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Abstract. Feature selection is an important step in data preprocessing, which helps reducing the dimen-
sionality of data and simplifying the models. This process not only reduces the computational complexity
of models, but also improves their accuracy by eliminating irrelevant features and noise. The three most
widely used approaches for feature selection are filter, wrapper and embedded methods. In this paper,
first we review some support vector machine based Mixed-Integer Linear Programming (MILP) models
and Supervised Infinite Feature Selection (Inf-FSs) method. Then, we propose three hybrid approaches
based on them. The first approach involves solving the relaxed linear model of the underlying MILP
model and then solving the MILP model for those features with nonzero weights, namely a smaller
MILP. In the second approach, first the Inf-FSs method is applied to rank the features. Then depending
on the features costs, either chooses the top features from the ranked features until budget parameter is
reached or solves a knapsack problem to select cost effective features. The third approach applies the first
approach to the top 20% of features ranked by Inf-FSs method. To evaluate the proposed approaches’
performance, experiments are conducted on four high-dimensional benchmark datasets for fixed and ran-
dom features costs. Results demonstrate that using either of the proposed approaches can significantly
reduce running time of MILP models with comparable accuracies with the original MILP models.

Keywords: Feature selection, Mixed integer linear program, Infinite feature selection method, Feature cost.
AMS Subject Classification : 68T09, 90C11.

1 Introduction

In todays rapidly evolving data landscape, feature selection plays a pivotal role in data analysis and
machine learning. The primary goal of feature selection is to reduce the dimensionality of the data,
enhancing model performance by retaining only the most relevant and significant features [12]. This

∗Corresponding author
Received: 20 October 2024 / Revised: 26 December 2024 / Accepted: 29 December 2024
DOI: 10.22124/jmm.2024.28684.2557

c© 2025 University of Guilan http://jmm.guilan.ac.ir

https://doi.org/ 10.22124/jmm.2024.28684.2557
http://jmm.guilan.ac.ir


342 M. Noroozi, M. Salahi, S. Eskandari

process not only mitigates computational costs but also improves model accuracy and prevents overfit-
ting. Especially in problems with a small number of samples and high dimensionality, the performance
of the model significantly improves by using a small subset of features [5, 14].

Guyon et al. [9] classified feature selection techniques into three primary categories: filter meth-
ods, wrapper methods and embedded methods. Filter methods exclude poorly informative features by
analyzing their statistical properties before applying a classification algorithm. Wrapper methods work
alongside the learning model, examining the entire set of variables to find feature subsets based on their
predictive performance. While this approach is computationally intensive, it often yields better results
than filter methods. Embedded methods, belonging to the third category, perform feature selection while
simultaneously building the classifier. This can be viewed as a search through both feature subsets and
hypothesis spaces. Unlike wrapper methods, which rely on a separate classification algorithm, embedded
methods handle both tasks within a single process. Typically, they are less computationally demanding
than wrapper methods [9].

Despite the progress in feature selection techniques [4, 8], there remains a significant challenge in
addressing real-world constraints such as varied feature costs and limited budgets. Cost considerations
are essential for making sensible and effective decisions in many real-world applications. Ignoring the
cost factor in the feature selection process can lead to significantly undesirable outcomes. By incorpo-
rating a budget constraint, the process ensures the selection of the most informative yet cost-effective
features, while preserving classification accuracy within a predefined budget. This makes the feature
selection process more practical and efficient for real-world use [12]. Support Vector Machine (SVM)
based feature selection approaches incorporate cost-effective feature selection in the original SVM-based
models using zero-one variables. For example, Maldonado et al. [13] introduced two Mixed-Integer Lin-
ear Programming (MILP) models based on the L1-SVM model [3] and the LP-SVM model [16], called
MILP1 and MILP2, respectively, to address feature selection with budget constraints. Then, Labbe et
al. [11], based on the idea introduced by Maldonado et al., proposed an extension of L1-SVM and applied
two strategies to enhance bounds on the zero-one variables. Another extension of L1-SVM based feature
selection was proposed by Lee et al. [12] called group feature selection. They further studied its robust
counterpart under uncertainty.

