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Abstract. In this study, a May-Holling-Tanner-type mathematical model of the predator-prey interaction
is analyzed, incorporating an alternative food source for the predator and a weak Allee effect on the prey
population. The model is described using a two-dimensional system of ordinary differential equations.
The existence, uniqueness, and positivity of the solutions were investigated, ensuring that the populations
were maintained at biologically meaningful values. Furthermore, local and global stability conditions
at critical points suitable for ecological equilibrium are explored using tools such as the generalized
Krasovskii theorem. Likewise, the existence of periodic solutions in certain scenarios is based on the
Dulac criterion. Finally, a numerical analysis using Python simulations is performed to corroborate
the theoretical results, highlighting the asymptotic stability of the populations under certain initial and
parameter conditions.
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1 Introduction

A mathematical model is a formal abstraction designed to represent a phenomenon or the interdepen-
dence between two or more variables, articulated through mathematical equations, functions, or for-
mulas. Such models serve as invaluable tools for analyzing complex relationships and are widely em-
ployed to understand phenomena across natural, social, and physical sciences. Depending on the purpose
and structure of the model, they can also be utilized to forecast future values of the system’s variables
with significant precision. In ecological and biological research, one of the most powerful approaches
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for analyzing and predicting system behavior is the formulation and subsequent simulation of math-
ematical models. The current prominence of mathematical modeling in these fields is driven by an
enhanced understanding of biological mechanisms, coupled with significant advancements in compu-
tational technologies and mathematical software. Pioneers like Thomas Malthus (1798) [39], Pierre
Verhulst (1838) [55], Alfred Lotka (1925) [35], Vito Volterra (1926) [57], and Patrick Leslie (1948) [30]
laid the foundational groundwork for mathematical approaches in biological systems, providing critical
insights into population dynamics and ecological interactions. A noteworthy concept in this domain is
the Allee effect, named after Warder Clyde Allee, an American ecologist who extensively studied the
advantages of cooperative behaviors in small populations [2,3]. Stephens et al. [52] formally defined the
Allee effect as a positive correlation between an individual’s fitness and the population density or size.
In other words, an individual’s fitness diminishes as the population size decreases, highlighting the chal-
lenges faced by small populations in maintaining viability. For additional information, refer to [27, 52].
This phenomenon has been described using various terminologies, including “dispensation”,“negative
competition effect”, “inverse density dependence”, “positive density dependence”, “underpopulation,”
and “allelocatalytic.” The term “dispensation” is predominantly employed in fisheries science, while the
“Allee effect” is more widely recognized and utilized in the disciplines of biology and ecology [32].
The Allee effect is typically categorized into two distinct types: the component Allee effect and the
demographic Allee effect. The component Allee effect refers to a positive correlation between any spe-
cific measure of individual fitness—such as reproductive success or survival probability—and population
density. In contrast, the demographic Allee effect encompasses a more generalized positive relationship
between overall individual fitness and population density, reflecting how small populations can face chal-
lenges in achieving growth and long-term sustainability.

The presence of a demographic Allee effect inherently implies the existence of at least one component
Allee effect; however, the reverse is not necessarily true. From an ecological standpoint, the demographic
Allee effect can be further classified into two forms: the strong Allee effect and the weak Allee effect.
The key distinction lies in the population’s per capita growth rate. While populations experiencing a
weak Allee effect may have low densities, they consistently maintain a positive per capita growth rate,
enabling them to recover under favorable conditions. Conversely, populations subject to a strong Allee
effect exhibit a critical density threshold below which the per capita growth rate becomes negative,
significantly increasing their risk of extinction. In summary, populations with a weak Allee effect are
more resilient and less prone to extinction compared to those experiencing a strong Allee effect [15].

The Allee effect manifests in various populations due to a range of biological factors, including
diminished predator vigilance, impaired social thermoregulation, difficulties in finding mates, and sub-
optimal foraging efficiency at low population densities. Additional contributing factors have also been
identified and systematically categorized. For a detailed summary, refer to Table 1 in [11] and Table 2.1
in [15]. The differential equation frequently employed to model this phenomenon is expressed as:

dx
dt

= rx
(

1− x
k

)
(x−m) (1)

In the following, we present notable precedents for the application of the weak Allee effect in ecolog-
ical mathematical models. These examples are not necessarily aligned with the methodological frame-
work employed in this work but illustrate the versatility of the weak Allee effect in various ecological
contexts. In [8], the influence of stochastic noise on the carrying capacity of the prey population is an-
alyzed, focusing on the dynamics of the Truscott-Brindley system, which models interactions between
phytoplankton and zooplankton under a weak Allee effect. In [16,60], a non-autonomous Lotka-Volterra
multispecies competitive system is investigated, incorporating delays and the weak Allee effect. In [37],
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the dynamics of a delay-based food chain system are studied, where a weak Allee effect and a refuge
for intermediate predators are included. Similarly, [62] examines a stochastic predator-prey model with
a Holling-(n+1) functional response, incorporating the weak Allee effect as a central mechanism. The
study in [9] explores an eco-epidemiological model that describes the interactions between susceptible
prey, infected prey, and predators, considering the impacts of both the Allee effect and random distur-
bances. Additionally, [46] develops a mathematical model to analyze an eco-epidemiological system in
which the prey population is affected by a disease, focusing on the combined effects of incubation delays
and the weak Allee effect on predator population dynamics. Lastly, [61] investigates two-dimensional
bifurcations and their control mechanisms in a predator-prey system, emphasizing the role of the weak
Allee effect on prey population dynamics.

In [59], the dynamic behavior of a reaction-diffusion-advection model incorporating weak Allee
effect-type growth is analyzed. This study emphasizes the role of spatial processes in systems exhibiting
Allee dynamics. In [53], the weak Allee effect is integrated into the prey equation of a predator-prey
model, and the conditions under which Hopf bifurcations occur are derived, providing insights into the
oscillatory dynamics of such systems. The study in [58] investigates an invasion model based on a
reaction-diffusion framework that accounts for a complete spectrum of Allee effects, including the weak
Allee effect, offering a comprehensive analysis of spatial invasion dynamics. In [33], a predator-prey
model featuring a non-monotonic functional response and a weak Allee effect on the prey population is
presented. The global dynamics of the system are rigorously analyzed through a combination of qualita-
tive techniques and bifurcation analysis, providing a deep understanding of the system’s behavior under
varying conditions. In [47], a general prey-predator model is proposed where both prey and predator
populations are affected by weak Allee effects and prey diseases. The study provides a thorough exam-
ination of the basic dynamical properties of the full model as well as submodels, with and without the
Allee effect. Furthermore, [26] explores the Leslie-Gower predator-prey model incorporating a weak
Allee effect. The analysis begins by addressing the existence and stability of nonnegative equilibria and
subsequently investigates various bifurcation phenomena in positive equilibria, including saddle-node bi-
furcation, Hopf bifurcation, and Bogdanov-Takens bifurcation, thereby highlighting the rich dynamical
behavior of the system.

