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Abstract. This article explores the integration of control theory techniques into production and inventory
management systems within distribution networks. We examine a distribution network model where each
node encompasses production and inventory segments, aiming to enhance overall benefit by adjusting
key decision variables like production rate and total release. The proposed model formulates an optimal
control problem which emphasizes the nonlinear nature of shortage costs and their impact on decision-
making, especially concerning high-cost escalations due to shortages. The study proposes numerical
solutions using the Legendre pseudospectral method, demonstrating its effectiveness in solving complex
optimal control problems with multiple variables.
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1 Introduction

Traditionally control theory has been developed and applied in fields such as aerospace, robotics, and
process control. These areas often involve complex systems with well-defined dynamics and control
objectives. While the control theory has traditionally found its application in other fields, the importance
of efficient production and inventory control systems has sparked interest in exploring its potential in
this domain. Although, there are challenges to overcome, ongoing research and development efforts
aim to enhance the applicability of the control theory techniques to production and inventory control,
leading to improved operational performance and competitive advantages for industries. By bridging the
gap between the control theory and the production-inventory control, industries stand to gain significant
advantages. In the meantime, the optimal control strategy, which is one of the branches of the control
theory, can help minimize costs, improve production efficiency, optimize inventory levels, and enhance
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customer service. With this motivation, many researchers started their research in this field. For instance,
we can refer to the some of them.

Simon [20] made the initial effort to employ the control theory in addressing production-inventory
challenges involved regulating the production rate of a single item using principles from servomechanism
theory. According to Axsater [2], there was significant enthusiasm for utilizing the control theory in the
production-inventory scenarios during the 1960s, but this interest waned by the 1980s. The 1994 publica-
tion by Wikner [22], titled “dynamic modelling and analysis of information flows in production-inventory
and supply chain systems”, thoroughly explores the utilization of dynamic modeling and analytical tech-
niques to optimize the flow of information in manufacturing, inventory, and supply chain setups. The
author underscores the inclusion of crucial components such as prediction methodologies, lead times,
and inventory renewal tactics when constructing models for industrial systems. Through comprehensive
dialogues, the text deeply examines diverse predictive approaches like moving averages and primary ex-
ponential smoothing, showcasing their conversion using Laplace and Z transforms. To explore research
conducted prior to 2004, refer to the work by Ortega and Lin [18]. In a more recent investigation, Chazal
et al. [5] examined the optimization of production planning and inventories using a backward approach,
focusing on scenarios with convex storage costs. Another recent study by Gayon et al. [11] delved into
the optimal control of a production- inventory system featuring two disposal choices and product return
considerations. The dynamics of inventory in the context of sustained sales were explored by Maccini
et al. [16]. Addressing the complexities of base-stock inventory systems with state-dependent demand
rates, Olsson [17] introduced various modeling techniques. Dolgui et al. [6] with emphasis on exploring
the deterministic maximum principle, presented a comprehensive overview of how the optimal control is
used in scheduling for production, supply chain, and industry 4.0 systems. It is noted that, the industry
4.0, a widely recognized concept, refers to the ongoing transformation of manufacturing and produc-
tion through the integration of advanced digital technologies. It involves automation, data exchange,
artificial intelligence, the internet of things and smart systems to create highly efficient, interconnected,
and intelligent industrial processes. This shift aims to enhance productivity, flexibility, and real-time
decision-making in modern industries. In the paper published recently, Ignaciuk [13] investigated how
the utilization of the linear-quadratic optimal control can be applied to manage the goods distribution
process in logistic systems that involve multiple transportation alternatives.

In this paper, a distribution network is examined where each node comprises both production and
inventory segments. It is noted that, in a supply chain, a distribution network consists of a connected sys-
tem of manufacturers, storage facilities, and transportation services that handle incoming inventories and
deliver them to customers. It serves as a crucial link between the manufacturer and the final consumer,
either through direct delivery or via a retail network. For the first time, we address the challenge of si-
multaneously optimizing production and release policies in a distribution network that involves multiple
production and inventory centers, continuously deteriorating items over time, and back ordering. The
model is designed in such a way that can be applicable to any distribution network which experiences
continuous demand with predictable seasonal patterns, characterized by low forecasting error. It can be
effectively utilized in scenarios where demand fluctuations follow regular, seasonal trends. This makes it
suitable for businesses that rely on reliable demand forecasting to optimize inventory levels, transporta-
tion, and overall supply chain operations. Utilizing optimal control theory, we aim to enhance the overall
benefit function by adjusting key decision variables, specifically the production rate and total release.
The subsequent section outlines the assumptions, notations, and mathematical framework used in our
analysis. Section 3 delves into some details about optimal control theory. Sections 4 and 5 are dedicated
to presenting numerical investigations, while our findings and a concise summary are summarized in
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Section 6.