An issue with MILP models is that as the dimensionality increases, the time required to solve these
models grows significantly. Therefore, proposing methods that reduce computational time without re-
ducing accuracy becomes crucial. In this paper, we propose three hybrid approaches, two of which are
aimed at reducing the computational time of MILP models while maintaining high accuracy. In the first
approach, firstly the linear programming relaxation of the MILP model is solved. Then those features
with nonzero weights are chosen and the original MILP model is applied with these less number of
features. This approach is particularly advantageous for high-dimensional data, offering a reduction in
computational burden without substantially impacting model accuracy. In the second approach, firstly
the supervised Infinite Feature Selection (Inf-FSs) [15] is applied to rank the features using three cri-
terion, namely Fisher score, mutual information and standard deviation. As Inf-FSs do not take into
account features’ costs, we either choose the first B features, where B is the budget on the features’ costs
or we solve a knapsack problem to select cost effective features. The third approach applies the first
approach to the MILP models, restricted to the top 20% of features ranked by Inf-FSs method.

The remainder of the paper is structured as follows. In Section 2, we review two MILP feature
selection models with budget constraint and the Inf-FSs method. In Section 3, we introduce the proposed
approaches. Finally, in Section 4, we compare the computational time and accuracy of the proposed
approaches with the MILP models discussed in Section 2.
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2 MILP models and Inf-FSs method for feature selection

In this section, first we present two embedded-based MILP models for feature selection with the budget
constraint. Then we present the filter-based Inf-FSs method that ranks features based on Fisher score,
mutual information and standard deviation while not taking into account features’ costs.

2.1 MILP models

The first MILP model, which we call MILP1, is introduced by Maldonado et al. [13] as follows:

min
w,v,b,ε

m

∑
i=1

εi

s.t. yi(wT xi +b)≥ 1− εi, i = 1, . . . ,m,

l jv j ≤ w j ≤ u jv j, j = 1, . . . ,n,
n

∑
j=1

c jv j ≤ B, (1)

v j ∈ {0,1}, j = 1, . . . ,n,

εi ≥ 0, i = 1, . . . ,m,

where c j is the cost of the jth feature, the second set of constraints bounds the features’ weights, and the
third constraint ensures that the total cost of the selected features does not exceed the predefined budget,
B. If all c js are set to one, the budget parameter B represents the maximum number of selected features.
If v j = 0, then from the second set of constraints w j = 0 that means jth feature is not selected. Otherwise
its weight is bounded below by l j and above by u j.

The second MILP model, which we call MILP2, is introduced by Labbe et al. [11] as follows:

min
v,w+,w−,b,ε

n

∑
j=1

(w+
j +w−j )+C

m

∑
i=1

εi

s.t. yi

(
n

∑
j=1

(w+
j −w−j )xi j +b

)
≥ 1− εi, i = 1, . . . ,m,

w+
j ≤ u jv j, j = 1, . . . ,n,

w−j ≤−l jv j, j = 1, . . . ,n,
n

∑
j=1

c jv j ≤ B, (2)

v j ∈ {0,1}, j = 1, . . . ,n,

εi ≥ 0, i = 1, . . . ,m,

w+
j ≥ 0, i = 1, . . . ,n,

w−j ≥ 0, i = 1, . . . ,n,

where the parameter C in the objective function reflects the penalty for errors. It uses the decomposition
of w into w+ and w− for linearization. This formulation seeks an optimal balance between deviations
and the margin. As can be observed, the second and third sets of constraints bound the features’ weights
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and the fourth constraint is the budget constraint on features. Similar to MILP1, If v j = 0, then from the
second and third sets of constraints w j = 0 that means j-th feature is not selected. Their experiments
showed that choosing very conservative big values for u j and l j for all j = 1, . . . ,n might lead to high
computational costs. Therefore, they proposed two strategies for tightening u j and l j values to reach
better computational results [11].

2.2 Inf-FSs method

Inf-FSs is a filter-based feature selection models, which was introduced by G. Roffo et al. [15]. This
method uses three criteria to calculate the score of each feature: Fisher score (hi), mutual information
(mi), and standard deviation (σi). In this approach, a complete graph G = (V,E) is constructed where
nodes represent features and edges indicate the relationship between them. Each edge A(i, j) shows the
probability of selecting features vi and v j. The Inf-FSs algorithm works by selecting features from a set
of features F = { f1, . . . , fn}, where G represents the set of classes (labels) and Y ∈ {1, . . . ,G} are the
class labels. The algorithm proceeds as follows:

Algorithm 1 Supervised Infinite Feature Selection Algorithm

Input: Set of features F = { f1, . . . , fn}, class labels Y , and coefficients α1,α2,α3.
Output: Final ranking Ĉ for each feature.

1. For each i = 1, . . . ,n
Compute:

hi =
|µi,1−µi,2|2

σ2
i,1 +σ2

i,2
, mi = ∑

y∈Y
∑
z∈Fi

p(z,y) log
(

p(z,y)
p(z)p(y)

)
where µi,1,µi,2 are the means for each class, and σi,1,σi,2 are the standard deviations for each class.
Compute the score for each feature as:

si = α1hi +α2mi +α3σi.