Some notable precedents for the application of the weak Allee effect, relevant to this line of research,
are summarized as follows. In [56], a Leslie-Gower predation model is analyzed, where predator con-
sumption is described by a sigmoidal functional response. The prey population is subject to an Allee
effect, and predators are treated as generalists, highlighting the interplay between functional responses
and prey population thresholds. In [19], the impact of cooperative hunting among predators on prey
populations, which are affected by a weak Allee effect, is explored. The study examines how predator
collaboration influences the persistence and stability of prey populations. The work in [63] focuses on
the number and stability of oscillations in a slow-fast predator-prey system incorporating a weak Allee
effect and a Holling-IV functional response, revealing complex dynamics such as relaxation oscillations
and multi-scale behaviors. Additionally, [36] investigates a Beddington-DeAngelis amensalism system,
where one species experiences a weak Allee effect while the other inhibits its growth and survival with-
out being affected itself. This study sheds light on the interplay between antagonistic interactions and
population thresholds. In [18], the role of memory and the weak Allee effect in the coexistence of two
interacting species is examined, with a focus on the system’s stability properties and ecological implica-
tions. The study in [31] addresses the effects of sterile insect technique (SIT) on mosquito populations
by developing a mathematical model involving the constant release of sterile Aedes aegypti mosquitoes.
Both strong and weak Allee effects are incorporated, along with interspecific competition with Anopheles



Analysis of a May-Holling-Tanner rate-dependent predator-prey model 305

mosquitoes, to evaluate the effectiveness of SIT in population control. Finally, [34] presents a Leslie-
Gower model that incorporates the weak Allee effect on prey and the fear effect on predators. This model
is analyzed under two scenarios: with and without the fear effect, providing insights into how predator
behavioral responses influence population dynamics.

In [49], a rate-dependent predator-prey model incorporating prey disease is developed, where survival
thresholds for susceptible prey under both strong and weak Allee effects are considered. Predator-prey
models are typically classified based on the nature of their functional response, which can be dependent
solely on the prey population size or a mixed functional response, dependent on both prey and predator
population sizes. Functional responses such as Holling types I, II, III, and IV are categorized in the first
group [40,54], as these models describe how the predator’s rate of capture, consumption, and conversion
of prey into new predator offspring depends on the availability of prey in the environment shared by both
species.

However, these traditional predator-prey models have faced criticism from several ecologists and
biologists—such as Arditi, Akcakaya, Gutierrez, and Cosner [1, 4, 5, 7, 20]—due to their limited ability
to accurately capture predator-prey interactions. Such criticisms are supported by substantial biological
evidence, as discussed in [4, 21]. In response, Arditi and Ginzburg [4] introduced a mixed functional
response, termed rate-dependent, which aims to modify non-mixed functional responses into mixed ones,
transforming the response function from h(x) to h( x

y), where x represents the prey population and y
represents the predator population. Furthermore, the rate-dependent functional response is not the only
mixed response model; others include the Beddington-DeAngelis, Crowley-Martin, and Hassel-Varley
functional responses. Among these, the rate-dependent functional response applied to the Holling type II
prey-dependent response provides a more biologically accurate representation of predator-prey dynamics
compared to the models discussed above.

In this paper, we propose to incorporate the weak Allee effect into the model presented in [45]
to investigate its implications. Specifically, the weak Allee effect is introduced into a predator-prey
mathematical framework, which is represented by the May-Holling-Tanner model featuring a mixed rate-
dependent functional response and alternative food sources for the predator. This combination of factors
models an ecosystem consisting of a prey species, which serves as the preferred food for a predator
species, where the growth of the prey population is constrained by the availability of resources in the
ecosystem. Moreover, there exists a positive correlation between the prey growth rate and population
size at low densities. In this setting, cooperative behaviors, such as social interactions, are vital for the
growth of the prey population at low densities. Finally, the predator population growth is regulated by
the availability of prey, with the inclusion of alternative food sources for the predator.

The present study is organized into nine sections, including an introduction, summary, and refer-
ences. The first section, Mathematical Model, introduces the differential equation (ODE) system under
investigation, outlining the biological significance of each variable and parameter used. The following
section, Positivity and Boundedness, ensures that the solutions of the system remain within biologically
meaningful limits, meaning that the populations do not grow infinitely but are instead bounded. In the
next section, Topological Equivalence, a simplified system equivalent to the original one is presented.
This equivalent system is more analytically tractable, and hence, it will be the focus of further analysis.
The subsequent section explores the critical points of the equivalent system, confirming that these points
are positive and thus biologically relevant. A local stability analysis suitable for ecological equilibrium
is applied to the critical points, which tries to cause that every solution close to the critical points is
attracted to the same critical points, however, we want to cause that every solution included in the region
associated to the system under study is attracted to the critical points that are comprised by the region
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in question, for this it is demonstrated that this region is asymptotically stable and does not contain
periodical solutions.

This is followed by the section Numerical Analysis, where simulations are conducted and interpreted
biologically to provide insights into ecological equilibrium. Finally, the Conclusions section summarizes
the findings from each previous section, offering an overview of the model’s implications, potential
applications, future research directions, and limitations.

2 Mathematical Model

The system of autonomous two-dimensional ordinary differential equations is given by the following:

Xσ (x,y) :


dx
dt

= rx
(

1− x
k

)
(x−m)− qxy

x+ay
,

dy
dt

= y
(

1− y
nx+ c

)
s,

(2)

where x and y denote the number of prey and the number of predators at time t. In addition, r represents
the intrinsic growth rate of the prey population. This parameter captures the prey’s ability to grow under
ideal conditions without external constraints, k denotes the carrying capacity of the prey population,
which is the maximum population size that the environment can sustainably support, considering the
available resources; m is called the minimum viable population or extinction threshold, q represents the
intrinsic growth rate of the prey, and a is the degree to which the environment protects the prey. In
addition, s represents the intrinsic growth rate of the predator, n measures the quality of the prey as
food for the predator, and the parameter c describes the size of the alternative food for the predator.
This prompts us to define the following vector σ = (r,k,q,a,s,n,c,−m). For convenience, we have that
−m = m1. Thus, the system (2) is defined in the following region:

Ω =
{
(x,y) ∈ R2 : 0 < x; 0 < y

}
. (3)

The proof of existence and uniqueness of solutions is provided in the following section.