2 Model Description

We are investigating a network composed of nodes, each consisting of production and inventory divi-
sions. All of the production units within this network manufacture the same product. In addition to the
costs associated with holding inventory, the inventory itself deteriorates as time passes. Demand function
during the planning horizon is known and deterministic. While shortage is permitted, the cost of short-
ages is exceptionally high and escalates. This phenomenon is primarily attributed to the nature of the
product. For instance, let’s consider the production of petrol nationwide. The decision-maker faces the
challenge of determining the optimal production rate for each facility, as well as the overall total release.
These decisions are critical for ensuring efficient operations and minimizing costs. The decision-maker
must carefully consider several factors, including the production capacity of each facility, the current
inventory levels, the rate of deterioration, and the increasing cost associated with shortages. This paper
shows, how to achieve the desired goal in such networks with the help of utilizing the optimal control
strategy.

It is noted that, in our model, there are some variables which are called the state variables and
are shown by Ii(t), i = 1, . . . ,M, and there are some variables which are called the control variables
and are shown by Ri(t) and pi(t), i = 1, . . . ,M, and have the following concepts. The state variables
Ii(t), i = 1, . . . ,M, are inventory level in the store i at time t and the control variables Ri(t) and pi(t),
i = 1, . . . ,M, are total release and production rates in the facility i at time t, respectively. In addition, all
parameters and functions appearing in the model are summarized in Table 1. So, the explained networked
production planning model can be formulated as

Table 1: Parameters and functions used in the proposed model.

Notation Meaning
T Planning time horizon
hi Holding cost per unit time in the store i
αi Rate of disposal in the store i
r Unit sale price
s Per unit shortage cost
β Degree of nonlinearity of shortage cost function
vi Initial value for Ii(t)

pmax
i The maximum rate of production in the facility i
ϕi Functions of production rates in the facility i at time t

d(t) Demand rate at time t
S(t) Sale rate at time t
H(t) Shortage rate at time t

Maximize:

J =
∫ T

0

{
rS(t)− sH(t)β −∑

i

(
ϕi(pi(t))+hiIi(t)

)}
dt, (1)
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such that:

dIi(t)
dt

= pi(t)−Ri(t)−αiIi(t), (2)

Ii(0) = vi, (3)

Ii(t)≥ 0, (4)

Ri(t)≥ 0, (5)

∑
i

Ri(t)≤ d(t), (6)

0≤ pi(t)≤ pmax
i , (7)

where, S(t) = ∑i Ri(t), H(t) = d(t)−∑i Ri(t), the parameters hi, r and s are non-negative, 0 ≤ αi ≤
1, β ≥ 1, vi ∈ R, pmax

i > 0 and i = 1, . . . ,M. It is noted that the objective functional of the problem
presents benefit function which accumulates total sale and release benefits minus production, holding
and shortages costs. Furthermore, the cost of shortages is non-linear, exhibiting exceptionally high
escalation as shortage increases. The dynamical equations can be expressed as follows: as production
adds to on-hand inventory, release and depreciation reduce it.

3 Optimal control: some preliminary concepts

The goal of the optimal control is to find controls that induce a system to encounter certain physical
constraints while also maximizing (minimizing) a performance measure. Optimal control has been the
focus of much interest for several decades. Solving an optimal control problem requires meeting some
initial and boundary conditions imposed by the differential equations. Analytical solution of optimal
control problems is not possible except in a few cases where the objective functional is simple enough
and the dynamical equations are linear. Here, the optimal control problems are most often solved numer-
ically. Consequently, significant advancements have been achieved in advancing both direct and indirect
numerical techniques [3, 19].