2. For each i = 1, . . . ,n and j = 1, . . . ,n
Set:

A(i, j) = sis j.

3. Compute r as:

r =
0.9

ρ(A)
,

where ρ(A) is the spectral radius of matrix A.
4. Compute the final score Ĉ as:

Ĉ =
(
(I− rA)−1− I

)
e,

where I is the identity matrix and e is the vector of ones.

Note that the coefficients α1, α2 and α3 take values between 0 and 1 with sum equals 1 that are
determined using cross-validation.
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3 Proposed approaches

In this section, we introduce simple hybrid approaches for the feature selection problem taking into
account budget constraints on the features’ costs.

• Approach 1: Consider MILP1 model (1). First we solve its relaxed model as follows:

min
w,v,b,ε

m

∑
i=1

εi

s.t. yi(wT xi +b)≥ 1− εi, i = 1, . . . ,m,

l jv j ≤ w j ≤ u jv j, j = 1, . . . ,n,
n

∑
j=1

c jv j ≤ B, (3)

0≤ v j ≤ 1, j = 1, . . . ,n,

εi ≥ 0, i = 1, . . . ,m.

The solution to this problem is typically sparse. Therefore, we choose features with nonzero
weights (for instance |w j| > 10−6) and solve MILP1 model only for these features, namely an
MILP model with less zero-one variables. Let P = { j||w j| > 10−6}, then the following MILP is
solved:

min
w,v,b,ε

m

∑
i=1

εi

s.t. yi(wT xi +b)≥ 1− εi, i = 1, . . . ,m,

l jv j ≤ w j ≤ u jv j, j ∈ P

∑
j∈P

c jv j ≤ B, (4)

v j ∈ {0,1}, j ∈ P

εi ≥ 0, i = 1, . . . ,m.

Since the cardinality of P is much smaller than n, MILP (4) is usually solved faster than the original
MILP1. Similarly, we can apply this approach to the MILP2.

• Approach 2: First, using Inf-FSs method features are ranked. If costs are all equal to one, then we
just choose the first B features from the ranked features. However, if features costs are different,
we solve the following knapsack problem to select cost effective features:

max
x

n

∑
i=1

sixi

s.t.
n

∑
i=1

cixi ≤ B (5)

xi ∈ {0,1}, i = 1, . . . ,n

where si and ci are the score and cost of the ith feature, respectively.

• Approach 3: In this approach, we first apply Inf-FSs to rank the features. Then we apply Approach
1 to the original MILP models, restricted to the top 20% of features ranked by Inf-FSs method.



346 M. Noroozi, M. Salahi, S. Eskandari

4 Experimental results

In this section, the proposed approaches in Section 3 are evaluated on four datasets and their results are
compared with the original MILP models and Inf-FSs method in terms of CPU time and accuracy. All
implementations are carried out on MATLAB. The optimization problems are formulated using CVX and
solved using the CPLEX solver [6]. Table 1 shows the abbreviations in this section.

Table 1: List of abbreviations.

Abbreviation Description
MILP1∗ Application of Approach 1 to MILP1
MILP2∗ Application of Approach 1 to MILP2
MILP1∗s Application of Approach 3 to MILP1
MILP2∗s Application of Approach 3 to MILP2

K-Inf-FSs Model (5)
B Budget parameter

FC∩FD The intersection of the selected features by approaches C and D

Furthermore, in order to evaluate the accuracy, a 10-fold cross-validation method is used, where the
dataset is split into 10 equal folds [5]. The model is trained on nine of these folds, while the remaining
fold (test set) is used to evaluate the model’s prediction error. This procedure is repeated for all 10 folds.
Accuracy is calculated as the ratio of correctly classified samples to the total number of samples in the
testing set and is defined as:

Accuracy =
T P+T N

T P+T N +FP+FN
.

In this formula,

• T P (True Positives) refers to the number of positive samples correctly classified,

• T N (True Negatives) refers to the number of negative samples correctly classified,

• FP (False Positives) refers to the number of negative samples incorrectly classified as positive, and

• FN (False Negatives) refers to the number of positive samples incorrectly classified as negative.

4.1 Datasets and parameters setting

Table 2 shows the datasets information, where m and n represent the number of samples and the number
of features, respectively. Using an appropriate penalty parameter affects the accuracy of the model. For
each dataset, penalty parameters from the {2−7,2−6, . . . ,2−1,20,21, . . . ,26,27} are considered, and the
best one is selected based on accuracy that are given in Table 3. It should be noted that the MILP1 model
does not have a penalty parameter. Furthermore, the α parameters (α1, α2, and α3) that are most suitable
for the Inf-FSs model are presented in Table 4. These values are determined through cross-validation.