3 Positivity, boundedness, existence, and uniqueness of solutions

Since we are working on an ecological-biological model, the following results show that the solutions in
the system (2) are positive and do not grow indefinitely.

Definition 1. Let Ω ⊂ Rn and x(t) ∈ Rn be the solution of the system
dx(t)

dt
= f (x). It is said that Ω is

invariant for the system if x(0) ∈Ω, then x(t) ∈Ω for all t ≥ 0.

Proposition 1. The region Ω associated with the system (2) is invariant.
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Proof. Let 

dx(t)
dt

=

(
r
(

1− x(t)
k

)
(x(t)+m1)−

qy(t)
x(t)+ay(t)

)
x(t),

dy(t)
dt

=

(
s− sy(t)

nx(t)+ c

)
y(t),

x(0)> 0, y(0)> 0,

be the initial value problem associated with the system (2) with initial point (x(0),y(0)) ∈Ω. By solving
the above system, we obtain

x(t) = x(0)exp
{∫ t

0

(
r
(

1− x(ι)
k

)
(x(ι)+m1)−

qy(ι)
x(ι)+ay(ι)

)
dι

}
> 0,

y(t) = y(0)exp
{∫ t

0

(
s− sy(ι)

nx(ι)+ c

)
dι

}
> 0.

Hence, we have x(t) > 0 and y(t) > 0. Therefore, (x(t),y(t)) ∈ Ω, for all t ≥ 0. Thus, we see that the
region Ω associated with the system (2) is invariant.

Theorem 1. The solutions x(t) and y(t) of the system (2) are bounded for all t ≥ 0.

Proof. From the first equation of the system (2), we have

dx
x(k− x)(x+m1)

≤ r
k

dt.

By appropriately integrating and rearranging, we obtain:

1
m1

∫ t

0

dx(ι)
x(ι)

− 1
k+m1

∫ t

0

d(k− x(ι))
k− x(ι)

≤ r
∫ t

0
dι +

k
m1(k+m1)

∫ t

0

1
x(ι)+m1

dx(ι).

By applying the absolute value and the Minkowski inequality to the integrals, we obtain:∣∣∣∣ 1
m1

∫ t

0

dx(ι)
x(ι)

− 1
k+m1

∫ t

0

d(k− x(ι))
k− x(ι)

∣∣∣∣≤ rt +
∣∣∣∣ k
m1(k+m1)

∣∣∣∣∫ t

0

∣∣∣∣ 1
x(ι)+m1

∣∣∣∣dx(ι).

It is clear that if m1 < x(ι)+m1 < 1, then
1

x(ι)+m1
<

1
m1

and if x(ι)+m1 > 1 then
1

x(ι)+m1
< 1.

Therefore
∣∣∣∣ 1
x(ι)+m1

∣∣∣∣ ≤ A for all ι ∈ [0, t], where A = max{1, 1
m1
}. Furthermore, substituting into the

equation yields:

k ln
(

x(t)
x(0)

)
+m1 ln

(
x(t)(k− x(t))
x(0)(k− x(0))

)
≤ tMm1(k+m1),

where M = r+ Ak
m1(k+m1)

. By incorporating the exponent, we obtain:(
x(t)
x(0)

)k(x(t)(k− x(0))
x(0)(k− x(t))

)m1

≤ e(tMm1k+ tMm2
1). (4)
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For convenience, we separate Eq. (4) into Eqs. (5) and (6):(
x(t)
x(0)

)k

≤ e(tMm1k), (5)(
x(t)(k− x(0))
x(0)(k− x(t))

)m1

≤ e(tMm2
1), (6)

Note that multiplying Eq. (5) by Eq. (6) yields Eq. (4). From Eq. (5), we obtain

x(t)≤ x(0)e(tMm1). (7)

It follows from (6) that

x(t)≤ kx(0)e(tMm1)

k+ x(0)(e(tMm1)−1)
. (8)

Applying the limits to the results in Eqs. (7) and (8), we obtain, respectively, that:

lim
t→∞

x(t)≤ ∞, lim
t→∞

x(t)≤ k.

Thus, x(t)≤ k for all t ≥ 0. From the second equation of the system (2), we deduce that

dy
y(nk+ c− y)

≤ sdt
nk+ c

.

By appropriately integrating and rearranging, we obtain

y(t)≤ (nk+ c)y(0)e(st)

nk+ c+ y(0)(e(st)−1)
.

Applying the limits, it turns out that y(t)≤ n+ c for all t ≥ 0.

From the previous theorem, it follows that 0 < (x(t)+y(t))≤ k(n+1)+c. In addition, the region of
analysis is limited, that is,

Ω = {(x,y) ∈ R2 : 0 < x≤ k; 0 < y≤ nk+ c}.

This method of bounding the solutions contrasts with approaches in articles such as [25,44]. Accord-
ing to Corollary 2.2.3, as presented in [23] [page 36], this implies that if the system under consideration
is of class C1 over its associated region, then the existence and uniqueness of the solutions to the initial
value problem (I.P.V.) associated with the system are guaranteed. It is evident that the system under
study, as given by Eq. (2), is of class C1. Therefore, based on the aforementioned result, we assume that
the solutions to the system (2) exist and are unique.

4 Topological equivalence

To simplify the system by reducing the number of parameters involved and to facilitate both qualitative
analysis and numerical simulations, the following change of variables is introduced: x = uk, y = vnk, and

t =
1
rk

τ . In addition, the parameters are transformed as follows: A1 =
m1

k
, A2 =

rk
qn

, A3 =
ark
q

, A4 =
c

nk
,
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and A5 =
s
rk

. By applying these transformations to system (2), the following reformulated system is
obtained

Uς (u,v) :


du
dτ

= u(1−u)(u+A1)−
uv

A2u+A3v
,

dv
dτ

= v
(

1− v
u+A4

)
A5.

