تعداد نشریات | 31 |
تعداد شمارهها | 757 |
تعداد مقالات | 7,162 |
تعداد مشاهده مقاله | 10,347,699 |
تعداد دریافت فایل اصل مقاله | 6,937,345 |
تأثیر مکمل آهن کیلاته حاوی اسیدهای آلی و اسیدهای آمینه بر عملکرد، شاخص های رشد اسکلتی، امتیاز مدفوع و فراسنجههای خونی گوسالههای شیرخوار | ||
تحقیقات تولیدات دامی | ||
دوره 13، شماره 3، آذر 1403، صفحه 61-74 اصل مقاله (1.09 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22124/ar.2024.26191.1806 | ||
نویسندگان | ||
مهدی قویدل1؛ عبداالحکیم توغدری* 2؛ تقی قورچی3؛ محمد اسدی4 | ||
1دانشجوی کارشناسی ارشد، گروه تغذیه دام و طیور، دانشکده علوم دامی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان | ||
2استادیار، گروه تغذیه دام و طیور، دانشکده علوم دامی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان | ||
3استاد، گروه تغذیه دام و طیور، دانشکده علوم دامی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان | ||
4دانشجوی دکتری، گروه تغذیه دام و طیور، دانشکده علوم دامی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان | ||
چکیده | ||
مطالعه حاضر با هدف بررسی آثار منابع مختلف آهن آلی (مکمل آهن کیلاته با اسیدهای آلی و اسیدهای آمینه) در شیر بر عملکرد رشد، شاخصهای رشد اسکلتی، امتیاز مدفوع و فراسنجههای خونی گوسالههای شیرخوار انجام شد. 36 رأس گوساله نر تازه متولد شده هلشتاین (با میانگین وزن 7/2±1/35 کیلوگرم) بهطور تصادفی به سه گروه با 12 تکرار تقسیم شدند. تیمارهای آزمایشی شامل: 1) گروه شاهد (بدون مکمل آهن)، 2) تغذیه با 50 میلیگرم آهن کیلاته مبتنی بر اسیدهای آلی بهازای هر راس گوساله در روز، و 3) تغذیه با 50 میلیگرم آهن کیلاته مبتنی بر اسیدهای آمینه بهازای هر راس گوساله در روز، بودند. نتایج نشان داد که گوسالههای دریافتکننده مکملهای آهن کیلاته حاوی اسید آمینه نسبت به گروه شاهد و تیمار دریافتکننده مکملهای آهن کیلاته حاوی اسیدهای آلی، افزایش وزن نهایی، افزایش وزن کل دوره، افزایش وزن روزانه و کاهش ضریب تبدیل غذایی را نشان دادند (05/0>P). همچنین، تفاوت معنیداری از نظر شاخصهای رشد اسکلتی در بین تیمارهای مختلف وجود نداشت. امتیاز مدفوع و وضعیت اسهال در هر دو تیمار دریافتکننده مکمل آهن بهبود یافت (05/0>P). مصرف مکمل آهن بهوسیله گوسالهها به شکل کیلاته حاوی اسیدهای آلی و اسیدهای آمینه سبب افزایش گلوکز و آهن در خون و کاهش مس و فسفر خون شد (05/0>P)، اما کلسترول، تری گلیسرید، اوره، پروتئین تام، آلبومین و گلوبولین خون تحت تاثیر قرار نگرفت. با توجه به نتایج بهدست آمده از این پژوهش، دریافت آهن کیلاته حاوی اسیدهای آمینه بهدلیل بهبود عملکرد گوسالههای شیرخوار، قابل توصیه است. | ||
کلیدواژهها | ||
آهن کیلاته؛ امتیاز مدفوع؛ عملکرد؛ فراسنجه خونی؛ گوسالههای شیرخوار | ||
مراجع | ||
Ali Arabi, H., Zand, N., Bahari, A. A., Hajivaliei, M., & Zaboli, K. (2018). Effect of iron source on performance, some minerals, thyroid hormones and blood metabolites of Mehraban male lambs. Journal of Animal Science Research, 28(1), 77-92. [In Persian] Allan, J., Plate, P., & Van Winden, S. (2020). The effect of iron dextran injection on daily weight gain and haemoglobin values in whole milk fed calves. Animals, 10(5), 853. doi: 10.3390/ani10050853 Angelova, M. G., Petkova-Marinova, T. V., Pogorielov, M. V., Loboda, A. N., Nedkova-Kolarova, V. N., & Bozhinova, A. N. (2014). Trace element status (iron, zinc, copper, chromium, cobalt, and nickel) in iron-deficiency anaemia of children under 3 years. Anemia, 2014, 718089. doi: 10.1155/2014/718089 Arredondo, M., & Núñez, M. T. (2005). Iron and copper metabolism. Molecular Aspects of