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Abstract. This paper presents a Galerkin spectral element method for solving a fractional diffusion
equation, considering initial and boundary conditions. We construct a discrete scheme for time, employ-
ing the Crank-Nicolson method to approximate the Caputo fractional derivative on a uniform mesh. Then
we introduce a Galerkin variational formulation to establish the unconditional stability of the scheme.
Moreover, we apply the spectral element method based on Legendre polynomials in the space direction
and obtain the fully discrete scheme. The error analysis of the fully discrete scheme is treated in L2 sense.
we present a computational analysis to deal with the Galerkin spectral element method, to compute the
corresponding bilinear form, on the implementation process. Finally, we prove the effectiveness of the
method through numerical experiments and some simulations using MATLAB software.
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1 Introduction

Fractional differential equations(FDEs) represent an exciting domain within applied mathematics, pro-
viding crucial tools to describe natural phenomena with memory and hereditary properties. These
equations have wide applications, for further exploration, we recommend this relevant literature. In
physics, [16], and [17] where a fractional Bloch model was utilized, to control the fundamental pro-
cesses of nuclear magnetic resonance. In chemistry and biology, the FDEs were able to describe the
collective behavior of molecules in transport [27], and the transfer of heat and mass [12]. In finance, a
fractional-time Black-Scholes model has been proposed in [18], to model the variation in option pricing
for a fractal transmission system. Economics [1], and engineering [19].
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Solving and analyzing the FDEs has received increasing attention from researchers, where math-
ematicians have developed tools and techniques over the years to simulate its solutions as finding an
analytical solution remains demanding and complicated. This has led to a wealth of studies that con-
tribute significantly to the legacy of this field, inspiring us to explore several of them. As in [9], the
authors addressed a mobile-immobile advection-dispersion equation, which incorporates the Caputo
fractional derivative to model solute transport in porous and fractured media. They employed mesh-
less methods using radial basis functions, along with the finite difference method in time direction. The
second-order convolution quadrature and the weighted and shifted Grnwald formula was used to approx-
imate the RiemannLiouville fractional integral and the distributed-order time-fractional derivative, for a
multi-dimensional fractional integrodifferential models in [10]. Additionally, the authors employed the
energy method to conduct the error analysis for the derived scheme. The existence and uniqueness was
treated via the BanachAlaoglu theorem in a Sobolev space, for a nonlinear Kortewegde Vries-Rosenau-
regularized long-wave problem proposed to model the dynamics of dispersive shallow water waves along
lake shores and beaches in [13], and was simulated using the finite element method (FEM) combining
with a second-order Crank-Nicolson scheme. The authors designed a finite element analysis to simulate
a nonlinear advection-diffusion equation in [14], where a backward Eulers and Crank-Nicolson schemes
was used to derive a full discretization, and the error analysis is performed in Bchner norms. In [20]
the authors establish a non-standard algorithm via an uniform scale-3 Haar wavelets of space and time
variables for a two-dimensional fractional advection dispersion model, which arises in complex network,
fluid dynamics, biology, chemistry, system control.

The spectral element method (SEM) was created to solve fluid dynamics models, the combination
of the FEM and spectral method led to the development of SEM, see [21]. In the literature, SEM is an
efficient method to approximate solutions for complex models in applied sciences, for time-fractional
PDEs. It is also used to approximate the spatial operators for the integer order, see [4, 25]. In [8], an
FDEs are used to describe mobile/immobile fractional transport in complex dynamical systems, via a
fractal mobile-immobile transport problem based on the CaputoFabrizio derivative in both the linear and
the quasi-linear source term. The authors used a non-standard finite difference and a SEM to approach
the model. A hybrid SEM is constructed for both Caputo and Riemann-Liouville fractional derivatives
to solve fractional two-point boundary value equations in [28]. Further, in [15] the authors proposed a
numerical method via the SEM and hierarchical matrix approximation to solve an equation with two-
sided second-order Riemann-Liouville operators. In [32], the authors applied the FEM for the one-
sided/two-dimensional fractional BlochTorrey equation, using the L2− 1σ formula to approximate the
temporal Caputo derivative, and the FEM to deal with the approximations in the spatial direction leading
to a fully discrete scheme solved using linear piecewise polynomials. Also, in [3], the same model was
treated with the Caputo fractional derivative with multi-order, which is approximated using the standard
L1 formula and the FEM to approximate the Riesz fractional derivative. An analytical study is employed
for the fully discrete scheme, by using the energy method, and by numerical experiments on irregular
domains validated the theoretical results.

This work deals with a numerical method for a two-dimensional/two-sided fractional diffusion equa-
tion:

{
C
0D

α
t Θ(x,y, t) = Ψ1,x

∂ 2γ Θ

∂ |x|2γ +ϒ1,y
∂ 2β Θ

∂ |y|2β
+Ψ2,x

∂ 2ζ Θ

∂ |x|2ζ
+ϒ2,y

∂ 2ς Θ

∂ |y|2ς +F(x,y, t),

Θ(x,y, t) = 0, (x,y, t) ∈ ∂Ξ× (0,T ], and Θ(x,y,0) = CI(x,y), (x,y) ∈ Ξ,
(1)
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where 0 < α,2γ,2β < 1,1 < 2ζ ,2ς < 2, in which Ξ = (0,H)× (0,L)⊂R2, CI and F are known smooth
functions and show source terms. Here, Ψγ ,Ψβ ,Ψζ ,Ψς are the non-negative weight coefficients.

The Caputo fractional derivative is defined in [22], as follows

C
0D

ζ

t Θ(t) =
1

Γ(n−ζ )

∫ t

0

Θ(n)(τ)dτ

(t− τ)ζ+1−n
, n−1 < ζ < n, n ∈ N,

where Γ denoting the Gamma function. The Riesz fractional derivative on a finite domain [22, 26], is
given by:

∂ 2η Θ

∂ |x|2η =− 1
2cos(ηπ)

(
0D

2η
x Θ+ xD

2η

H Θ

)
,

for n−1 < 2η < n,n ∈ N, and the operators 0D
2η
z Θ, and zD

2η

D aΘ are defined as

0D
2η
z Θ = zD

2η

L Θ =
1

Γ(n−2η)

∂ n

∂ zn

∫ z

0
(z−χ)n−2η−1

Θ(χ)dχ,

zD
2η

D Θ = zD
2η

R Θ =
(−1)n

Γ(n−2η)

∂ n

∂ zn

∫ D

z
(χ− z)n−2η−1

Θ(χ)dχ.

The main contributions of this paper differ from the general timespace fractional diffusion equations
(TSFDEs) by focusing on a two-dimensional model that incorporates a two-sided for the spatial direction.
This adds greater generality for modeling complex diffusion processes. Moreover, the study presents
a non-standard procedures to error analysis through new techniques and results. This provides novel
methods for the analytical study of TSFDEs. The paper also features a subsection on computational
analysis, explaining the application of the spectral elements method, with Legendre polynomials as the
spatial basis. This provides insights into the process of implementing the method and solving our problem
numerically by means of the MATLAB software.