(9)

The system is defined within the following region

Ω̄ =
{
(u,v) ∈ R2 : 0 < u≤ 1, 0 < v≤ 1+A4

}
. (10)

This change in the variables induces a diffeomorphism, as demonstrated in [10, 14, 51]. The diffeomor-

phism is defined by ϕ : Ω̄×R→ Ω×R, where ϕ(u,v,τ) = (uk,vnk,
1
rk

τ) = (x,y, t). Furthermore, the

Jacobian determinant of ϕ , denoted as det(ϕ ′(u,v)), satisfies det(ϕ ′(u,v))> 0. This change of variables
ensures that the time orientation is preserved. As a result, the transformed system (9) is topologically
equivalent to the original system (2). Notably, this transformation reduces the number of parameters
from eight in system (2) to five in system (9). Consequently, the subsequent analysis focuses exclusively
on system (9).

5 Critical points

The u−nullcline the system (9) in Ω is

v =
uA2(1−u)(u+A1)

1−A3(1−u)(u+A1)
,

while the v− nullcline in Ω is: v = u+A4. From this, the critical points of the system (9) in its Ω are
(1,0), (0,A4) and (u∗,v∗), where u∗ and v∗ are determined by the roots of the following polynomial of
degree three, which is the result of equating u−nullcline and v−nullcline

−u3(A2 +A3)−u2(A3A4 +(A1−1)(A2 +A3))−u(1−A1A2 +A3(A1A4−A1−A4))−A4(1−A1A3).

Following the Cardano method, which provides an analytical solution for any cubic equation (see [13]),
the polynomial can first be converted to its normal form by dividing by −(A2 +A3) and then ordering
the terms, yielding

u3 +u2
(

A3A4 +(A1−1)(A2 +A3)

A2 +A3

)
+u
(

1−A1A2 +A3(A1A4−A1−A4)

A2 +A3

)
+A4

(
1−A1A3

A2 +A3

)
.

Furthermore, substituting u = z− (A3A4 +(A1−1)(A2 +A3))/(A2 +A3), thus eliminating the quadratic
term, yields the following form z3 +Pz+Q, where the linear component and its independent term are
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defined by

P =
1−A1A2 +A3(A1A4−A1−A4)

A2 +A3
− 1

3

(
A3A4 +(A1−1)(A2 +A3)

A2 +A3

)2

,

Q =
2
27

(
A3A4 +(A1−1)(A2 +A3)

A2 +A3

)3

+A4

(
1−A1A3

A2 +A3

)
− 1

3

(
A3A4 +(A1−1)(A2 +A3)

A2 +A3

)(
1−A1A2 +A3(A1A4−A1−A4)

A2 +A3

)
.

Therefore, the critical points of system (9) are given by

(u1,v1) = (1,0), (11)

(u2,v2) = (0,A4), (12)

1. A real root (∆ > 0):

(u3,v3) = (α1,β1). (13)

2. Two real roots (∆ = 0):

(u4,v4) = (α2,β2), (14)

(u5,v5) = (α3,β3), (15)

3. Three real roots (∆ < 0):

(u6,v6) = (α4,β4), (16)

(u7,v7) = (α5,β5), (17)

(u8,v8) = (α6,β6). (18)

Here, ∆ =

(
Q
2

)2

+

(
P
3

)3

, θ = arccos

(
3Q
2P

√
−3
P

)
and 0 < θ < π . In addition

R1 =
3

√
−Q+

√
∆

2
+

3

√
−Q−

√
∆

2
,R2 = 2 3

√
−Q

2
,

R3 =−
3

√
−Q

2
,R4 = 2

√
−P

3
cos
(

θ

3

)
,

R5 = 2

√
−P

3
cos
(

θ +2π

3

)
,R6 = 2

√
−P

3
cos
(

θ +4π

3

)
.
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The main parameters are

α1 = R1−
A3A4 +(A1−1)(A2 +A3)

3(A2 +A3)
, β1 = α1 +A4,

α2 = R2−
A3A4 +(A1−1)(A2 +A3)

3(A2 +A3)
, β2 = α2 +A4,

α3 = R3−
A3A4 +(A1−1)(A2 +A3)

3(A2 +A3)
, β3 = α3 +A4,

α4 = R4−
A3A4 +(A1−1)(A2 +A3)

3(A2 +A3)
, β4 = α4 +A4,

α5 = R5−
A3A4 +(A1−1)(A2 +A3)

3(A2 +A3)
, β5 = α5 +A4,

α6 = R6−
A3A4 +(A1−1)(A2 +A3)

3(A2 +A3)
, β6 = α6 +A4.

The following results ensure that the last six critical points are positive.

Proposition 2. If A3A4 < (1−A1)(A2 +A3), 1 < A1A2, A1A4 < A1 +A4, 1 < A1A3, (Q/2)2 > (P/3)3 ,
and −Q >

√
∆ , then the critical point (u3,v3) is positive.

Proof. Let A3A4 < (1−A1)(A2 +A3), 1 < A1A2, A1A4 < A1 +A4, and 1 < A1A3 it follows that Q < 0.
However, from 1 < A1A2, A1A4 < A1 +A4 and A3A4 < (1−A1)(A2 +A3) it follows that P < 0. From
(Q/2)2 > (P/3)3, it is shown that ∆ > 0. Hence, from −Q+

√
∆ > 0. In addition, from −Q >

√
∆ it is

deduced that R1 > 0. However, from A3A4 < (1−A1)(A2 +A3), it is clear that

A3A4 +(A1−1)(A2 +A3)

3(A2 +A3)
< 0.

That is β1 > 0 . Then the critical point (u3,v3) is positive.

Proposition 3. If A3A4 < (1−A1)(A2 +A3), 1 < A1A2, A1A4 < A1 +A4 , and 1 < A1A3 , then the
critical point (u4,v4) is positive.

Proof. Let A3A4 < (1−A1)(A2 +A3), 1 < A1A2, A1A4 < A1 +A4, and 1 < A1A3, it follows that Q < 0,

consequently R2 > 0, and from A3A4 < (1−A1)(A2 +A3) it follows that
A3A4 +(A1−1)(A2 +A3)

3(A2 +A3)
< 0

, i.e., β2 > 0 . Then the critical point (u4,v4) is positive.

Proposition 4. If A3A4 < (1−A1)(A2+A3), 1<A1A2, A1A4 <A1+A4 , and 1<A1A3 , then the critical
point (u5,v5) is positive.

Proof. Let A3A4 < (1−A1)(A2 +A3), 1 < A1A2, A1A4 < A1 +A4, and 1 < A1A3, it follows that Q < 0,

consequently R3 > 0, and from A3A4 < (1−A1)(A2 +A3) it follows that
A3A4 +(A1−1)(A2 +A3)

3(A2 +A3)
< 0

, i.e., β3 > 0 . Then the critical point (u5,v5) is positive.