The direct methods, known for their reliance on discretization and nonlinear programming, have
been widely utilized in various optimal control problems due to their effectiveness and ease of use. Their
advantage over indirect approaches, which is based on solving the necessary conditions of optimality
derived from the Pontryagin’s minimum principle, lies in their broader range of convergence towards
an optimal solution [9]. Additionally, direct methods can be used to solve a range of optimal control
problems without the need to derive the necessary conditions of optimality. The next section aims to
propose a direct-based method for efficient solution of the explained networked production planning
model (1)-(7).

4 Numerical solution of the explained networked production planning
model

Let’s go back to the target problem (1)-(7) which is actually an optimal control problem with the state
variables Ii(t) and control variables Ri(t) and pi(t) for i = 1, . . . ,M. So, the explained networked pro-
duction planning model has M state variables and 2M control variables. In this section, a Legendre
pseudospectral method [1, 7, 8, 12, 14, 15, 21] is presented for solving this problem. It should be noted
that, the method presented in this paper includes two steps. First, the global polynomial approximations
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for the state and control variables in terms of their values at the well-known Legendre-Gauss-Lobatto
(LGL) points are considered. Then in the second step, with replacement these approximations in the
target optimal control problem and utilizing the collocation process at the LGL points, the problem at
hand is transformed into a discrete nonlinear programming problem (NLP) that can be tackled with the
established algorithms.

To better explain the method, let us consider some symbols. Since in the model, there are M state
variables and 2M control variables, therefore, the following symbols are used to show the state and
control variables.

I(t) = [I1(t), . . . , IM(t)]T ∈ RM,

u(t) = [R1(t), . . . ,RM(t), p1(t), . . . , pM(t)]T ∈ R2M.

Consequently, the dynamical system of the model governed by some differential equations with fixed
initial values, can be represented as follows:

İ(t) = f(I(t),u(t), t), I(0) = v0, (8)

where, f :RM×R2M×R→RM is assumed to be a function of the variables (I,u, t). Finally, the objective
functional of the model can be expressed by

Minimize Γ =−
∫ T

0

{
rS(t)− sH(t)β −∑

i

(
ϕi(pi(t))+hiIi(t)

)}
dt

=
∫ T

0
g(I(t),u(t), t)dt,

(9)

where, g : RM×R2M×R→ R, i = 1, . . . ,M and the state and control constraints are given as following
constraints

I(t)≥ 0, (10)

u1(t)≥ 0, (11)
...

uM(t)≥ 0, (12)
M

∑
i=1

ui(t)≤ d(t), (13)

0≤ uM+1(t)≤ pmax
M+1, (14)

...

0≤ u2M(t)≤ pmax
2M . (15)

Here we point out that in the standard case, the objective functional in an optimal control problem is
considered in the form of minimization. Obviously, according to this convention, the objective functional
(1) should be multiplied by a negative sign, so that, it can be assumed as a minimization form (9).

Now, let

θ̂ j =
1
2

T (θ j +1), j = 1, . . . ,N +1,



332 M. Saffari, M.A. Mehrpouya

be the associated LGL points to the interval [0,T ], for (N + 1) LGL points {θ j}N+1
j=1 , where θ1 = −1

and θN+1 = +1. It is important to mention that, the LGL points {θ j}N+1
j=1 are the N + 1 roots of (1−

t2)(d/dt)PN(t), where the famous Legendre polynomials PN can be found using the given recurrence
relations [4]

P0(t) = 1, P1(t) = t,

PN+1(t) =
2N +1
N +1

tPN(t)−
N

N +1
PN−1(t), N = 1,2, . . .

In addition, the LGL quadrature method relies on the LGL points {θ j}N+1
j=1 can be applied to estimate the

integral of a function over the range [0,T ] in the following manner:

∫ T

0
F(t)dt ≈ T

2

N+1

∑
j=1

ω jF(T (θ j +1)/2) =
T
2

N+1

∑
j=1

ω jF(θ̂ j), (16)

where,

ω j =
2

N(N +1)
1

(PN(θ j))2 , j = 1, . . . ,N +1,

are LG quadrature weights [10]. To apply the Legendre pseudospectral method, suppose that, L̂ j(t), j =
1,2, . . . ,N +1 be the Lagrange polynomials associated with {θ̂ j}N+1

j=1 , in which

L̂ j(t) = L j((2/T )t−1),

and {L j(t)}N+1
j=1 are the Nth-order Lagrange interpolating polynomials, defined by

L j(t) =
N+1

∏
l=1,l 6= j

t−θl

θ j−θl
, j = 1, . . . ,N +1,

with the Kronecker property

L j(θl) = δ jl =

{
0, if j 6= l,
1, if j = l.