Medicine, 26(4-5), 313-327. doi: 10.1016/j.mam.2005.07.010 Asadi, M., Ghoorchi, T., Toghdory, A., Rajabi Aliabadi, R., Iri Tomaj, R., & Sahneh, M. (2021). Comparison of selenium and vitamin E recommended NRC and ARC by diet and injection methods on performance, digestibility, some blood metabolites and skeletal growth indices of suckling Holstein calves. Journal of Animal Science Research, 31(2), 57-69. doi: 10.22034/AS.2021.36647.1526 [In Persian] Asadi, M., Toghdory, A., & Ghoorchi, T. (2018). Effect of oral administration and injection of selenium and vitamin E on performance, blood metabolites and digestibility of nutrients in suckling Dalagh lambs. Research on Animal Production, 9(20), 79-87. doi: 10.29252/rap.9.20.79 [In Persian] Asadi, M., Toghdory, A., Hatami, M., & Ghassemi Nejad, J. (2022). Milk supplemented with organic iron improves performance, blood hematology, iron metabolism parameters, biochemical and immunological parameters in suckling Dalagh lambs. Animals, 12(4), 510. doi: 10.3390/ani12040510 Baqui, A. H., Zaman, K., Persson, L. A., Arifeen, S. E., Yunus, M., Begum, N., & Black, R. E. (2003). Simultaneous weekly supplementation of iron and zinc is associated with lower morbidity due to diarrhea and acute lower respiratory infection in Bangladeshi infants. The Journal of Nutrition, 133(12), 4150-4157. doi: 10.1093/jn/133.12.4150 Bostedt, H., Hospes, R., Wehrend, A., & Schramel, P. (2000). Effects of the parenteral administration of iron preparations on the iron supply status during the early development period of calves. Tierärztliche Umschau, 55(6), 305-315. Bunger, U., Schmoldt, P., & Ponge, J. (1986). Oral and parenteral control of iron deficiency in relation to the course diseases in milk fed calves originating from different farms. Monatshefte fur Veterinarmedizin, 41(3), 2-3. Compinis, W., Sirinupongsanan, W., Verasilpa, T., Meulen, U., Worachai, L., Khanthapanit, C., & Jaturasitha, S. (2002). Effect of soybean protein in milk replacers on veal calf performance. Conference on International Agricultural Research for Development. Cui, K., Tu, Y., Wang, Y. C., Zhang, N. F., Ma, T., & Diao, Q. Y. (2016). Effects of a limited period of iron supplementation on the growth performance and meat colour of dairy bull calves for veal production. Animal Production Science, 57(4), 778-784. doi: 10.1071/AN15388 De Romaña, D. L., Olivares, M., Uauy, R., & Araya, M. (2011). Risks and benefits of copper in light of new insights of copper homeostasis. Journal of Trace Elements in Medicine and Biology, 25(1), 3-13. doi: 10.1016/j.jtemb.2010.11.004 Eisa, A. M., & Elgebaly, L. S. (2010). Effect of ferrous sulphate on haematological, biochemical and immunological parameters in neonatal calves. Veterinaria Italiana, 46(3), 329-335. Ettle, T., Schlegel, P., & Roth, F. X. (2008). Investigations on iron bioavailability of different sources and supply levels in piglets. Journal of Animal Physiology and Animal Nutrition, 92(1), 35-43. doi: 10.1111/j.1439-0396.2007.00707.x Ferreira, L. S., Bittar, C. M. M., Silva, J. T., Soares, M. C., Oltramari, C. E., Nápoles, G. G. O., & Paula, M. R. (2013). Performance and plasma metabolites of dairy calves fed a milk replacer or colostrum silage. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 65, 1357-1366. doi: 10.1590/S0102-09352013000500013 Hamedi, M., Tahmasbi, A., & Nasserian, A. (2022). Performance response of neonatal calves to milk enriched with organic iron. Journal of Livestock Science and Technologies, 10(2), 9-18. doi: 10.22103/JLST.2022.19596.1412 Hansen, S. L., Ashwell, M. S., Moeser, A. J., Fry, R. S., Knutson, M. D., & Spears, J. W. (2010). High dietary iron reduces transporters involved in iron and manganese metabolism and increases intestinal permeability in calves. Journal of Dairy Science, 93(2), 656-665. doi: 10.3168/jds.2009-2341 Harvey, J. W. (2008). Iron metabolism and its disorders. Clinical Biochemistry of Domestic Animals, 6, 259-285. Heidarpour Bami, M., Mohri, M., Seifi, H. A., & Alavi Tabatabaee, A. A. (2008). Effects of parenteral supply of iron and copper on hematology, weight gain, and health in neonatal dairy calves. Veterinary Research Communications, 32, 553-561. doi: 10.1007/s11259-008-9058-6 Humphries, W. R., Phillippo, M., Young, B. W., & Bremner, I. (1983). The influence of dietary iron and molybdenum on copper metabolism in calves. British Journal of Nutrition, 49(1), 77-86. doi: 10.1079/BJN19830013 Joerling, J., & Doll, K. (2019). Monitoring of iron deficiency in calves by determination of serum ferritin in comparison with serum iron: A preliminary study. Open Veterinary Journal, 9(2), 177-184. doi: 10.4314/ovj.v9i2.14 Kadis, S., Udeze, F. A., Polanco, J., & Dreesen, D. W. (1984). Relationship of iron administration to susceptibility of newborn pigs to enterotoxic colibacillosis. American Journal of Veterinary Research, 45(2), 255-259. Khaleghnia, N., Mohri, M., & Seifi, H. A. (2021). The effects of parenteral iron administration on thyroid hormones, hematology, oxidative stress characteristics, performance, and health in neonatal Holstein calves. Biological Trace Element Research, 199, 1823-1832. doi: 10.1007/s12011-020-02293-7 Khan, M. A., Lee, H. J., Lee, W. S., Kim, H. S., Kim, S. B., Ki, K. S., Ha, J. K., Lee, H. G., & Choi, Y. J. (2007). Pre-and postweaning performance of Holstein female calves fed milk through step-down and conventional methods. Journal of Dairy Science, 90(2), 876-885. doi: 10.3168/jds.S0022-0302(07)71571-0 Khan, M. A., Weary, D. M., & Von Keyserlingk, M. A. G. (2011). Invited review: Effects of milk ration on solid feed intake, weaning, and performance in dairy heifers. Journal of Dairy Science, 94(3), 1071-1081. doi: 10.3168/jds.2010-3733 Kume, S. I., & Tanabe, S. (1996). Effect of supplemental lactoferrin with ferrous iron on iron status of newborn calves. Journal of Dairy Science, 79(3), 459-464. doi: 10.3168/jds.s0022-0302(96)76386-5 Kupczyński, R., Bednarski, M., Śpitalniak, K., & Pogoda-Sewerniak, K. (2017). Effects of protein-iron complex concentrate supplementation on iron metabolism, oxidative and immune status in preweaning calves. International Journal of Molecular Sciences, 18(7), 1501. doi: 10.3390/ijms18071501 Layrisse, M., García-Casal, M. N., Solano, L., Barón, M. A., Arguello, F., Llovera, D., & Tropper, E. (2000). Iron bioavailability in humans from breakfasts enriched with iron bis-glycine chelate, phytates and polyphenols. The Journal of Nutrition, 130(9), 2195-2199. doi: 10.1093/jn/130.9.2195 