The rest of the study is organized as follows. Section 2 gives preliminary tools and background on
fractional derivative spaces. In Section 3, the Crank-Nicolson scheme is applied for time to approximate
the Caputo derivative. Further, a Galerkin variational formulation is derived to establish unconditional
stability for the semi-discrete scheme. In Section 4, the spectral element method based on Legendre
polynomials is employed in spatial direction, we obtain the fully Galerkin spectral element scheme. We
introduce a computational study concerning the implementation process. Next, the error analysis of the
fully discrete scheme is showcased. In Section 5, two test problems are illustrated to validate the effec-
tiveness of our numerical method, with simulated graphs. Finally, the results obtained are summarized
in Section 6.

2 Preliminaries and backgrounds

To begin with, we present notions and lemmas for the theoretical studies.

2.1 Fractional derivative spaces and properties

We present definitions and lemmas concerned norms and semi-norms related to the fractional spaces.
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Definition 1 ([7, 24]). For ξ > 0, we define the semi-norm and norm respectively as

|Θ|
J

ξ

L(Ξ)
:=
(
‖xD

ξ

LΘ‖2
L2(Ξ)

+‖yD
ξ

LΘ‖2
L2(Ξ)

)1/2
, ‖Θ‖

J
ξ

L(Ξ)
:=
(
‖Θ‖2

L2(Ξ)
+ |Θ|2

J
ξ

L(Ξ)

)1/2

,

and denote J
ξ

L(Ξ)(J
ξ

L,0(Ξ)) as the closure of C∞(Ξ)(C∞
0 (Ξ)) with respect to ‖ · ‖

J
ξ

L(Ξ)
.

Definition 2 ([7, 24]). For ξ > 0, we define the semi-norm and norm respectively as

|Θ|
J

ξ

R(Ξ)
:=
(
‖xD

ξ

RΘ‖2
L2(Ξ)

+‖yD
ξ

RΘ‖2
L2(Ξ)

)1/2
, ‖Θ‖

J
ξ

R(Ξ)
:=
(
‖Θ‖2

L2(Ξ)
+ |Θ|2

J
ξ

R(Ξ)

)1/2

,

and denote J
ξ

R(Ξ)(J
ξ

R,0(Ξ)) as the closure of C∞(Ξ)(C∞
0 (Ξ)) with respect to ‖ · ‖

J
ξ

R(Ξ)
.

Definition 3 ([7, 24]). For ξ > 0,ξ 6= n− 1
2 ,n ∈ N, we define the semi-norm and norm respectively as

|Θ|
J

ξ

S (Ξ)
=
(∣∣∣(xD

ξ

LΘ, xD
ξ

RΘ

)∣∣∣+ ∣∣∣(yD
ξ

LΘ,yDξ

RΘ

)∣∣∣)1/2
, ‖Θ‖

J
ξ

S (Ξ)
:=
(
‖Θ‖2

L2(Ξ)
+ |Θ|2

J
ξ

S (Ξ)

)1/2

,

and denote J
ξ

S (Ξ)(J
ξ

S,0(Ξ)) as the closure of C∞(Ξ)(C∞
0 (Ξ)) with respect to ‖ · ‖ξ

S (Ξ).

Definition 4 ([7, 24]). For η > 0, we define the semi-norm and norm respectively as

|Θ|Hη (Ξ) :=
∥∥|ξ |ηF (Θ̂)(ξ )

∥∥
L2(Ξ)

, ‖Θ‖Hη (Ξ) :=
(
‖Θ‖2

L2(Ξ)
+ |Θ|2Hη (Ξ)

)1/2
,

where F (Θ̂)(ξ ) is the Fourier transform of Θ̂ and Θ̂ is the zero extension of Θ outside Ξ, and denote
Hη(Ξ)

(
Hη

0 (Ξ)
)

as the closure of C∞(Ξ)(C∞
0 (Ξ)) with respect to ‖ · ‖Hη (Ξ).

Definition 5 ([7, 24]). We define the spaces Jκ
L,0(Ξ),J

κ
R,0(Ξ),J

κ
S,0(Ξ) and Hκ

0 (Ξ) with respect to related
norms, as the closer of C∞

0 (Ξ).

Lemma 1 ([24]). Let ξ > 0,Θn ∈ J
ξ

L,0∩J
ξ

R,0, therefore(
xD

ξ

LΘ, xD
ξ

RΘ

)
L2(Ξ)

=
(

xD
ξ

LΘ̂, xD
ξ

RΘ̂

)
L2(R2)

= cos(ξ π)
∥∥∥xD

ξ

LΘ̂

∥∥∥
L2(R2)(

yD
ξ

LΘ, yD
ξ

RΘ

)
L2(Ξ)

=
(

yD
ξ

LΘ̂, yD
ξ

RΘ̂

)
L2(R2)

= cos(ξ π)
∥∥∥yD

ξ

LΘ̂

∥∥∥
L2(R2)

,

where Θ̂ is the zero extension of Θ outside Ξ.

Lemma 2 ([6]). For all κ > 0,κ 6= n− 1
2 ,n ∈ N, let Θ ∈ Jκ

L,0(Ξ)∩Jκ
R,0(Ξ)∩Hκ

0 (Ξ). Then we have

v1|Θ|Hκ (Ξ) ≤max
{
|Θ|Jκ

L (Ξ)
, |Θ|Jκ

R(Ξ)

}
≤ v2|Θ|Hκ (Ξ),

where v1 and v2 are positive constants which are independent of Θ.

Lemma 3 ([7, 24]). For all κ > 0, the spaces Jκ
L
(
R2
)
,Jκ

R
(
R2
)
,Jκ

S

(
R2
)

and Hκ
(
R2
)

are equal with
respected semi-norms and norms. For κ > 0,κ 6= n− 1

2 ,n ∈ N, spaces Jκ
L,0(Ξ),J

κ
R,0(Ξ),J

κ
S,0(Ξ) and

Hκ
0 (Ξ) are equal with respected semi-norms and norms.
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Lemma 4 ([7, 24]). For Θ ∈ Jκ
L,0(Ξ),0 < p < κ then, there exist reels vq,v> 0 and vi > 0, i = 1,2,3,4,

such that

‖Θ‖L2(Ξ) ≤ v|Θ|Jκ
L (Ξ)

, |Θ|Jv
L(Ξ)
≤ v|Θ|Jκ

L (Ξ)
, ‖Θ‖Jκ

L (Ξ)
≤ vq|Θ|Jκ

L (Ξ)
,

‖Θ‖L2(Ξ) ≤ v1
∥∥xD

p
LΘ
∥∥

L2(Ξ)
≤ v2 ‖xD

κ
LΘ‖L2(Ξ) , ‖Θ‖L2(Ξ) ≤ v3

∥∥yD
p
LΘ
∥∥

L2(Ξ)
≤ v4 ‖yD

κ
LΘ‖L2(Ξ) ,

In the same way, the results mentioned above apply to the spaces. Jκ
R,0(Ξ),J

κ
S,0(Ξ) and Hκ

0 (Ξ)
(
v 6= n− 1

2

)
.