(17)

Currently, the state and control functions I(t) and u(t) are estimated by a polynomial up to degree N
utilizing the Lagrange polynomials as

I(t)≈
N+1

∑
j=1

I(θ̂ j)L̂ j(t), (18)

u(t)≈
N+1

∑
j=1

u(θ̂ j)L̂ j(t), (19)

in which, I(θ̂ j) and u(θ̂ j) are unknown parameters. Differentiating the expression in Eq. (18), we have

İ(t)≈
N+1

∑
j=1

I(θ̂ j)
˙̂L j(t). (20)
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Consequently, by substituting the Eqs. (18), (19) and (20) into the dynamical system of the model, i.e.
Eq. (8), next collocating in {θ̂ j}N+1

j=1 , we obtain

N+1

∑
j=1

I(θ̂ j)
˙̂L j(θ̂ j) ≈ f(

N+1

∑
j=1

I(θ̂ j)L̂ j(θ̂ j),
N+1

∑
j=1

u(θ̂ j)L̂ j(θ̂ j), θ̂ j).

Now, by using the kronecker property (17), we have

2
T

N+1

∑
j=1

I(θ̂ j)d jl ≈ f(I(θ̂l),u(θ̂l), θ̂l), l = 1, . . . ,N +1,

I(θ̂1)−v0 ≈ 0,

where

d jl = L̇ j(θl),

represents the element at position ( j, l) in the square matrix D, which is known as the Legendre pseu-
dospectral differentiation matrix [10]. Subsequently, the constraints related to the path in Eqs. (10)-(15)
are enforced at the (N +1) collocation points for l = 1, . . . ,N +1 as follows:

I(θ̂l)≥ 0,
u1(θ̂l)≥ 0,

...

uM(θ̂l)≥ 0,
M

∑
i=1

ui(θ̂l)≤ d(θ̂l),

0≤ uM+1(θ̂l)≤ pmax
M+1,

...

0≤ u2M(θ̂l)≤ pmax
2M ,

and u1(θ̂ j) ≥ 0,. . .,uM(θ̂ j) ≥ 0, 0 ≤ uM+1(θ̂ j) ≤ pmax
M+1,. . ., 0 ≤ u2M(θ̂ j) ≤ pmax

2M . Finally, using the LGL
quadrature rule (16), the objective functional (9) is approximated by

Γ≈ T
2

N+1

∑
j=1

ω jg(I(θ̂ j),u(θ̂ j), θ̂ j).

So, the target optimal control problem is transformed into the following NLP

Minimize:

Γ =
T
2

N+1

∑
j=1

ω jg(I(θ̂ j),u(θ̂ j), θ̂ j), (21)
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such that:

2
T

N+1

∑
j=1

I(θ̂ j)d jl = f(I(θ̂l),u(θ̂l), θ̂l), (22)

I(θ̂1)−v0 = 0, (23)

I(θ̂l)≥ 0, (24)

u1(θ̂l)≥ 0, (25)
...

uM(θ̂l)≥ 0, (26)
M

∑
i=1

ui(θ̂l)≤ d(θ̂l), (27)

0≤ uM+1(θ̂l)≤ pmax
M+1, (28)

...

0≤ u2M(θ̂l)≤ pmax
2M , (29)

where, l = 1, . . . ,N +1 and I(θ̂l) and u(θ̂l) are decision parameters.

5 Numerical illustrations

The optimal states and controls will be determined by the Legendre pseudospectral method in this sec-
tion. We present optimal solutions for one set of fixed parameters and functions appearing in the model.
The NLP in Eqs. (21)-(29) is solved using the MATLAB function fmincon with the sqp numerical algo-
rithm specified as the solver. In this solver, we can set termination tolerances for the objective function
value, TolFun, constraint violation, TolCon, and decision variables, TolX, to be less than 10−12. In ad-
dition, all calculations are carried out on a 2.53 GHz Core i5 laptop with 4 GB of RAM using MATLAB

R2016a.