Lee, S. H., Shinde, P., Choi, J., Park, M., Ohh, S., Kwon, I. K., & Chae, B. J. (2008). Effects of dietary iron levels on growth performance, hematological status, liver mineral concentration, fecal microflora, and diarrhea incidence in weanling pigs. Biological Trace Element Research, 126, 57-68. doi: 10.1007/s12011-008-8209-5 Li, Y., Yang, W., Dong, D., Jiang, S., Yang, Z., & Wang, Y. (2018). Effect of different sources and levels of iron in the diet of sows on iron status in neonatal pigs. Animal Nutrition, 4(2), 197-202. doi: 10.1016/j.aninu.2018.01.002 Lönnerdal, B. (2010). Calcium and iron absorption—mechanisms and public health relevance. International Journal for Vitamin and Nutrition Research, 80(4), 293. doi: 10.1024/0300-9831/a000036 Marcondes, M. I., & Silva, A. L. (2021). Determination of energy and protein requirements of preweaned dairy calves: A multistudy approach. Journal of Dairy Science, 104(11), 11553-11566. doi: 10.3168/jds.2021-20272 McFarlane, J. M., Morris, G. L., Curtis, S. E., Simon, J., & McGlone, J. J. (1988). Some indicators of welfare of crated veal calves on three dietary iron regimens. Journal of Animal Science, 66(2), 317-325. doi: 10.2527/jas1988.662317x Mejia Haro, I., Brink, R. D., & Mejia Haro, J. (2009). Effects of inclusion of different levels of iron in lamb diets on apparent absorption and retention of phosphorus. Journal of Animal and Veterinary Advances, 8(1), 19-22. Mohri, M., Poorsina, S., & Sedaghat, R. (2010). Effects of parenteral supply of iron on RBC parameters, performance, and health in neonatal dairy calves. Biological Trace Element Research, 136, 33-39. doi: 10.1007/s12011-009-8514-7 Mohri, M., Sarrafzadeh, F., & Seifi, H. A. (2006). Effects of oral iron supplementation on haematocrit, live weight gain and health in neonatal dairy calves. Iranian Journal of Veterinary Research, 7(1), 34-37. doi: 10.22099/IJVR.2006.2678 Mohri, M., Sarrafzadeh, F., Seifi, H. A., & Farzaneh, N. (2004). Effects of oral iron supplementation on some haematological parameters and iron biochemistry in neonatal dairy calves. Comparative Clinical Pathology, 13, 39-42. doi: 10.1007/s00580-004-0523-5 Mohus, R. M., Paulsen, J., Gustad, L., Askim, Å., Mehl, A., DeWan, A. T., & Damås, J. K. (2018). Association of iron status with the risk of bloodstream infections: results from the prospective population-based HUNT Study in Norway. Intensive Care Medicine, 44, 1276-1283. doi: 10.1007/s00134-018-5320-8 Moosavian, H. R., Mohri, M., & Seifi, H. A. (2010). Effects of parenteral over-supplementation of vitamin A and iron on hematology, iron biochemistry, weight gain, and health of neonatal dairy calves. Food and Chemical Toxicology, 48(5), 1316-1320. doi: 10.1016/j.fct.2010.02.030 Nakao, M., Yamamoto, H., Nakahashi, O., Ikeda, S., Abe, K., Masuda, M., & Taketani, Y. (2015). Dietary phosphate supplementation delays the onset of iron deficiency anemia and affects iron status in rats. Nutrition Research, 35(11), 1016-1024. doi: 10.1016/j.nutres.2015.09.001 National Research Council. (2001). Nutrient Requirements for Dairy Cattle. 