Lemma 5 ([7, 24]). If ξ ∈ (0,1),e, f ∈ J
2ξ

L (Ξ) and e|
∂Ξ

= 0, and f |
∂Ξ

= 0, then(
xD

2ξ

R e, f
)
=
(

xD
ξ

Re,xD
ξ

L f
)
,
(

yD
2ξ

L e, f
)
=
(

yD
ξ

Le,yD
ξ

R f
)
,(

yD
2ξ

R e, f
)
=
(

yD
ξ

Re,yD
ξ

L f
)
,
(

yD
2ξ

L e, f
)
=
(

yD
ξ

Le,yD
ξ

R f
)
.

Lemma 6 ([23]). (Discrete Gronwall Inequality). Let Em denote a non-negative sequence, and let the
sequence wm satisfy {

w0 ≤ x0,

wm ≤ x0 +∑
m−1
i=0 bi +∑

m−1
i=0 Eiwi, m≥ 1.

If x0 ≥ 0 and b0 ≥ 0, we have wm ≤
(
x0 +∑

m−1
i=0 bi

)
exp
(
∑

m−1
i=0 Ei

)
, m≥ 1.

2.2 Legendre polynomials and properties

The Legendre polynomials are an important special case of the Jacobi polynomials. We now introduce a
set of fundamental formulas for Legendre polynomials [29, 30]. The Legendre polynomials Lp(x), p =
0,1, . . ., are the eigenfunctions of the singular Sturm-Liouville problem:((

1− x2)L′p(x))′+λpLp(x) = 0, λp = p(p+1),

or equivalently (
1− x2)L′′p(x)−2xL′p(x)+ p(p+1)Lp(x) = 0.

If Lp(x) is normalized so that Lp(1)= 1, then the Legendre polynomials has the following expansion:

Lp(x) =
1
2p

[p/2]

∑
i=0

(−1)i
(

p
i

)(
2p−2i

p

)
xp−2i, p≥ 0,

where [p/2] denotes the integral part of p/2. The Legendre polynomials satisfy the three-term recurrence
relation and Rodrigues’ formula, respectively:

Lp+1(x) =
2p+1
p+1

xLp(x)−
p

p+1
Lp−1(x), Lp(x) =

1
2p p!

dp

dxp

[(
x2−1

)p
]
, p≥ 0,

where the first few Legendre polynomials are:

L0(x) = 1, L1(x) = x, L2(x) =
1
2
(
3x2−1

)
, L3(x) =

1
2
(
5x3−3x

)
.
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It has symmetric property:

Lp(−x) = (−1)pLp(x), Lp(±1) = (±1)p, p≥ 0.

Hence, Lp(x) is an odd (resp. even) function, if n is odd (resp. even). Moreover, it is uniformly bound:

|Lp(x)| ≤ 1, ∀x ∈ [−1,1], p≥ 0.

3 Formulation of the time discrete scheme

In this section, we will use the finite difference method in the temporal direction. Let ∆t = T
N be

the time step and tn = n∆t such that n = 0,1, . . . ,N ,N ∈ N+. For Θ ∈ C(Ξ× [0,T ]), we consider
Θn(·) = Θ(·, tn).

To approximate the fractional Caputo derivative, we bring to the standard L1 formula on a uniform
mesh, then C

0D
α
t Θ(t) at t = tn, for n = 1,2, . . . ,N can be approximated by

Yα
t Θ

n =
1

Γ(2−α)

[
dn

1Θ
n +

n−1

∑
i=1

(
dn

i+1−dn
i
)

Θ
n−i−dn

nΘ
0

]
=

∆t−α

Γ(2−α)

n

∑
i=0

qn
i Θ

i, (2)

where ∆t−αqn
n−i = dn

i+1−dn
i , 1≤ i≤ n−1, and

∆t−αqn
0 =−dn

n , qn
n = 1, and dn

i =
(tn− tn−i)

1−α − (tn− tn−i+1)
1−α

∆t
, i≥ 1.

We can get via the mean value theorem that

∆t−α = dn
1 ≤ dn

i ≤ dn
i+1, i≥ 2. (3)

Lemma 7 ([31]). Let Θ∈C2(0,T ]
⋂

C(0,T ], suppose
∣∣dpΘ

dt

∣∣≤C1
(
1+ tη−l

)
for p= 0,1,2 and 0<η < 1.

Then there exists C2, where the truncation error of the L1 formula (2) satisfies

|Rn
1|=

∣∣c
0D

η

t Θ(tn)−Yη

t Θ(tn)
∣∣≤C2∆t2−η .

We conclude the discrete scheme in the time direction at the point t = tn as

Yα
t Θ

n = Ψ1,x
∂ 2γΘn

∂ |x|2γ
+ϒ1,y

∂ 2β Θn

∂ |y|2β
+Ψ2,x

∂ 2ζ Θn

∂ |x|2ζ
+ϒ2,y

∂ 2ς Θn

∂ |y|2ς
+Fn +Rn

1, (4)

Eliminating the small term Rn
1, we have

Yα
t θ

n = Ψ1,x
∂ 2γθ n

∂ |x|2γ
+ϒ1,y

∂ 2β θ n

∂ |y|2β
+Ψ2,x

∂ 2ζ θ n

∂ |x|2ζ
+ϒ2,y

∂ 2ς θ n

∂ |y|2ς
+Fn, (5)

The Galerkin variational formulation of Eq. (5) is as follows:
Find θ n ∈ H

ζ

0 ∩H
ς

0 ⊂ H
γ

0∩H
β

0 verified

(Yα
t θ

n,e)+A(θ n,e) = (Fn,e) , ∀e ∈ H
ζ

0 ∩H
ς

0, (6)
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where

A(e, f ) =
ϒ1,x

2cos(γπ)

[(
xD

2γ

L e, f
)
+
(

xD
2γ

R e, f
)]

+
Ψ1,y

2cos(βπ)

[(
yD

2β

L e, f
)
+
(

yD
2β

R e, f
)]

+
ϒ2,x

2cos(ζ π)

[(
xD

2ζ

L e, f
)
+
(

xD
2ζ

R e, f
)]

+
Ψ2,y

2cos(ςπ)

[(
yD

2ς

L e, f
)
+
(

yD
2ς

R e, f
)]

,

and A can be expressed as

A(e, f ) =
ϒ1,x

2cos(γπ)

[(
xD

γ

Le, xD
γ

R f
)
+
(

xD
γ

Re, xD
γ

L f
)]

+
Ψ1,y

2cos(βπ)

[(
yD

β

L e, yD
β

R f
)
+
(

yD
β

Re, yD
β

L f
)]

+
ϒ2,x

2cos(ζ π)

[(
xD

ζ

Le, xD
ζ

R f
)
+
(

xD
ζ

Re, xD
ζ

L f
)]

+
Ψ2,y

2cos(ςπ)

[(
yD

ς

Le, yD
ς

R f
)
+
(

yD
ς

Re, yD
ς

L f
)]
.