4.2 Equal features costs

In the first scenario, the cost of each feature is considered fixed and equal to one. Moreover, to evaluate
the model’s performance under different budget parameter, the values 10, 20, and 30 are assigned to the
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Table 2: Datasets information.

DATASETS m×n
COLONCANCER [1] 62 × 2000
LYMPHOMA [7] 45 × 4026
LEUKEMIA [7] 72 × 7070
PROSTATE [2] 102 × 6033

Table 3: The best penalty parameter (C) used for the datasets
in each model.

DATASET MILP1 MILP2 Inf-FSs

COLONCANCER - 20 2−4

LYMPHOMA - 25 20

LEUKEMIA - 25 27

PROSTATE - 2−1 2−7

Table 4: The α parameters in the Inf-FSs method.

DATASET COLONCANCER LYMPHOMA LEUKEMIA PROSTATE
α1 0.8 0.5 0.9 0.6
α2 0.1 0.2 0 0.1
α3 0.1 0.3 0.1 0.3

budget parameter (B). The best results in terms of accuracy and execution time for each budget parameter
are bold numbers in the tables and the second best result is marked with a superscript “*”.

Table 5: Time and accuracy comparison for COLONCANCER dataset.

Model B = 10 B = 20 B = 30

MILP1
Accuracy 88.6 88.8 85.7

Time 11.2 10000 10000

MILP1∗
Accuracy 88.8* 88.3 85.1

Time 9.7* 860 10000

MILP2
Accuracy 88.6 90.5 87.6*

Time 21.3 10000 10000

MILP2∗
Accuracy 88.8* 90.5 86.7

Time 10 942 10000

Inf-FSs
Accuracy 87.5 80 82.2

Time 7.8 7.9 7.8

MILP1∗s
Accuracy 90 88.6 87.1

Time 12.8 57.5* 1920.7*

MILP2∗s
Accuracy 88.8* 89 88.6

Time 12.6 67 2137.7

For the COLONCANCER dataset, one can see from Table 5 that the Inf-FSs model is the fastest in
terms of execution time across all budget scenarios. For B = 10, Approach 1 reduces the running times
of MILP1 and MILP2 models. For B = 20, Approaches 1 and 3 both significantly reduces the running
times of the models. In the case of B = 30, just Approach 3 reduces the running times of the original
MILP models. From the accuracy point of view, Inf-FSs exhibits the worst accuracy among all models
and we see no significant differences between the MILP models and the proposed approaches. In the
cases of B = 10 and B = 30, MILP1∗s and MILP2∗s have the highest accuracy, while for the case B = 20,
MILP2 and MILP2∗ have jointly the highest accuracy.
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Table 6: Features overlap percentage on COLONCANCER dataset.

B 10 20 30
FMILP1∩FMILP1∗ 77.3 83.6 72.4
FMILP2∩FMILP2∗ 100 74 81.9
FMILP1∗ ∩FMILP2∗ 72.7 80* 75.5
FMILP1∗ ∩FInf-FSs 80 60 50
FMILP2∗ ∩FInf-FSs 100 50 40
FMILP1∗s ∩FMILP1 72.8 76.5 66.5
FMILP2∗s ∩FMILP2 92.2* 68.2 74.6
FMILP1∗s ∩FMILP2∗s 72.7 80* 77.1*
FMILP1∗s ∩FInf-FSs 70 50 45
FMILP2∗s ∩FInf-FSs 70 40 42

We also report features’ overlap between all methods in Table 6 for the COLONCANCER dataset. As
we see, the proposed Approaches 1 and 3 have high overlap with the original MILP models. Furthermore,
in cases of B = 20 and 30 one can see that features overlap between MILP models and Inf-FSs is the
worst, that might be due to the fact that they belong to different features selection methods (embedded
and filter methods). Moreover, as expected MILP models have more features in common with Approach
1 than with Approach 3.

Table 7: Time and accuracy comparison for LYMPHOMA dataset.