Proposition 5. If 1 < A1A2, A1A4 < A1 +A4 , and A3A4 < (1−A1)(A2 +A3) , then the critical point
(u6,v6) is positive.
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Proof. Let 1 < A1A2, A1A4 < A1 +A4, it follows that P < 0. From the theory, it follows that 0 < θ <

π , then cos(
θ

3
) ∈ 〈1

2 ,1〉. Therefore, R4 > 0. Finally, from A3A4 < (1−A1)(A2 +A3), it follows that

A3A4 +(A1−1)(A2 +A3)

3(A2 +A3)
< 0 , i.e., β4 > 0 . Then the critical point (u6,v6) is positive.

Proposition 6. If 1<A1A2, A1A4 <A1+A4, A3A4 < (1−A1)(A2+A3) , and
(1−A1)(A2 +A3)−A3A4

3(A2 +A3)
>

−R5 , then the critical point (u7,v7) is positive.

Proof. Let 1 < A1A2 and A1A4 < A1+A4, it follows that P < 0. According to the theory, it is known that

0 < θ < π , which implies that cos
(

θ +2π

3

)
∈ 〈−1,−1

2〉. Therefore, it follows that R5 < 0. From the

inequality A3A4 < (1−A1)(A2 +A3), we see that

A3A4 +(A1−1)(A2 +A3)

3(A2 +A3)
< 0.

Finally, from the inequality
(1−A1)(A2 +A3)−A3A4

3(A2 +A3)
>−R5,

we deduce that α5 > 0, and consequently, β5 > 0 . Then the critical point (u7,v7) is positive.

Proposition 7. If 1 < A1A2, A1A4 < A1 +A4, A3A4 < (1−A1)(A2 +A3) , and π

2 < θ < π , then the
critical point (u8,v8) is positive.

Proof. Let 1 < A1A2, A1A4 < A1+A4, it follows that P < 0. From the theory, it is salvaged that π

2 < θ <

π , then cos
(

θ +4π

3

)
∈ 〈0, 1

2
〉. Therefore, R6 > 0. Finally, from A3A4 < (1−A1)(A2 +A3), it follows

that
A3A4 +(A1−1)(A2 +A3)

3(A2 +A3)
< 0 , i.e., β6 > 0 . Then the critical point (u8,v8) is positive.

6 Local stability analysis

In this section, we analyze the local stability of the critical points. As previously mentioned, system
(9) represents a population dynamics model, and our goal is to determine stability results, particularly
asymptotic stability. To achieve this, various mathematical tools are available, such as linearization and
the Hurwitz criterion, which are applied to the Jacobian matrix. Additionally, methods like LaSalle’s In-
variance Principle and the generalized Krasovskii Theorem are utilized to analyze the stability of regions
containing the critical points. The distinction between these approaches lies in their specific implications
for stability analysis. The linearization and the Hurwitz criterion provide conditions for the parameters
but not for the initial values. In contrast, LaSalle’s Invariance Principle and the generalized Krasovskii
Theorem offer conditions for both the parameters and the initial values.

Consequently, the latter two methods allow for a more realistic simulation of the scenario under study
compared to the linearization and Hurwitz criterion. However, LaSalle [28,48] and Krasovskii’s methods
are limited, as they only address the asymptotically stable case. On the other hand, linearization and the
Hurwitz criterion encompass both unstable and asymptotically stable cases, enabling a broader range of
scenarios to be analyzed. Therefore, the generalized Krasovskii Theorem is used. On the other hand, the
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use of Chetaev’s Theorem is recommended if instability is to be taken into account, since, like LaSalle
and Krasovskii, Chetaev’s result acts on a region. The Jacobian of the system (9) is

J =


2u+A1−2A1u−3u2− A3v2

(A2u+A3v)2 − A2u2

(A2u+A3v)2

A5v2

(u+A4)
2 A5

(
1− 2v

u+A4

)
 . (19)

It should be noted that the stability analysis of the first critical point (11) is not presented because,
according to Theorem 4.4, as discussed in [12][page 141], which pertains to the Linearization Theo-
rem using the trace and determinant, this point behaves as a saddle point. Specifically, this is because
det(J1) =−A5(A1 +1).

6.1 Critical point stability (u2,v2)

The criterion of the trace and the determinant is used due to its ease of application. The critical point
(12) is substituted into the Jacobian matrix (19), resulting in the following matrix

J2 =

(
A1− 1

A3
0

A5 −A5

)
. (20)

where the determinant det(J2) =
A5
A3
(1−A1A3) and the trace trz(J2) = A1−A5− 1

A3

Theorem 2. If A1A3 < 1 , and A1 < A5 , then the critical point (u2,v2) is asymptotically stable.

Proof. Let A1A3 < 1 so det(J2)> 0 and from A1 < A5 it follows that trz(J2)< 0 . Then the critical point
(u2,v2) is asymptotically stable.

The remaining critical points may lead to ecological equilibrium, where all populations survive over
time. Therefore, it is essential to present results that ensure these equilibrium points are asymptotically
stable. Achieving this result is important because it signifies the system’s strong resistance to parameter
changes. Numerous tools are available for this purpose, such as linearization and the Routh-Hurwitz
criterion. However, these methods often involve exhaustive and complicated mathematical calculations.
To simplify the analysis, the Generalized Krasovskii Theorem is employed. Although this theorem
requires the use of a pair of symmetric, positive-definite matrices, depending on the system under study,
it significantly reduces the mathematical effort. Moreover, the resulting function is bounded according
to the conditions of the region around the critical point under analysis.

The Generalized Krasovskii Theorem has been used in control analysis and dynamic systems [24]
and is effective in proving the local asymptotic stability of a critical point. It also generates a Lyapunov
function suitable for global stability analysis. As stated in [50][page 85], the theorem provides conditions
for both the asymptotic local and global stability of a critical point with respect to the system parameters,
as well as conditions for the initial value. Additionally, to further facilitate the local stability analysis,
the Sylvester criterion [22][page 439] is applied.
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6.2 Critical point stability (u∗,v∗)

Due to the nature of the critical points (11)-(16). These lend themselves to be analyzed jointly, i.e.,
instead of analyzing each of the remaining six critical points, they can be analyzed by (u∗,v∗) = (αi,βi),
where i= {1,2,3,4,5,6}. To apply the generalized Krasovskii’s Theorem to the critical point (u∗,v∗), the
symmetric matrices Γ and z are defined on the ball Bi = {(u,v)∈R2 : 0< |u−αi|< ε;0< |v−βi|< ε},
where ε ≈ 0 and Bi ⊂ Ω̄:

Γ =


(A4 +u)2(A2u+A3v)2

u2 0

0
(A4 +u)2(A2u+A3v)2

u2

 , z=

[
2A3v2 A2u2

A2u2 0

]
.