Theorem 1. For θ n ∈ H
ζ

0 ∩H
ς

0 solution of the time discrete scheme (6) there exists H1, H2 > 0, where
we have the following estimation

‖θ n‖L2(Ξ) ≤H1
∥∥θ

0∥∥
L2(Ξ)

+H2 max
0≤ j≤n

∥∥F j
∥∥

L2(Ξ)
.

Proof. Replacing e = θ n in Eq. (6), we get

(Yα
t θ

n,θ n)+A(θ n,θ n) = (Fn,θ n) . (7)

According to Lemma 1, A(θ n,θ n)≥ 0, then

dn
1‖θ n‖2

L2(Ξ) ≤ dn
n(θ

0,θ n)−
n−1

∑
i=1

(
dn

i+1−dn
i
)
(θ n−i,θ n)+Γ(2−α)(Fn,θ n) .

From (3), and by employing the Cauchy-Schwarz, Young inequality, we obtain

‖θ n‖L2(Ξ) ≤
dn

n

dn
1

∥∥θ
0∥∥

L2(Ξ)
+

1
dn

1

n−1

∑
i=1

(
dn

i −dn
i+1
)∥∥θ

n−i
∥∥

L2(Ξ)
+

Γ(2−α)

dn
1

‖Fn‖L2(Ξ) ,

which is equivalent to

‖θ n‖L2(Ξ) ≤
dn

n

dn
1

∥∥θ
0∥∥

L2(Ξ)
+

Γ(2−α)

dn
1

‖Fn‖L2(Ξ)+
1
dn

1

n−1

∑
i=1

(
dn

n−i−dn
n−i+1

)∥∥θ
i
∥∥

L2(Ξ)
.

Using (3) and Lemma 6, we conclude

‖θ n‖L2(Ξ) ≤
(

dn
n

dn
1

∥∥θ
0∥∥

L2(Ξ)
+

Γ(2−α)

dn
1

‖Fn‖L2(Ξ)

)
exp

(
1
dn

1

n−1

∑
i=1

(
dn

n−i−dn
n−i+1

))
.

We obtain

‖θ n‖L2(Ξ) ≤
dn

n

dn
1

exp
(

1
dn

1
(dn

1 −dn
n)

)∥∥θ
0∥∥

L2(Ξ)
+

Γ(2−α)

dn
1

exp
(

1
dn

1
(dn

1 −dn
n)

)
max

0≤ j≤n

∥∥F j
∥∥

L2(Ξ)
.
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Using the mean value theorem, we get

dn
1 −dn

n = ∆t−α(1−n1−α +(n−1)1−α)≤ ∆t−α ,

dn
n

dn
1
= (n1−α − (n−1)1−α)≤ 1−α.

Finally, we get

‖θ n‖L2(Ξ) ≤ exp(1)(1−α)
∥∥θ

0∥∥
L2(Ξ)

+ exp(1)T α
Γ(2−α) max

0≤ j≤n

∥∥F j
∥∥

L2(Ξ)
.

The proof is completed.

4 The fully discrete method

This section focuses on the computational study and error analysis.

4.1 Computational analysis

The problem in the implementation process of the spectral element method is to compute the bilinear
form A(θn,ξ ). This leads us to evaluate (xD

2η

R Un,ξ ) and (xD
2η

R Un,ξ ). Let m= 1,2, and m−1< 2η <m.
We will divide the domain into non-overlapping K elements. First, we introduced some backgrounds.

Lemma 8 ([29]). Let us denote gp =
1√

4p+6 , ψp(x) = gp (Lp(x)−Lp+2(x)) for 1 ≤ x ≤ −1, and bip =∫ 1
−1 (ψp(x),ψi(x))dx. Then

bip = bpi =


gpgi

( 2
2i+1 +

2
2i+5

)
, p = i,

−gpgi
2

2p+1 , p = i+2,

0, Otherwise.

Lemma 9 ([11]). For all η > 0, we have

−1D
η
wL j(w) =

Γ( j+1)
Γ( j−η +1)

(1+w)−ηPη ,−η

j (w), −1≤ w≤ 1,

wD
η

1 L j(w) =
Γ( j+1)

Γ( j−η +1)
(1−w)−δ Pη ,−η

j (w), −1≤ w≤ 1,

where Pη1,η2
j (w),(η1,η2 >−1) are Jacobi polynomials.

For the 1D case, we give the approximation of the solution θ n as:

θ (x, tn) =
N

∑
j=0

θ (x j, tn)ψ j(x), n = 1,2, . . . ,N .



G-SEM for Riesz fractional diffusion equation 289

Therefore we compute
(

xD
2η

L θ n,ξ
)

and
(

xD
2η

R θ n,ξ
)

as follows

(
xD

2η

L θ
n,ξ
)
=

K

∑
e=1

(
xD

2η

L θ
n,ξ
)

Ξe

=
K

∑
e=1

(
e−1

∑
q=1

∫
Ξe

1
Γ(m−2η)

dm

dxm

∫ xq

xq−1

(x− s)m−2η−1
θ

n(s)dsξ dΞe +
(
xe−1D

2η
x θ

n,ξ
)

Ξe

)

=
K

∑
e=1

(
e−1

∑
q=1

∫
Ξe

1
Γ(m−2η)

dm

dxm

∫ xq

xq−1

(x− s)m−2η−1
θ

n(s)dsξ dΞe +
(
xe−1D

η
x θ

n, xD
η
xeξ
)

Ξe

)
,

and(
xD

2η

R θ
n,ξ
)
=

K

∑
e=1

(
xD

2η

R θ
n,ξ
)

Ξe

=
K

∑
e=1

((
xD

2η
xe θ

n,ξ
)

Ξe
+

K

∑
u=e+1

∫
Ξe

(−1)m

Γ(m−2η)

dm

dxm

∫ xu

xu−1

(s− x)m−2η−1
θ

n(s)dsξ dΞe

)

=
K

∑
e=1

((
xD

η
xe θ

n,xe−1D
η
x ξ
)

Ξe
+

K

∑
u=e+1

∫
Ξe

(−1)m

Γ(m−2η)

dm

dxm ×
∫ xu

xu−1

(s− x)m−2η−1
θ

n(s)dsξ dΞe

)
.

Therefore we need to calculate
(
xe−1D

η
x L j(w), xD

η
xeLk(w)

)
Ξe

.
As in [5], for he = xe− xe−1 be the length of the element e, the map function from the e into [−1,1],

and its inverse can be given by

x(z) =
1
2
[(xe− xe−1)z+(xe + xe−1)] , −1≤ z≤ 1, z(x) =

2
he

(x− xe−1)−1.

Therefore, we have

be
ip =

∫ xe

xe−1

ψi(x)ψp(x)dx =
he

2

∫ 1

−1
ψi(z)ψp(z)dz.