Model B = 10 B = 20 B = 30

MILP1
Accuracy 93.3 91.5 91.7

Time 51 10000 60

MILP1∗
Accuracy 93.3 93.3* 95.8*

Time 26* 66.8 25.8

MILP2
Accuracy 94.5* 91.8 89.5

Time 70 10000 18.3*

MILP2∗
Accuracy 93.8 92.5 90

Time 20.8 37.3 7.2

Inf-FSs
Accuracy 95.8 100 98.5

Time 40.3 45* 45

MILP1∗s
Accuracy 93.5 92 95.5

Time 62.2 74 63.1

MILP2∗s
Accuracy 92.5 91.8 90.5

Time 61.4 70.2 62

The results for the LYMPHOMA dataset are reported in Tables 7 and 8. The reduction in execu-
tion time in the Approach 1 compared to the original MILP models is evident for all budget scenarios.
Approach 3 for the case of B = 10 reduces the running time of MILP2. In case of B = 20, Approach
3 reduces the running times of MILP models. From the accuracy point of view, Inf-FSs has the best
accuracy for all budget scenarios.

According to the features’ overlap between all methods in Table 8 for the LYMPHOMA dataset, one
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Table 8: Features overlap percentage on LYMPHOMA dataset.

B 10 20 30
FMILP1∩FMILP1∗ 89.5 78.8 61.8
FMILP2∩FMILP2∗ 94.7 91.1 81
FMILP1∗ ∩FMILP2∗ 84.2 84.6 63.1
FMILP1∗ ∩FInf-FSs 50 50 56.6
FMILP2∗ ∩FInf-FSs 40 50 46.6
FMILP1∗s ∩FMILP1 84.2 73.6 56
FMILP2∗s ∩FMILP2 89.1 86.6 76.6
FMILP1∗s ∩FMILP2∗s 94.4* 86.8* 71.2*
FMILP1∗s ∩FInf-FSs 70 50 70
FMILP2∗s ∩FInf-FSs 60 50 63.3

can see that the proposed approaches have high overlap with the original MILP models.

Table 9: Time and accuracy comparison for LEUKEMIA dataset.

Model B = 10 B = 20 B = 30

MILP1
Accuracy 96.9 94.6 97.3

Time 6820 252 119

MILP1∗
Accuracy 95.2 98.5* 96.8

Time 40 25.8 23.8

MILP2
Accuracy 97.6 97.3 97

Time 10000 10000 2312

MILP2∗
Accuracy 96.1 98.8 97

Time 49.1* 1973 38.1*

Inf-FSs
Accuracy 97.3* 98.8 100

Time 137 150* 150.5

MILP1∗s
Accuracy 96.3 97.2 97.8*

Time 197.5 193.8 190.2

MILP2∗s
Accuracy 97.1 98.8 94.4

Time 200.5 356 198

The results for LEUKEMIA dataset are summarized in Tables 9 and 10. The reduction in execution
times in the Approaches 1 and 3 compared to the original MILP models is evident. According to the
Table 9, the best running times for all budget scenarios correspond to the MILP1* model. From the
accuracy point of view, MILP2 has the best accuracy for the case B = 10, while in the case of B = 20
three approaches jointly have the best accuracy. As can be seen for the case of B = 30, Inf-FSs has the
best accuracy.

Features overlap between all methods in Table 10 for the LEUKEMIA dataset show that the proposed
Approaches 1 and 3 have high overlap with the original MILP models in most cases.

The results for PROSTATE dataset are reported in Tables 11 and 12. Except the case B = 10, for the
other two budgets Inf-FSs has the worst accuracy. The best accuracy for the first two budget scenarios
correspond to MILP1* and for the case B = 30 belongs to MILP1. Also, one can observe that the
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Table 10: Features overlap percentage on LEUKEMIA dataset.

B 10 20 30
FMILP1∩FMILP1∗ 88.5 55 45
FMILP2∩FMILP2∗ 87.5 86.4* 96*
FMILP1∗ ∩FMILP2∗ 88.5 58.5 53
FMILP1∗ ∩FInf-FSs 90* 60 66.6
FMILP2∗ ∩FInf-FSs 100 60 66.6
FMILP1∗s ∩FMILP1 76.4 46 39.6
FMILP2∗s ∩FMILP2 76.6 73.3 85.2
FMILP1∗s ∩FMILP2∗s 87 95.5 99
FMILP1∗s ∩FInf-FSs 70 70 56.7
FMILP2∗s ∩FInf-FSs 80 70 63.3

Table 11: Time and accuracy comparison for PROSTATE dataset.

Model B = 10 B = 20 B = 30

MILP1
Accuracy 90.6 91.2 94.1

Time 197.2 351.6 10000

MILP1∗
Accuracy 91.2 92.5 93.4*

Time 102 118.5 767.5

MILP2
Accuracy 90.7* 91.2 93.1

Time 137.4 184.7 10000

MILP2∗
Accuracy 90.7* 91.2 93.1

Time 30.3 34 593

Inf-FSs
Accuracy 90.3 86 87.2

Time 84* 85* 84.2

MILP1∗s
Accuracy 90.3 92.3* 93.4*

Time 113.2 120.6 136.2*

MILP2∗s
Accuracy 90.2 91.2 93.2

Time 112.6 125.8 139.1

proposed Approaches 1 and 3 perform faster compared to the original MILP models. The Inf-FSs is the
fastest for B = 30 in Table 11. According to the Table 11, the best running times for the first two budget
parameters correspond to MILP2*.