Clearly, the matrices Γ and z are positive definite on the ball Bi. Then, the matrix F(U) is

F(U) =


2(A2u+A3v)2M

A5v2(A2u+A3v)2

(A4 +u)2

A5v2(A2u+A3v)2

(A4 +u)2 −2A5(A2u+A3v)2(A4 +u−2v)
A4 +u

 ,

where M = u(A1 + u)+ u(u− 1)+ (A1 + u)(u− 1), before continuing we must clarify that due to the
nature of the Bi ball, we have that v = u+A4 for all v ∈Bi. Later, the matrix F(U) can be reduced to

F(U) =

[
2(A2u+A3v)2M A5(A2u+A3v)2

A5(A2u+A3v)2 −2A5(A2u+A3v)2

]
.

Theorem 3. If (αi− ε)(2A1−1+3αi−3ε)≥ A1 +αi− ε , and 4(αi− ε)(2A1−1+3αi−3ε)≥ A5 +
A1 +αi− ε , then the critical point (u∗,v∗) is asymptotically stable.

Proof. From the theory explained above, the square matrix is F(U) ∈ R2x2 is negative semidefinite in
Bi if−F(U) is positive semidefinite for all (u,v)∈Bi−{(αi,βi)}. Applying the first part of Sylvester’s
criterion, we have that the square matrix −F(U) is positive semidefinite for all (u,v) ∈Bi−{(αi,βi)} if
all its Principal Minors are nonnegative. Let the matrix

−F(U) =

[
−2(A2u+A3v)2M −A5(A2u+A3v)2

−A5(A2u+A3v)2 2A5(A2u+A3v)2

]
,

where its principal minor associates are: det(−F(U)(1,1)) = |−2(A2u+A3v)2M| and det(−F(U)) =
A5(A2u+A3v)4(4M−A5). From the first condition, it follows that det(−F(U)(1,1)) ≥ 0 and from the
second condition it follows that det(−F(U))≥ 0. Therefore, according to Sylvester’s criterion, the ma-
trix −F(U) is positive semidefinite for all (u,v) ∈Bi. That is, the matrix F(U) is negative semidefinite
. Then according to the generalized Krasovskii Theorem, the critical point (u∗,v∗) is asymptotically
stable.
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7 Global stability analysis

This type of analysis strengthens and extends the results obtained from the local stability analysis. Specif-
ically, it ensures that the conclusions drawn from local stability hold across the entire region associated
with the system. The following demonstrates that the behavior of the vector field, as in [29,38], Uς (u,v)
(9) in the region (10) is globally asymptotically stable. According to the generalized Krasovskii Theo-
rem, we have V (x) =Uς (u,v)

T
ΓUς (u,v), that is,

V (u,v) = A5
2v2(A2u+A3v)2

(
1− v

u+A4

)2

+u2(A2u+A3v)2
(
(1−u)(A1 +u)− v

A2u+A3v

)2

.

Because the trend of v
u+A4

is not clear, when ||(u,v)|| → ∞, the L’Hôpital rule applies. It turns out that
lim v

u+A4
= 1, when ||(u,v)|| →∞ = 1. Putting this last result in V (u,v), it follows that V (u,v)→∞ when

||(u,v)|| →∞. By the second part of the generalized Krasovskii Theorem, the vector field Uσ (u,v) (2) in
the region (10) is globally asymptotically stable.

8 Periodic solutions

Periodic solutions, also known as periodic orbits or closed orbits in population dynamics, are crucial for
understanding how species populations interact and evolve in cyclically changing environments. One
important application of periodic solutions is bifurcation analysis. Bifurcations refer to phenomena in
which a dynamical system exhibits periodic solutions near an equilibrium point.

In population dynamics, this is significant as it can indicate changes in the stability of populations
under varying environmental conditions. To search for periodic solutions in the system (2), the Dulac
criterion, as discussed in [14, page 102], is employed. This criterion utilizes a Φ function, known as
the Dulac function, which is difficult to determine due to its lack of clear constraints, making it any
smooth function. To address this challenge, a construction technique for the Dulac function is provided
in [41, pages 44-45], [43, page 3], and [42, page 3]. Take Section 2.4 of [44] as an example. The
following candidate function is defined as a Dulac function: Φ = (uv)−1. It is clear that as in the local
stability analysis section, one can check for the existence or not of periodic solutions at the critical points
(11)-(16). Using the critical point (u∗,v∗).

Theorem 4. If αi > ε , βi > ε , and
A2

Ci
>

Di

(βi− ε)(αi− ε)
, then there are no periodic solutions in Bi ,

where Ci = (A2(αi + ε)+A3(βi + ε))2, Di = A5 +(αi− ε)(2αi +2ε +A1−1).

Proof. Let αi > ε and βi > ε . Then, the function Φ is smooth on the ball Bi which is simply connected.
Then, from the ball Bi we obtain αi− ε < u < αi + ε , βi− ε < v < βi + ε . From

A2

Ci
>

Di

(βi− ε)(αi− ε)
,

it is clear that 0 < div(Φ.Uς (u,v)), f orall(u,v) ∈Bi . Then according to Dulac’s criterion, there are no
periodic orbits in Bi.
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9 Numerical analysis

Computational simulations play a fundamental role in mathematical modeling applied to ecology, en-
abling the exploration of complex dynamics in natural systems that would be difficult or impossible to
analyze solely through analytical methods. These tools provide an efficient means to evaluate diverse sce-
narios, conduct virtual experiments, and analyze model sensitivity to key parameters, which is essential
for understanding nonlinear ecological interactions, spatiotemporal processes, and emergent behaviors.
Furthermore, simulations facilitate the integration of empirical data, allowing for more realistic predic-
tions and quantification of uncertainty associated with models. This not only enhances the accuracy of
theoretical insights but also strengthens their applicability in decision-making for the conservation and
sustainable management of ecosystems.