Then we get

xe−1D
η
x Li(w) =

1
Γ(1−η)

d
dx

∫ x

xe−1

(x− s)−ηLi(ŝ)ds =
(

he

2

)−η

−1D
η
µLi(w), 0 < η < 1,

xD
η
xe
Li(w) =

−1
Γ(1−η)

d
dx

∫ xe

x
(s− x)−ηLi(ŝ)ds =

(
he

2

)−η

wD
η

1 Li(w), 0 < η < 1,

where −1≤ ŝ≤ 1. This gives(
xe−1D

η
x L j(w), xD

η
xe
Lk(w)

)
Ξe

=
∫ xe

xe−1
xe−1D

η
x L j(w)xD

η
xe
Lk(w)dx =

(
he

2

)1−2η ∫ 1

−1
−1D

η
wL j(w)wD

η

1 Lk(w)dw

=

(
he

2

)1−2η
Γ( j+1)

Γ( j−η +1)
Γ(k+1)

Γ(k−η +1)

∫ 1

−1
(1+w)−η(1−w)ηPη ,−η

j P−η ,η
k dw

=

(
he

2

)1−2η
Γ( j+1)

Γ( j−η +1)
Γ(k+1)

Γ(k−η +1)

N

∑
l=0

WlP
η ,−η

j (wl)P
−η ,η
k (wl) .
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where {Wl}N
l=0 are the weights functions and {wl}N

l=0 are the Jacobi-Gauss-Lobatto quadrature [30].
In the 2D case, we give the approximation of the solution θ n as:

θ
n (x,y, tn) =

N

∑
i=0

N

∑
j=0

θ
n (xi,y j, tn)ψi(x)ψ j(y), 1≤ n≤N .

The polynomials of the order no more than N are the selected basis, then the element matrices are given
by

bQe = bx⊗by, DQe
lx = De

lx⊗by, DQe
rx = De

rx⊗by,

GQel
x = Gel

x ⊗by, LQer
x = Ler

x ⊗by,

where

(De
lx)i j =

∫ xe

xe−1

xe−1Dη
x ψ

(e)
j (x)xDη

xe
ψ

(e)
i (x)dx, (De

rx)i j =
∫ xe

xe−1
xDη

xe
ψ

(e)
j (x)xe−1Dη

x ψ
(e)
i (x)dx,(

Gel
x

)
i j
=
∫ xe

xe−1

1
Γ(m−2η)

dm

dxm

∫ xl

xl−1

(x− s)m−2η−1
ψ

(l)
j (s)dsψ

(e)
i (x)dx,

(Ler
x )i j =

∫ xe

xe−1

(−1)m

Γ(m−2η)

dm

dxm

∫ xr

xr−1

(s− x)m−2η−1
ψ

(r)
j (s)dsψ

(e)
i (x)dx.

Using integration by parts recursively, we can directly compute Gel and Ler. The same process is used
to calculate (yD

2η

R θn,ξ ) and (yD
2η

R θn,ξ ), also to conclude the element matrices.

4.2 Error estimation

This subsection showcases the error analysis of the fully Galerkin spectral element method. For that, we
declare for some notions and lemmas. We denote ‖ · ‖L2(Ξ) = ‖ · ‖. We define the space V 0

h as

V 0
h =

{
w ∈ H

ζ

0 ∩H
ς

0 : w|
Ξe
∈ PN

}
,

where PN is the space of polynomials of degree no more than N ∈ N.
Let Pζ ,ς ,0

h be the orthogonal projection operator, map from H
ζ

0 (Ξ)∩H
ς

0(Ξ)→ V 0
h is defined as

A
(

Θ−Pζ ,ς ,0
h Θ,ξ

)
= 0, ∀ξ ∈ V 0

h . (8)

Additionally, we introduce the distributed seminorm | · |ζ ,ς and the distributed norm ‖ · ‖ζ ,ς as follows:

|Θ|ζ ,ς =
(∥∥∥0D

ζ
x Θ

∥∥∥2

L2(Ξ)
+
∥∥0D

ς
y Θ
∥∥2

L2(Ξ)

)1/2

, ‖Θ‖ζ ,ς =
(
‖Θ‖2

L2(Ξ)+ |Θ|
2
ζ ,ς

)1/2
.

Lemma 10. For Θ ∈ Hκ1
0 ∩H

κ2
0 ,0 < κ1,κ2 ≤ 1, there exists a positive constant k, where we have the

following estimation
‖Θ‖κ1,κ2 ≤ k|Θ|κ1,κ2 .
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Proof. According to Lemma 4, we obtain

‖Θ‖2
κ1,κ2

= ‖Θ‖2 +‖0D
ζ
x Θ‖2 +‖0D

κ2
y Θ‖2

≤ (1+ k1)‖0D
κ1
x Θ‖2

+(1+ k2)
∥∥0D

κ2
y Θ
∥∥2

≤ k
(
‖0D

κ1
x Θ‖2

+
∥∥0D

κ2
y Θ
∥∥2
)

= k|Θ|2κ1,κ2
.

Lemma 11. For Θ ∈ Hκ1
0 ∩H

κ2
0 ,0 < κ1,κ2 ≤ 1, there exists a positive constant k, where we have the

following estimation
‖Θ‖κ1,κ2 ≤ k‖Θ‖

H(Ξ)max(κ1 ,κ2) .

Proof. According to Lemma 4, we can get

|Θ|2κ1,κ2
= ‖0D

κ1
x Θ‖2

+
∥∥0D

κ2
y Θ
∥∥2

≤ k̄
(
‖0D

max(κ1,κ2)
x Θ‖2 +‖0D

max(κ1,κ2)
y Θ‖2

)
= k̄|Θ|2

JL(Ξ)
max(κ1 ,κ2)

.

Using Lemma 2, we conclude

‖Θ‖2
κ1,κ2
≤ |Θ|2κ1,κ2

≤ k|Θ|2
H(Ξ)max(κ1 ,κ2)

,

and the proof is completed.

Theorem 2. The bilinear form A(·, ·) is coercive and continuous.

Proof. Similar to Theorem 3,1 in [3], we obtain the continuity and the coercivity, by combining Lemmas
1 and 4, and 10, respectively.

Lemma 12. Letξ n ∈ V 0
h , then the bilinear form A(·, ·) satisfies the following relations

2A

(
ξ

n,
n

∑
i=0

qn
i ξ

i

)
= A(ξ n,ξ n)+

n−1

∑
i=0

qn
i A
(
ξ

i,ξ i)− n−1

∑
i=0

qn
i A
(
ξ

i−ξ
n,ξ i−ξ

n) , (9)

and

2A

(
ξ

n,
n

∑
i=0

qn
i ξ

i

)
≥ A(ξ n,ξ n)+

n−1

∑
i=0

qn
i A
(
ξ

i,ξ i) . (10)

Proof. Note that

A

(
ξ

n,
n

∑
i=0

qn
i ξ

i

)
= A(ξ n,ξ n)+A

(
ξ

n,
n−1

∑
i=0

qn
i ξ

i

)

= A(ξ n,ξ n)+qn
n−1A

(
ξ

n−1,ξ n−1)−qn
n−1B

(
ξ

n−1,ξ n−1)+A

(
ξ

n,
n−1

∑
i=0

qn
i ξ

i

)

= A(ξ n,ξ n)+qn
n−1A

(
ξ

n−1,ξ n−1)−qn
n−1A

(
ξ

n−1−ξ
n,ξ n−1)+A

(
ξ

n,
n−2

∑
i=0

qn
i ξ

j

)
.