5.1 Test example

In our numerical example, we specifically analyze a national network of seven facilities, i.e., i = 1, . . . ,7,
each with its own inventory stock and production constraints. The model is parameterized based on
realistic assumptions for production capacities, inventory holding and deterioration rates, and shortage
penalties to closely simulate real-world conditions. Key fixed parameters and functions that define the
system dynamics, demand profiles, and cost structure are outlined in Table 2, ensuring clarity and re-
producibility of the model setup. Now, the problem is solved by using the presented method. The
approximated solutions for the states and controls for N = 25 discretization points are shown in Figs.
1-3. Additionally, to demonstrate the convergence and accuracy of the presented method, the values of
the objective functional, as well as the initial values of R1(0), R7(0), p1(0), p7(0) and final values of
I1(1) and I7(1) for different numbers of discretization points are reported in Table 3.

As can be seen from the results, we find that the presented method has a good performance. More-
over, the graphs of optimal control policy illustrate that a limited shortage is permitted when demand is
at its peak to avoid excessive production expenses surpassing the usual production capacity or storage
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Table 2: All values of parameters and functions used in the proposed model in Test example.

Notation Formula/value
T 1

r 4

s 2

β 2

[h1,h2,h3,h4,h5,h6,h7] [8,6,6.6,7,8,7.5,9]

[α1,α2,α3,α4,α5,α6,α7] [0.1,0.12,0.14,0.11,0.11,0.1,0.05]

[v1,v2,v3,v4,v5,v6,v7] [0.6,0.5,0.5,0.4,0.2,0.2,0]

[pmax
8 , pmax

9 , pmax
10 , pmax

11 , pmax
12 , pmax

13 , pmax
14 ] [2.5,2.5,2,3,2.5,2.5,1]

ϕ1(p1(t)) 0.7(1.2p3
1(t)−3p2

1(t)+5p1(t))

ϕ2(p2(t)) 0.8(1.2p3
2(t)−3p2

2(t)+5p2(t))

ϕ3(p3(t)) 0.7(1.2p3
3(t)−3p2

3(t)+5p3(t))

ϕ4(p4(t)) 0.8(1.2p3
4(t)−3p2

4(t)+5p4(t))

ϕ5(p5(t)) 0.7(1.2p3
5(t)−3p2

5(t)+5p5(t))

ϕ6(p6(t)) 0.8(1.2p3
6(t)−3p2

6(t)+5p6(t))

ϕ7(p7(t)) 0.9(1.2p3
7(t)−3p2

7(t)+5p7(t))

d(t) 15+7t−6t2

costs. It is important to highlight that, the cost of shortages follows a quadratic function, and even though
higher shortages incur significant costs, the expense associated with smaller shortages is tolerable. It is
both logical and significant that a higher proportion of releases are allocated to the first and seventh fa-
cilities at the start of the period. This strategy aims to expedite the reduction of their inventory levels,
which is particularly important given the relatively higher holding costs associated with these facilities.

6 Conclusion and Discussion

This research delves into the integration of control theory into the optimization of production and inven-
tory management in distribution networks. By examining historical and contemporary studies, the paper
outlines a model emphasizing the adjustment of critical variables to maximize overall benefit. The pro-
posed numerical solution method, utilizing the Legendre pseudospectral method, showcases its efficacy
in resolving intricate optimal control problems involving various factors. Ultimately, this work offers a
promising avenue for enhancing operational efficiency and reducing total costs within industrial systems
through advanced control theory applications.
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Figure 1: Solution of Test example, for N = 25.
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Figure 2: Solution of Test example, for N = 25.
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Figure 3: Solution of Test example, for N = 25.

Table 3: The values of objective functional and some state and control variables for different numbers of dis-
cretization points obtained by the presented method in Test example.

N Γ =−J R1(0) R7(0) p1(0) p7(0) I1(1) I7(1)
15 −15.9272896816 1.1668e−22 1 1.55037837327 1 5.1218e−24 2.6928e−23
20 −15.9297624099 1.6818e−22 1 1.55505960788 1 1.8688e−23 1.7668e−23
25 −15.9322380564 8.25570e−26 1 1.55644443585 1 3.7113e−23 7.3934e−24
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