In this section, we present the numerical analysis of the critical points that satisfy the previously
proposed conditions. The analysis involves the interpretation of simulations performed for each critical
point, utilizing several Python programming packages, such as SciPy, Matplotlib, and SymPy. The sim-
ulations are carried out in Google Colab, a free cloud-based platform that enables users to write, run,
and share Python code. The simulations are implemented on the differentially equivalent system, specif-
ically on (9). The predefined odeint function from the integrate module of the SciPy package is used to
solve the system. This function helps accurately represent the temporal evolution of the populations and
ensures more precise simulations. Additionally, the Sympy package is used to handle complex numerical
calculations, including local and global stability analyses, as well as determining the correct values for
each parameter and initial condition.

9.1 Numerical analysis the critical point (u6,v6)

The simulation (1) is conditioned by Proposition 5 and Theorem 3. The initial point is taken to be
(u6,v6) = (0.66420,1.16420), A1 = 0.7, A2 = 1.8, A3 = 0.9, A4 = 0.5, A5 = 0.8. By replacing, we
have: P =−0.38555555555555554, Q = 0.0514705075445816, ∆ =−0.0014604383177060103, α4 =
0.6642073686614601, β4 = 1.1642073686614602, ε = 10−5, θ = 1.5805454180680192 (in radians).
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Figure 1: Simulation in the coexistence state at point u6 and v6 (first stage)

Figure 1a, simulates the population dynamics of the prey species divided into two phases. The first
phase occurs over a shorter period, during which the prey population declines steadily. As the population
stabilizes, it transitions into the second phase, where the prey population remains practically constant
with only minor fluctuations, maintaining a minimum level without going extinct. Simultaneously, the
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predator species also undergoes a two-phase population dynamic. Similar to the prey species, the preda-
tor population decreases during the first phase, experiencing losses over a similar time frame. Once it
stabilizes, the predator population enters the second phase, where it remains largely unchanged, keeping
its population at a minimum level without extinction.

Figure 1b, illustrates the population dynamics of the predator species, which decrease quadratically
in relation to the population dynamics of the prey species. Both species experience a decline in three
distinct phases. The first phase begins with the initial values of the simulation, (0.66420,1.16420),
where the prey species suffers greater losses than the predator species. In the second phase, both species
experience nearly the same rate of decline, which is most noticeable in the more linear section of the
graph. Finally, in the third phase, the predator species declines at a faster rate than the prey species.
Despite these fluctuations, neither species goes extinct.

The simulation (2), is conditioned by Proposition 2, and the Theorem 3. The initial point is taken
to be (0.79119,0.89119), A1 = 0.8, A2 = 1.3 , A3 = 2.5, A4 = 0.1, A5 = 0.9. Replacing we have:
P =−0.5560041551246536, Q =−0.051100123924770355, ∆ =−0.005713248760556907,
α4 = 0.791194444563359, β4 = 0.891194444563359, ε = 10−5, θ = 1.5652072971566442 (in radians).
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Figure 2: Simulation in the coexistence state at point u6 and v6 (second stage)

Figure 2a, simulates the population dynamics of the prey species are divided into two phases. In the
first, shorter phase, the prey population experiences a steady increase, which eventually stabilizes as it
enters the second phase. During this second phase, the prey population remains nearly constant, with
only minor fluctuations, stabilizing at its maximum possible size. Similarly, the predator species also
undergoes two phases of population dynamics. The behavior of the predator species mirrors that of the
prey. In the first phase, the predator population increases logarithmically, over a slightly longer period
than the prey’s first phase, and then stabilizes. In the second phase, the predator population undergoes
minimal change, remaining constant at its maximum possible size for the remainder of the time.

Figure 2b, ilustrates the population dynamics of the predator species grow exponentially in relation
to the prey species. Both species experience growth in three phases. The first phase begins with the
initial values of the simulation (0.79119,0.89119), during which the prey species grows faster than the
predator species. In the second phase, both species grow at nearly the same rate, which is reflected in the
linear portion of the graph. Finally, in the third phase, the predator species increases in population more
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rapidly than the prey species, until both species reach their maximum possible population sizes.
The simulation (3), is conditioned by Proposition 2, and Theorem 3. The initial point is taken

to be (0.75868,0.85868), A1 = 0.9, A2 = 1.5 , A3 = 1.3, A4 = 0.1, A5 = 1.1. By replacing we have
P =−0.5484566326530613, Q =−0.015859602769679303, ∆ =−0.006047426425106079,
α4 = 0.7586879402151852, β4 = 0.8586879402151851, ε = 10−5, θ = 1.5652072971566442 (in radi-
ans).
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Figure 3: Simulation in the coexistence state at point u6 and v6 (third stage)

Figure 3a, simulates the population dynamics of the prey species are divided into two phases. The
first phase, which is shorter than the second, sees the prey species experiencing a constant population
increase, eventually stabilizing as it enters the second phase. In this second phase, the prey popula-
tion stabilizes, with the number of individuals undergoing only small changes and remaining practically
constant at its maximum possible population size. Meanwhile, the predator species also experiences pop-
ulation dynamics divided into two phases. The behaviour of the predator species mirrors that of the prey
species. In the first phase, the predator population increases logarithmically over a period slightly longer
than the first phase of the prey species, before stabilizing. In the second phase, the predator species
experiences very little change, and its population remains constant at its maximum possible level for the
rest of the time.

Figure 3b, ilustrates the population dynamics of the predator species grow exponentially in relation
to the population dynamics of the prey species. Specifically, both species experience an increase in
three distinct phases. The first phase begins with the initial values of this simulation (0.75868,0.85868),
where the prey species grows at a faster rate than the predator species. In the second phase, both species
grow at nearly the same rate, which is reflected in the most linear portion of the graph. Finally, in the
third phase, the predator species outpaces the prey species in growth, eventually reaching the maximum
possible population size for both species.

The simulation (4), is conditioned by Proposition 2, and Theorem 3. The initial point is taken
to be (0.77116,1.17116), A1 = 0.5, A2 = 2.5 , A3 = 3.1, A4 = 0.4, A5 = 0.05. By replacing we
have P =−0.4580102040816327, Q =−0.08101457725947521, ∆ =−0.0019176163637932505, α4 =
0.7711600073781018, β4 = 1.1711600073781017, ε = 10−5, θ = 1.5589443754223917 (in radians).
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Figure 4: Simulation in the coexistence state at point u6 and v6 (fourth stage)

Figure 4a, simulates the population dynamics of the prey species are divided into two phases. The
first phase, which lasts for a shorter period than the second, sees the prey species experiencing a constant
population increase. As it transitions into the second phase, the prey population stabilizes, with the
number of individuals undergoing small changes and remaining practically constant at its maximum
possible population size. Meanwhile, the predator species undergoes a single-phase population dynamic.
During this phase, the predator population increases constantly in a linear fashion, eventually stabilizing
and remaining at its maximum possible population size. Figure 4b, ilustrates the population dynamics
of the predator species grow exponentially in relation to the population dynamics of the prey species.
This results in the populations of both species increasing in three phases. The first phase begins with
the initial values of this simulation (0.77116,1.17116), where the prey species grows faster than the
predator species. In the second phase, both species grow at nearly the same rate, which is evident in the
most linear section of the graph. Finally, in the third phase, the predator species grows faster than the
prey species, eventually reaching the maximum possible population size for both species.