(11)
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Hence

A

(
ξ ,

n

∑
i=0

bn
i ξ

i

)
−qn

n−1A
(
ξ

n,ξ n−ξ
n−1)= A(ξ n,ξ n)+qn

n−1A
(
ξ

n−1,ξ n−1)
−qn

n−1A
(
ξ

n−1−ξ
n,ξ n−1−ξ

n)+A

(
ξ

n,
n−2

∑
i=0

qn
i ξ

i

)
, (12)

Repeating the processes (11)-(12), we get

A

(
ξ

n,
n

∑
i=0

qn
i ξ

i

)
−

n−1

∑
i=0

qn
i A
(
ξ

n,ξ n−ξ
i)= A(ξ n,ξ n)+

n−1

∑
i=0

qn
i A
(
ξ

i,ξ i)
−

n−1

∑
i=0

qn
i A
(
ξ

i−ξ
n,ξ i−ξ

n) . (13)

As

−
n−1

∑
i=0

qn
i = qn

n,

from (13) we conclude

A

(
ξ

n,
n

∑
i=0

qn
i ξ

i

)
=

1
2

(
A(ξ n,ξ n)+

n−1

∑
i=0

qn
i A
(
ξ

i,ξ i)− n−1

∑
i=0

qn
i A
(
ξ

i−ξ
n,ξ i−ξ

n)) .

Using the facts −qn
i > 0, and A

(
ξ i−ξ n,ξ i−ξ n

)
≥ 0, i = 0, . . . ,n−1 leads to (10).

Lemma 13 ([2]). Suppose e and d are real numbers with 0 ≤ e ≤ d. Then, there exists a positive
constant Q independent of d, such that for any function Θ belonging to both He

0(Ξ) and Hd(Ξ), the
estimate inequality holds: ∥∥∥Θ−P1,0

h Θ

∥∥∥
He(Ξ)

≤Qhmin(d,M)−e
l Ne−d‖Θ‖Hd(Ξ).

The diameters hl of the element l satisfies h≤ hl ≤ qh for all l, where h and q are positive constants.

Lemma 14. Consider real numbers ζ , ς , and L satisfying 0 < ζ ,ς < 1 < L, then there exists a positive
constant Q independent of N such that, for any function Θ ∈ H

ζ

0 (Ξ)∩H
ς

0(Ξ)∩HL(Ξ), the following
estimate holds:

‖Θ−Pζ ,ς ,0
h Θ‖ζ ,ς ≤Q

(
hmin(d,M)−max(ζ ,ς)

l Nmax(ζ ,ς)−L
)
‖Θ‖HL(Ξ).

Proof. Based on Theorem 2, we use the V-elliptic of A , then

‖Θ−Pζ ,ς ,0
h Θ‖2

ζ ,ς ≤QA
(

Θ−Pζ ,ς ,0
h Θ,Θ−Pζ ,ς ,0

h Θ

)
.

Eq. (8) gives
‖Θ−Pζ ,ς ,0

h Θ‖2
ζ ,ς QA

(
Θ−Pζ ,ς ,0

h Θ,Θ−Θh

)
, Θh ∈ V 0

h .
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Replacing Θh = P1,0
h Θ, using the continuity of A , and from the Theorem 2, we have

‖Θ−Pζ ,ς ,0
h Θ‖ζ ,ς ≤Q‖Θ−Pζ ,ς ,0

h Θ‖ζ ,ς‖Θ−P1,0
h Θ‖ζ ,ς .

According to Lemma 10, we obtain

‖Θ−Pζ ,ς ,0
h Θ‖ζ ,ς ≤Q‖Θ−Pζ ,ς ,0

h Θ‖ζ ,ς‖Θ−P1,0
h Θ‖HL(Ξ).

Applying Lemma 13, we conclude

‖Θ−Pζ ,ς ,0
h Θ‖ζ ,ς ≤Q

(
hmin(d,M)−max(ζ ,ς)

l Nmax(ζ ,ς)−L
)
‖Θ‖HL(Ξ).

Theorem 3. Let Θ be the solution of problem (1), where Θ ∈ H
ζ

0 (Ξ)∩H
ς

0(Ξ)∩HL(Ξ) and θ n be the
solution of the fully discrete scheme. Then, there exists Q > 0, independent of n, ∆t, and N, such that

‖en‖2 ≤Q
(

∆t4−2α +N2max(ζ ,ς)−2L
)
. (14)

Proof. Let Z n = Θn−Pζ ,ς ,0
h Θn, E n = Pζ ,ς ,0

h Θn−θ n, and en = E n +Z n . Assume that e0=0. Using
Eqs. (4) and (6), we get

(Yα
t Θ

n,ξ )+A(Θn,ξ ) = (Fn,ξ )+(Rn
1,ξ ) , ∀ξ ∈ V 0

h , (15)

(Yα
t θ

n,ξ )+A(θ n,ξ ) = (Fn,ξ ) , ∀ξ ∈ V 0
h . (16)

Then, we have
(Yα

t (Θ
n−θ

n),ξ )+A(Θn−θ
n,ξ ) = (Rn

1,ξ ) , ∀ξ ∈ V 0
h . (17)

Using the relation (8), we obtain

(Yα
t E n,ξ )+A(E n,ξ ) = (Rn

1,ξ )− (Yα
t Z n,ξ ) , ∀ξ ∈ V 0

h . (18)

Replacing ξ =Yα
t E n, we get

‖Yα
t E n‖2 +A(E n,Yα

t E n) = (Rn
1,Y

α
t E n)− (Yα

t Z n,Yα
t E n) . (19)

Using

|(Rn
1,Y

α
t E n)| ≤ 1

2
‖Rn

1‖
2 +

1
2
‖Yα

t E n‖2 ,

|(Yα
t Z n,Yα

t E n)| ≤ 1
2
‖Yα

t Z n‖2 +
1
2
‖Yα

t E n‖2 ,

we obtain

A

(
E n,

n

∑
i=0

qn
i E

i

)
≤ ∆tαΓ(2−α)

2
‖Rn

t ‖
2 +

∆tαΓ(2−α)

2
‖Yα

t Z n‖2 .
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According to Lemma 12, we have

A(E n,E n)≥−
n−1

∑
i=0

qn
i A
(
E i,E i)+∆tα

Γ(2−α)‖Rn
t ‖

2 +∆tα
Γ(2−α)‖Yα

t Z n‖2 . (20)

Lemmas 7 and 13 lead to the following error bounds,

‖Rn
t ‖

2
0 ≤C1∆t4−2α max

0≤t≤T
‖Θtt‖2 ,

‖Yα
t Z n‖2 ≤

∥∥C
0D

α
t Z n

∥∥2
+C∆t4−2α max

0≤t≤T
‖Ztt‖2

≤C2

(
N2max(ζ ,ς)−2L∥∥C

0D
α
t Θ(tn)

∥∥2

HL(Ξ)
+∆t4−2α

)
,∥∥C

0D
α
t Z n−Yα

t Z n
∥∥≤C∆t2−α max

0≤t≤T
‖Ztt‖ ,

A
(
E 0,E 0)≤Ca

∥∥E 0∥∥2
ζ ,ς
≤C3

(
N2max(ζ ,ς)−2L ‖Θ(t0)‖2

HL(Ξ)

)
.