Finally, as before for the PROSTATE dataset one can see that the proposed Approaches 1 and 3 have
again high overlap with the original MILP models.

4.3 Random features costs

In the second scenario, the cost of selecting each feature is randomly determined between 1 and 10. To
evaluate the models’ performance under different budget conditions, the values of 10, 20, 30, and 50 are
considered for the budget parameter (B). Computational results are summarized in Tables 13-20.

The results for COLONCANCER dataset are presented in Table 13. As can be seen, the reduction
in execution times in the Approaches 1 and 3 compared to the original MILP models is evident for all
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Table 12: Features overlap percentage on PROSTATE dataset.

B 10 20 30
FMILP1∩FMILP1∗ 93.3 84.6 82.1
FMILP2∩FMILP2∗ 100 97.4 94.9
FMILP1∗ ∩FMILP2∗ 93.3* 86.8 82.1
FMILP1∗ ∩FInf-FSs 60 50 43.3
FMILP2∗ ∩FInf-FSs 60 50 50
FMILP1∗s ∩FMILP1 91.2 82.6 78.3
FMILP2∗s ∩FMILP2 97.8* 93.2* 87.4*
FMILP1∗s ∩FMILP2∗s 100 88.2 84.6
FMILP1∗s ∩FInf-FSs 70 65 40
FMILP2∗s ∩FInf-FSs 70 65 40

Table 13: Time and accuracy comparison for COLONCANCER dataset.

Model B = 10 B = 20 B = 30 B = 50

MILP1
Accuracy 84.1 87.1 88.3* 86.6

Time 17.1 19.5 239 10000

MILP1∗
Accuracy 84 86.7 87.7 86.9

Time 9.5 11.8 109 6580

MILP2
Accuracy 84 87 88.4 87.6

Time 24.5 28.4 252 10000

MILP2∗
Accuracy 84.3* 87 88.4 87.7

Time 15.2 16.1 94 7610

K-Inf-FSs
Accuracy 87.8 87 86.1 90.4

Time 12.5* 13.1* 13.2 13.7

MILP1∗s
Accuracy 83.5 87.8* 88.2 88.7

Time 12.8 13.6 15.1* 49.4*

MILP2∗s
Accuracy 83.8 88.6 88.2 89.2*

Time 12.5* 13.4 15.3 55.3

budget scenarios. For B = 10 and 20, MILP1* is the fastest in terms of execution time. For B = 30 and
50, K-Inf-FSs has the best execution time. From the accuracy point of view, for B = 10,50, K-Inf-FSs

is the best, for B = 20 MILP2∗s is the best and for B = 30 MILP2 and MILP2∗ are jointly the bests. In
general, for the budget parameter B = 10, the accuracies of the models all less than the other budget
parameters.

From Table 14 for the COLONCANCER dataset, one can observe that the proposed Approaches 1
and 3 exhibit a high overlap with the original MILP models, similar to the case with fixed features costs.
Also, it can be noted that features’ overlap between between different methods (embedded and filter
methods) is smaller compared to the case where two method belong to one class.

The results for LYMPHOMA dataset are presented in Tables 15 and 16. One can observe that the
Approach 1 for all budget parameters performs faster than original MILP models. In addition, Approach
2 for budget cases B = 30 and 50 performs faster than original MILP models, while for the budget
parameters B = 10 and 20 it doesnt. According to Table 15, the best running times, except for the budget
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Table 14: Features overlap percentage on COLONCANCER dataset.

B 10 20 30 50
FMILP1∩FMILP1∗ 88.8 87.1 86 82.6
FMILP2∩FMILP2∗ 97.7 100 98.4 92
FMILP1∗ ∩FMILP2∗ 87.5 86.7 83.7 78.9

FMILP1∗ ∩FK-Inf-FSs 63.6 61.5 48.2 61.9
FMILP2∗ ∩FK-Inf-FSs 63.6 61.5 48.2 47.6
FMILP1∗s ∩FMILP1 79.8 79.6 78.6 74
FMILP2∗s ∩FMILP2 89.2 94.5 93.2* 85.5
FMILP1∗s ∩FMILP2∗s 92.2* 92.1* 89 88*
FMILP1∗s ∩FInf-FSs 70 77.8 72.8 70.5
FMILP2∗s ∩FInf-FSs 67.5 77.8 71.8 63.5

Table 15: Time and accuracy comparison for LYMPHOMA dataset.