10 Conclusions

The objective of this study was to examine the intricate ecological dynamics of an ecosystem consisting
of a prey species, which serves as the primary food source for a predator species. The prey population
growth is constrained by the carrying capacity of the environment, determined by the availability of re-
sources in the ecosystem. At low population densities, the prey exhibits a positive density-dependent
growth rate, influenced by cooperative behaviors such as social interactions that enhance survival and re-
production. The predator population, in turn, is regulated by the availability of prey, with the addition of
an alternative food source introducing further complexity into the system. The dynamics of this system
are modeled using a two-dimensional system of ordinary differential equations (ODEs). The analysis
begins by establishing fundamental properties of the model, including the positivity, boundedness, ex-
istence, and uniqueness of solutions. The system is shown to possess eight equilibrium points: two on
the coordinate axes and six resulting from the intersections of the isoclines. To simplify the analysis, a
topologically equivalent reduced system is derived, involving three fewer parameters than the original.
Key mathematical tools are employed to assess the stability of the equilibrium points. These include
the trace-determinant criterion, LaSalle’s Invariance Principle, the generalized Krasovskii theorem, and
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the Dulac–Bendixson criterion. Conditions are derived to ensure local and global asymptotic stability,
providing explicit relationships between model parameters and initial population values. Numerical sim-
ulations were conducted to explore scenarios meeting these stability conditions. For the single favorable
case simulated, it was observed that:

• From the Figure 1a of the simulation (1), it is observed that both species experience a popula-
tion decline until stabilizing at a minimum viable population size, avoiding extinction for either
species. Similarly, the second Figure 1b of the simulation (1) shows that the populations of both
species decrease quadratically without reaching the origin. Consequently, based on the simulation
(1), it can be concluded that the critical point (u6,v6) represents a stable ecological equilibrium.
This implies that neither species becomes extinct over time, highlighting the persistence of both
populations in the ecosystem.

• From the Figure 2a of the simulation (2), it is observed that both species experience population
growth until stabilizing at their maximum possible population sizes, constrained by the system’s
ecological parameters. Similarly, the second Figure 2b of the simulation (2) indicates exponential
growth of both species before stabilization. Consequently, based on the simulation (2), it can be
concluded that the critical point (u6,v6) represents a stable ecological equilibrium. This suggests
that neither species faces extinction over time, with both populations persisting and thriving within
the ecosystem.

• From the Figure 3a of the simulation (3), it is observed that both species experience population
growth until stabilizing at their maximum attainable population sizes, as determined by the eco-
logical parameters of the system. Similarly, the second Figure 3b of the simulation (3) illustrates
exponential growth of both species before reaching stabilization. Consequently, based on the sim-
ulation (3), it can be concluded that the critical point (u6,v6) represents a stable ecological equi-
librium. This result implies that neither species faces extinction over time, with both populations
persisting and coexisting in the ecosystem.

• From the Figure 4a of the simulation (4), it is observed that both species grow until stabilizing
at their maximum feasible population sizes, as dictated by the system’s ecological parameters.
Similarly, the second Figure 4b of the simulation (4) shows exponential growth of both species
prior to stabilization. Consequently, based on the simulation (4), it is concluded that the critical
point (u6,v6) represents a stable ecological equilibrium. This result indicates that neither species
goes extinct over time, and both populations persist and coexist sustainably within the ecosystem.

• It is also concluded that, among the four cases presented of population dynamics versus time, three
exhibit permanent growth until reaching a maximum feasible population size (2a), (3a), (4a), while
only one case shows a population decline stabilizing at the minimum viable population size without
extinction for either species (1a). Additionally, two of the cases of permanent growth exhibit
very similar behavior (2a), (3a). From this analysis, it can be inferred that the predator and prey
species modeled in this study tend to grow until reaching a maximum sustainable population size,
as determined by the ecological constraints of their environment. Furthermore, their population
dynamics in certain cases align closely with those observed in the simulations (2a) and (3a).

• It is also concluded that, among the four cases presented of population versus population dynamics,
three exhibit exponential growth (2b), (3b), (4b), while one case demonstrates quadratic decline
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(1b). From this, it can be inferred that the predator and prey species described by the model
generally exhibit rapid growth under most ecological conditions considered.

Furthermore, it is concluded that the system does not admit periodic solutions. Based on the four
favourable cases for ecological balance, it is determined that the model achieves biological equilibrium.
This implies that the interacting populations in the proposed scenario persist over time, maintaining their
coexistence without extinction. However, despite the modifications introduced, models of this type have
inherent limitations. From experimental studies, such as those by [17], it is evident that Holling’s type
II functional response can be applied across a wide range of ecological scenarios. Nonetheless, its ef-
fectiveness is particularly notable when modeling populations of invertebrates and small vertebrates. It
is recommended that, while incorporating perturbations such as the mixed functional response (which
is rate-dependent), this line of research should be continued, emphasizing the role of the weak Allee
effect. This effect highlights the critical importance of social behavior in driving population growth at
low densities, a phenomenon especially prominent in invertebrates.

For future research, the weak Allee effect could be replaced by the strong Allee effect, or even
extended to incorporate a double Allee effect. This extension could account for ecological factors such
as predator cannibalism, prey defensive strategies (e.g., group defense, shelter-seeking), or the indirect
fear effects experienced by prey. Furthermore, this ecological model could be adapted into an eco-
epidemiological framework by employing delay differential equations or partial differential equations
instead of ordinary differential equations. These proposed adjustments are relevant not only to the system
under study but also to the foundational models upon which this study is based. Additionally, for future
investigations into periodic solutions, it would be worthwhile to explore scenarios where such solutions
exist, examining both local and global bifurcations in one- and two-dimensional systems.
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[6] E.A. Barbašin, N.N. Krasovskiı̆, On stability of motion in the large, Doklady Akad. Nauk SSSR
(N.S.) 86 (1952) 453–456 (in Russian).
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