Then the estimate (20) leads to

A(E n,E n)≤−C3qn
0

(
N2max(ζ ,ς)−2L ‖Θ(t0)‖2

HL(Ξ)

)
−

n−1

∑
i=1

qn
i A
(
E i,E i)

+Γ(2−α)∆tαC1∆t4−2α +Γ(2−α)∆tαC2

(
N2max(ζ ,ς)−2L∥∥C

0D
α
t Θ(tn)

∥∥2

HL(Ξ)
+∆t4−2α

)
,

≤−C3qn
0Γ(2−α)

(
N2max(ζ ,ς)−2L ‖Θ(t0)‖2

HL(Ξ)

)
+C∗Γ(2−α)∆tα

(
∆t4−2α +N2max(ζ ,ς)−2L∥∥C

0D
α
t Θ(tn)

∥∥2

HL(Ξ)

)
−

n−1

∑
i=1

qn
i A
(
E i,E i) .

(21)

For n = 1, we have

A
(
E 1,E 1)≤C3Γ(1−α)

(
N2max(ζ ,ς)−2L ‖Θ(t0)‖2

HL(Ξ)

)
+C∗Γ(1−α)∆tα

(
∆t4−2α +N2max(ζ ,ς)−2L max

0≤t≤T

∥∥C
0D

α
t Θ(t)

∥∥2

HL(Ξ)

)
.

Assume that n≤ l,(l ≥ 1), the inequality follows

A(E n,E n)≤C3Γ(1−α)
(

N2max(ζ ,ς)−2L ‖Θ(t0)‖2
HL(Ξ)

)
+C∗Γ(1−α)nα

∆tα

(
∆t4−2α +N2max(ζ ,ς)−2L max

0≤t≤T

∥∥C
0D

α
t Θ(t)

∥∥2

HL(Ξ)

)
.

(22)
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Then it follows from Eq. (21) that

A
(
E l+1,E l+1

)
≤C3(−ql+1

0 )Γ(2−α)

(
N2max(ζ ,ς)−2L ‖Θ(t0)‖2

HL(Ξ)

)
+C∗Γ(2−α)∆tα

(
∆t4−2α +N2max(ζ ,ς)−2L∥∥C

0D
α
t Θ(tn)

∥∥2

HL(Ξ)

)
−

l

∑
i=1

ql+1
i A

(
E i,E i)

≤C3(−ql+1
0 )Γ(2−α)

(
N2max(ζ ,ς)−2L ‖Θ(t0)‖2

HL(Ξ)

)
+C∗Γ(2−α)∆tα

(
∆t4−2α +N2max(ζ ,ς)−2L∥∥C

0D
α
t Θ(tn)

∥∥2

HL(Ξ)

)
−C3Γ(1−α)

l

∑
i=1

ql+1
i

(
N2max(ζ ,ς)−2L ‖Θ(t0)‖2

HL(Ξ)

)
−C∗Γ(1−α)

l

∑
i=1

ql+1
i iα ∆tα

(
∆t4−2α +N2max(ζ ,ς)−2L max

0≤t≤T

∥∥C
0D

α
t Θ(t)

∥∥2

HL(Ξ)

)
.

(23)

Since

−
l

∑
i=1

ql+1
i = 1+ql+1

0 , ql+1
0 =−

(
(l +1)1−α − l1−α

)
≤−(1−α)(l +1)−α ,

we can write

A
(
E l+1,E l+1

)
≤C3Γ(2−α)(−ql+1

0 )

(
N2max(ζ ,ς)−2L ‖Θ(t0)‖2

HL(Ξ)

)
+C∗Γ(2−α)∆tα

(
∆t4−2α +N2max(ζ ,ς)−2L∥∥C

0D
α
t Θ(tn)

∥∥2

HL(Ξ)

)
+C3Γ(1−α)(1+ql+1

0 )

(
N2max(ζ ,ς)−2L ‖Θ(t0)‖2

HL(Ξ)

)
+C∗Γ(1−α)(1+ql+1

0 )lα
∆tα

(
∆t4−2α +N2max(ζ ,ς)−2L max

0≤t≤T

∥∥C
0D

α
t Θ(t)

∥∥2

HL(Ξ)

)
.

(24)

Furthermore

A
(
E l+1,E l+1

)
≤C3Γ(1−α)

(
N2max(ζ ,ς)−2L ‖Θ(t0)‖2

HL(Ξ)

)
+C∗Γ(2−α)∆tα

(
∆t4−2α +N2max(ζ ,ς)−2L∥∥C

0D
α
t Θ(tn)

∥∥2

HL(Ξ)

)
+C∗Γ(1−α)(1+ql+1

0 )(l +1)α
∆tα

(
∆t4−2α +N2max(ζ ,ς)−2L max

0≤t≤T

∥∥C
0D

α
t Θ(t)

∥∥2

HL(Ξ)

)
.

(25)
Using ql+1

0 ≤−(1−α)(l +1)−α , we obtain directly

A
(
E l+1,E l+1

)
≤C3Γ(1−α)

(
N2max(ζ ,ς)−2L ‖Θ(t0)‖2

HL(Ξ)

)
+C∗Γ(1−α)(l +1)α

∆tα

(
∆t4−2α +N2max(ζ ,ς)−2L max

0≤t≤T

∥∥C
0D

α
t Θ(t)

∥∥2

HL(Ξ)

)
.

(26)

By A(E n,E n)≥Ca ‖E n‖2
ζ ,ς , the mathematical induction leads to

‖E n‖2
ζ ,ς ≤ C4

(
∆t4−2α +N2max(ζ ,ς)−2L

(
max

0≤t≤T

∥∥C
0D

α
t Θ(t)

∥∥2

HL(Ξ)
+‖Θ(t0)‖2

HL(Ξ)

))
. (27)
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Table 1: L∞ errors, C.O and CPU time for K values with T = 1, for Example 1.