Model B = 10 B = 20 B = 30 B = 50

MILP1
Accuracy 91.5* 91 94 93.4

Time 23.5 31.4 88.2 10000

MILP1∗
Accuracy 90.5 90.3 92 93.5

Time 15* 19.8* 22.4* 221.5

MILP2
Accuracy 91.2 91.1 93.6 93.5

Time 24.5 37.1 106 10000

MILP2∗
Accuracy 90.7 92* 94.4* 93.5

Time 12.8 15.4 21.3 206

K-Inf-FSs
Accuracy 97.5 95.6 96.2 99.2

Time 44 44.5 45.2 45.6

MILP1∗s
Accuracy 90.5 90.6 93.2 94.5

Time 62.2 63 63.9 70.2*

MILP2∗s
Accuracy 90 91 94 95.4*

Time 61.7 62.4 62.3 76.6

parameter B = 50, correspond to MILP2∗ and for the case B = 50, K-Inf-FSs has the best running time.
Also, the second best running times for all parameter budgets (except B = 50 ) belong to MILP1∗. In
terms of accuracy, K-Inf-FSs exhibits the highest accuracy for budget parameters B = 10, 20 and 30.

As before, in Table 16 one can see that the proposed Approaches 1 and 3 have high features’ overlap
with the original MILP models for the LYMPHOMA dataset.

The results for LEUKEMIA dataset are summarized in Tables 17 and 18. From Table 17, one can
observe that for the budget parameters B = 20 and 30, Approaches 1 and 3 perform faster compared to
the original MILP models. For the case B= 10, Approach 1 performs faster than the original models. For
the case B = 50, Approach 1 performs faster compared to the two original MILP models and Approach
3 exhibits a better running time only compared to the MILP2 model. According to this table, the best
running times for the budget parameters B =10, 30 and 50 correspond to MILP1∗, while MILP2∗ has
the shortest running time for B = 20. In terms of accuracy, K-Inf-FSs and MILP2∗s for budget parameter
B =10 and 20 have the best accuracies, respectively. For the cases B =30 and 50 MILP2* has the best



Feature selection via MIP and Inf-FSs 353

Table 16: Features overlap percentage on LYMPHOMA dataset.

B 10 20 30 50
FMILP1∩FMILP1∗ 92* 86.7 86 80.5
FMILP2∩FMILP2∗ 90.7 97.6 95.9 88.7
FMILP1∗ ∩FMILP2∗ 90 88 87.8 81.1

FMILP1∗ ∩FK-Inf-FSs 62.5 63.5 64.6 66.6
FMILP2∗ ∩FK-Inf-FSs 64.6 66.7 64.6 63.2
FMILP1∗s ∩FMILP1 86 91.6* 79.2 73.6
FMILP1∗s ∩FMILP1 87.2 79.4 88.6 79.5
FMILP1∗s ∩FMILP2∗s 100 88.7 93.7* 82.6*
FMILP1∗s ∩FInf-FSs 69.2 76.1 74.3 68.8
FMILP2∗s ∩FInf-FSs 69.2 80.4 78.6 63.2

Table 17: Time and accuracy comparison for LEUKEMIA dataset.

Model B = 10 B = 20 B = 30 B = 50

MILP1
Accuracy 91.1 92.6 93.6 92.6

Time 97.6 10000 261 169.2*

MILP1∗
Accuracy 90.6 93.3 97.4* 95.1

Time 48.8 199 88.6 44

MILP2
Accuracy 90.9 91.6 97.1 95.3

Time 163 10000 10000 10000

MILP2∗
Accuracy 91.8 92.7 97.6 97.2

Time 81.8* 142 10000 10000

K-Inf-FSs
Accuracy 95.8 94.2 96.6 96.6*

Time 195.3 188.9* 197.2* 196

MILP1∗s
Accuracy 90.5 94.8* 96.8 93.2

Time 192.3 216.2 200.6 205.9

MILP2∗s
Accuracy 92.4* 96.5 97 95

Time 192.6 222.6 1141 3527

accuracies.

According to the Table 18 for the LEUKEMIA dataset, one can see that the proposed Approaches 1
and 3 have high overlap with the original MILP models in most cases.

