huang, K. )2007(. Effects of different selenium sources on tissue selenium concentrations, blood GSH-Px activities and plasma interleukin levels in finishing lambs. Biological Trace Element Research, 116)1(, 91-102. doi: 10.1007/bf02685922 Richards, C., Blalock, H., Jacques, K., & Loveday, H. (2011). Efficacy of feeding selenium-enriched yeast to finishing beef cattle. Professional Animal Scientist, 27(1), 1-8. doi: 10.15232/S1080-7446(15)30437-X Ryan, A. W., Kegley, E. B., Hawley, J., Powell, J. G., Hornsby, J. A., Reynolds, J. L., & Laudert, S. B. (2015). Supplemental trace minerals (zinc, copper, and manganese) as sulfates, organic amino acid complexes, or hydroxy trace-mineral sources for shipping-stressed calves. The Professional Animal Scientist, 31(4), 333-341. doi: 10.15232/pas.2014-01383 Shi, L. G., Xun, W. J., Yue, W. B., Zhang, C. X., Ren, Y. S., Liu, Wang, Q., & Shi, L. )2011(. Effect of elemental nano-selenium on feed digestibility, rumen fermentation, and purine derivatives in sheep. Animal Feed Science and Technology, 163)2(, 136-142. doi: 10.1016/j.anifeedsci.2010.10.016 Shuang, Y. B., Zhu, W. Q., Sheng, H. X., jun, F. L., Jing-ji, L., & Yong-zhen, C. )2012(. Effect of Se-yeast on Anti-oxidation ability in blood and milk secretion Performance of Dairy Cows. Asian Pacific Conference on Environmental Science and Technology Advances in Biomedical Engineering. doi: 10.5713/ajas.2013.13181 Slavik, P., Illek, J., Brix, M., Hlavicova, J., Rajmon, R., & Jilek, F. )2008(. Influence of organic versus inorganic dietary selenium supplementation on the concentration of selenium in colostrum, milk and blood of beef cows. Acta Veterinaria Scandinavica, 50)1(, 43. doi: 10.1186/1751-0147-50-43 Sobhanirad, S., & Naserian, A. A. )2012(. Effects of high dietary zinc concentration and zinc sources on hematology and biochemistry of blood serum in Holstein dairy cows. Animal Feed Science and Technology, 177)2(, 242-24. doi: 10.1016/j.anifeedsci.2012.06.007 Suttle, N. F. )2010(. Mineral nutrition of livestock. 4th ed. CABI Publishing, New York. Teixeira, A. G. V., Lima, F. S., Bicalho, M. L. S., Kussler, A., Lima, S. F., Felippe, M. J., & Bicalho, R. C. (2014). Effect of an injectable trace mineral supplement containing selenium, copper, zinc, and manganese on immunity, health, and growth of dairy calves. Journal of Dairy Science, 97(7), 4216-4226. doi: 10.3168/jds.2013-7625 Vignola, G., Lambertini, L., Mazzone, G., Giammarco, M., Tassinari, M., & Martelli, G. )2009(. Effects of selenium source and level of supplementation on the performance and meat quality of lambs. Meat Science, 81)4(, 678-685. doi: 10.1016/j.meatsci.2008.11.009 Vedovatto, M., Moriel, P., Cooke, R. F., Costa, D. S., Faria, F. J. C., Neto, I. M. C., & Franco, G. L. )2019(. Effects of a single trace mineral injection on body parameters, ovarian structures, pregnancy rate and components of the innate immune system of grazing Nellore cows synchronized to a fixed-time AI protocol. Livestock Science, 225)3(, 123-128. doi: 10.1016/j.livsci.2019.05.011 Wei, J., Ma, F., Hao, L., Shan, Q., & Sun, P. )2019(. Effect of differing amounts of zinc oxide supplementation on the antioxidant status and zinc metabolism in newborn dairy calves. Livestock Science, 230)4(,103819. doi: 10.1016/j.livsci.2019.103819 Wu, G. (2018). Principles of Animal Nutrition, 1st ed. Taylor & Francis Group, LLC, Boca Raton, FL, USA. doi: 10.1201/9781315120065 | ||
آمار تعداد مشاهده مقاله: 78 تعداد دریافت فایل اصل مقاله: 31 |