K ‖θ n−Θn‖∞
C.O CPU time (s)

2 7.9870e−05 - 22.0155
3 2.0899e−05 3.3066 45.1623
4 5.0195e−06 4.9582 67.2784
5 1.8988e−06 4.3564 88.9169
6 5.3896e−07 6.9072 121.701

According to Lemma 14, we get

‖en‖2 ≤ ‖en‖2
ζ ,ς ≤ cq(‖E n‖2

ζ ,ς +‖Z
n‖2

ζ ,ς )≤Q1

(
∆t4−2α +N2max(ζ ,ς)−2L

)
+Q2N2max(ζ ,ς)−2L. (28)

We conclude
‖en‖2 ≤Q

(
∆t4−2α +N2max(ζ ,ς)−2L

)
. (29)

5 Numerical results

This section aims to validate the theoretical findings through numerical demonstrations implemented
using MATLAB software. Our numerical investigation encompasses the numerical solution, the error
measured in ‖·‖

∞
sense, and the convergence orders (C.O), as follows

C.O =
log(‖ error 1‖/‖ error 2‖)

log(κ1/κ2)
, (30)

where error = ‖Θn−θ n‖ is the error equation, and κ1 6= κ2.

Example 1. Considering the problem (1) in 1D case, as follow: Θ(x,0) = CI(x) = (x(x− 1))4, x ∈ Ξ,
with H = 1, Ψ1,x = Ψ2,x = 0.5, ϒ1,y = ϒ2,y = 0, and F is defined as

F(x, t) = (x(x−1))4
(

Γ(5)t4−α

Γ(5−α)
+

3Γ(3)t2−α

4Γ(3−α)

)
+0.5

(
t4 +

3t2

4

)
[sec(πγ)S1(x,2γ)+ sec(πζ )S1(x,2ζ )] ,

where

S1(x,ξ ) = (
12(x4−ξ +(1− x)4−ξ )

Γ(5−ξ )
− 240(x5−2ξ +(1− x)5−ξ )

Γ(6−ξ )

+
2160(x6−ξ +(1− x)6−ξ )

Γ(7−ξ )
− 10080(x7−ξ +(1− x)7−ξ )

Γ(8−ξ )
+

20160(x8−ξ +(1− x)8−ξ )

Γ(9−ξ )
).

We solve the problem (1) with T = 1, our focus is on the error estimations in the case of α = γ =

0.5, 2ζ = 1.2, by considering the exact solution Θ(x, t) =
(

t4 + 3t2

4

)
(x(1− x))4. Figure 1 presents the
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Figure 1: Analytical and numerical solution, with N = 6, K = 8 and ∆T = 2e−3, for T=1.

Table 2: L∞ errors, C.O and CPU time for ∆t values with T = 1 for Example 1.

∆t ‖θ n−Θn‖∞
C.O CPU time (s)

1/100 3.6670e−04 - 11.4103
1/144 2.1852e−04 1.4197 18.3197
1/256 9.9293e−05 1.3710 26.1170
1/400 4.9316e−05 1.5681 43.2582
1/576 2.8834e−05 1.4718 64.9263

Table 3: L∞ errors, C.O and CPU time for N values with T = 1 for Example 1.

N ‖θ n−Θn‖∞
C.O CPU time (s)

2 3.2905e−04 - 21.1972
3 8.2995e−05 1.9872 34.2031
4 1.7347e−05 3.8607 51.8751
5 3.0098e−06 6.0885 74.0185
6 7.2143e−07 6.4012 114.152

numerical solution with N = 6, K = 8, and ∆T = 2e−3, in the right panel. Additionally, the analytical
solution was displayed in the left panel. Table 1 shows the L∞ errors, the C.O, and CPU time, for different
values of K, where N = 6 and ∆t= 2e-3. For N = K = 8, the Table 2 presents the L∞ errors, the C.O, and
CPU time, for different values of ∆t. At the end, we take K=8 and ∆t= 2e-3, for different values of N,
the Table 3 gives the L∞ errors, the C.O, and CPU time.

Example 2. Consider problem (1) as a two-dimensional/two-sided fractional diffusion equation:
Θ(x,y,0) = CI(x,y) = (xy(x−1)(y−1))10, (x,y) ∈ Ξ, with H = L = 1, Ψ1,x = ϒ1,y = 0.5, Ψ2,x = ϒ2,y =
0.75, and F is defined as

F(x,y, t) = (xy(x−1)(y−1))10 Γ(α + γ +β +ζ + ς +1)tγ+β+ζ+ς

Γ(γ +β +ζ + ς +1)

+0.5tα+γ+β+ζ+ς [sec(πγ)S2(x,y,2γ)+ sec(πβ )S2(y,x,2β )]

+0.75tα+γ+β+ζ+ς [sec(πζ )S2(x,y,2ζ )+ sec(πς)S2(y,x,2ς)] ,
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Figure 2: Numerical solution at time t =0.5, 0.75, with T = 1.

where

S2(x,y,ξ ) =
{

Γ(11)
Γ(11−ξ )

[
x10−ξ +(1− x)10−ξ

]
− 10Γ(12)

Γ(12−ξ )

[
x11−ξ +(1− x)11−ξ

]
+

45Γ(13)
Γ(13−ξ )

[
x12−ξ +(1− x)12−ξ

]
− 120Γ(14)

Γ(14−ξ )

[
x13−ξ +(1− x)13−ξ

]
+

210Γ(15)
Γ(15−ξ )

[
x14−ξ +(1− x)14−ξ

]
− 252Γ(16)

Γ(16−ξ )

[
x15−ξ +(1− x)15−ξ

]
+

210Γ(17)
Γ(17−ξ )

[
x16−ξ +(1− x)16−ξ

]
− 120Γ(18)

Γ(18−ξ )

[
x17−ξ +(1− x)17−ξ

]
+

45Γ(19)
Γ(19−ξ )

[
x18−ξ +(1− x)18−ξ

]
− 10Γ(20)

Γ(20−ξ )

[
x19−ξ +(1− x)19−ξ

]
+

Γ(21)
Γ(21−ξ )

[
x20−ξ +(1− x)20−ξ

]}
y10(y−1)10.

We solve the problem (1) with T = 1. Figure 2 shows the graphs of numerical solution for N = 6,
∆t= 2e-4, and K = 16 at t = 0.5,0.75. Further, by considering the analytical solution given by Θ(x,y, t) =
tα+γ+β+ζ+ς (xy(1− x)(1− y))10, Figure 3 presents the numerical error with different values of N (left
graph with K = 8 and ∆T = 2e−3) and different values of K (right graph with N = 6 and ∆T = 2e−3),
in three different cases.

6 Conclusions

This study explores a numerical spectral method for a two-sided fractional diffusion equation. The
Crank-Nicolson method of order O

(
∆t2−α

)
was applied to approximate the Caputo fractional derivative

operator C
0D

α
t , the unconditional stability was shown of the time-discrete scheme. Next, the spectral ele-

ment method was employed for the Riesz fractional derivative operators to derive a fully discrete scheme.
Further, the error estimate was analyzed, and the numerical method was proven to be convergent, where
O
(

∆t2−α +Nmax(ζ ,ς)−L
)

is the order of accuracy. We solved two numerical problems and simulated
them using MATLAB software, to demonstrate the efficiency of the method.
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Figure 3: L∞ Errors for different values of N, and K, with T = 1.
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