For the PROSTATE dataset the results are summarized in Tables 19 and 20. One can see that the
proposed Approaches 1 and 3 perform faster than the original MILP models for the budget parameters
B =30 and 50. For the first two budget parameters B = 10 and 20, Approach 1 performs faster. It can
also be seen from Table 19 that MILP2* has the best running time for all budget parameters. From
the accuracy point of view, one can see that K-Inf-FSs has the best accuracy for the cases B =10 and 20,
while for the budget parameters B=30 and 50 MILP1 and MILP2* have the best accuracies, respectively.

Finally, similar to the previous datasets, one can see that the proposed Approaches 1 and 3 have high
features’ overlap with the original MILP models as reported in Table 20 for the PROSTATE dataset.
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Table 18: Features overlap percentage on LEUKEMIA dataset.

B 10 20 30 50
FMILP1∩FMILP1∗ 93.8* 79.9* 68.5 47.1
FMILP2∩FMILP2∗ 100 91.3 77.5 73.6
FMILP1∗ ∩FMILP2∗ 87.5 75.4 52.6 32.1

FMILP1∗ ∩FK-Inf-FSs 66.7 67.1 52.2 55.9
FMILP2∗ ∩FK-Inf-FSs 66.7 65.7 69.4 50
FMILP1∗s ∩FMILP1 83.4 70.2 59.2 36.8
FMILP2∗s ∩FMILP2 88.2 82.6 65.7 63.2
FMILP1∗s ∩FMILP2∗s 85.9 75.4 73.5* 66.2
FMILP1∗s ∩FInf-FSs 72.7 67.1 67.5 82.3
FMILP2∗s ∩FInf-FSs 72.7 65.7 63.9 78.2*

Table 19: Time and accuracy comparison for PROSTATE dataset.

Model B = 10 B = 20 B = 30 B = 50

MILP1
Accuracy 85.7 85.6 89.9 92.6

Time 104 134.5 204.8 431.8

MILP1∗
Accuracy 85.6 86.8* 88.7 92.8*

Time 69 74.5 97.1 121.6

MILP2
Accuracy 86* 85.8 89.4 92.6

Time 44* 61.8* 126.3 417.6

MILP2∗
Accuracy 85.9 86.2 89.6* 92.9

Time 21 22.3 24.9 46.2

K-Inf-FSs
Accuracy 90.6 87.7 86.2 87.5

Time 93.7 85.5 95* 120.2*

MILP1∗s
Accuracy 84.1 85.8 88.7 91.5

Time 122.7 123.9 115.6 124.9

MILP2∗s
Accuracy 84.2 85.3 89 92.3

Time 111.1 111.9 113.4 122.5

5 Conclusions and future works

In this paper, first two MILP models for cost-effective feature selection and Inf-FSs model for feature
ranking are reviewed. Then three hybrid approaches are proposed for cost effective feature selection. In
the first approach, the relaxed linear version of the MILP model is solved first. Then, the MILP model for
nonzero features weights (|w j|> 10−6) is solved, namely an MILP with less 0-1 variables. Then Inf-FSs

is combined with a knapsack problem to choose cost effective feature. In the third approach, first Inf-FSs

method is applied to rank the features. Then the first approach is applied to the original MILP models,
restricted to the top 20% of features ranked by Inf-FSs method. The most important characteristic of
the proposed approaches is that they are faster in terms of running time compared to the original MILP
models, while they share most of the selected features.

As a continuation of this research, the following suggestions can be considered as potential future
research directions:
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Table 20: Features overlap percentage on PROSTATE dataset.

B 10 20 30 50
FMILP1∩FMILP1∗ 93.2* 93.3* 88.4 84.3*
FMILP2∩FMILP2∗ 93.8 97.1 89.5* 84.1
FMILP1∗ ∩FMILP2∗ 91.5 89.2 87 82.6

FMILP1∗ ∩FK-Inf-FSs 33.3 63.5 60.5 56.1
FMILP2∗ ∩FK-Inf-FSs 33.3 63.5 58 56.8
FMILP1∗s ∩FMILP1 92.4 91.2 83.6 79.2
FMILP2∗s ∩FMILP2 90.2 94.6* 84.4 78.2
FMILP1∗s ∩FMILP2∗s 89.8 84 90.8 85.8
FMILP1∗s ∩FInf-FSs 61.9 75.9 77.3 60.8
FMILP2∗s ∩FInf-FSs 61.9 75.9 78.8 62.7

• Incorporating budget constraints into the structure of the Inf-FSs method.

• Investigating and evaluating the robustness of the proposed approaches against data uncertainty.

• Exploring and testing the proposed approaches for nonlinear separation problems.

• Combining the proposed approaches with the clustering Inf-FSs method proposed in [10].
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