7th Rev. edn. National Academies Press, Washington, DC, USA. Osorio, J. S., Trevisi, E., Li, C., Drackley, J. K., Socha, M. T., & Loor, J. J. (2016). Supplementing Zn, Mn, and Cu from amino acid complexes and Co from cobalt glucoheptonate during the peripartal period benefits postpartal cow performance and blood neutrophil function. Journal of Dairy Science, 99(3), 1868-1883. doi: 10.3168/jds.2015-10040 Prabowo, A., Spears, J. W., & Goode, L. (1988). Effects of dietary iron on performance and mineral utilization in lambs fed a forage-based diet. Journal of Animal Science, 66(8), 2028-2035. doi: 10.2527/jas1988.6682028x Qadeer, M. K., Bhatti, S. A., Nawaz, H., & Khan, M. S. (2021). Effect of milk or milk replacer offered at varying levels on growth performance of Friesian veal calves. Tropical Animal Health and Production, 53, 1-8. doi: 10.1007/s11250-021-02666-7 Radwinska, J., & Zarczynska, K. (2014). Effects of mineral deficiency on the health of young ruminants. Journal of Elementology, 19(3), 915-928. doi: 10.5601/jelem.2014.19.2.620 Rajabian, F., Mohri, M., & Heidarpour, M. (2017). Relationships between oxidative stress, haematology and iron profile in anaemic and non‐anaemic calves. Veterinary Record, 181(10), 265-265. https://doi.org/10.1136/vr.104179 Regula, J., Krejpcio, Z., & Staniek, H. (2010). Bioavailability of iron from cereal products enriched with dried shittake mushrooms (Lentinula edodes) as determined by iron regeneration efficacy method in female rats. Journal of Medicinal Food, 13(5), 1189-1194. doi: 10.1089/jmf.2009.0200 Santos, F. H. R., De Paula, M. R., Lezier, D., Silva, J. T., Santos, G., & Bittar, C. M. M. (2015). Essential oils for dairy calves: effects on performance, scours, rumen fermentation and intestinal fauna. Animal, 9(6), 958-965. doi: 10.1017/S175173111500018X SAS Institute. (2004). User’s Guide. Version 9.1: Statistics. SAS Institute, Cary, NC. Sefdeen, S. M. (2017). Effect of dietary iron on copper metabolism in sheep. Doctoral dissertation, Harper Adams University. Toghdari, A., Asadi, M., Hatami, M., & Ghasmi Nejad, J. (2022). The effect of eeeding eortified milk with organic iron supplementation on performance, diarrhea status and blood parameters in suckling Dalagh lambs. Research on Animal Production, 13(36): 66-73. doi: 10.52547/rap.13.36.66 [In Persian] Van den Top, A. M. (2005). Reviews on the mineral provision in ruminants (I): Calcium Metabolism and Requirements in Ruminants. Productschap Diervoeder. Völker, H., & Rotermund, L. (2000). Possibilities of oral iron supplementation for maintaining health status in calves. DTW. Deutsche Tierarztliche Wochenschrift, 107(1), 16-22. Wagenaar, J. P. T. M., & Langhout, J. (2007). Practical implications of increasing ‘natural living’through suckling systems in organic dairy calf rearing. NJAS: Wageningen Journal of Life Sciences, 54(4), 375-386. doi: 10.1016/S1573-5214(07)80010-8 Walczyk, T., Muthayya, S., Wegmüller, R., Thankachan, P., Sierksma, A., Frenken, L. G., & Hurrell, R. F. (2014). Inhibition of iron absorption by calcium is modest in an iron-fortified, casein-and whey-based drink in Indian children and is easily compensated for by addition of ascorbic acid. The Journal of Nutrition, 144(11), 1703-1709. doi: 10.3945/jn.114.193417 Wang, Y., Jiang, M., Zhang, Z., & Sun, H. (2020). Effects of over‐load iron on nutrient digestibility, haemato‐biochemistry, rumen fermentation and bacterial communities in sheep. Journal of Animal Physiology and Animal Nutrition, 104(1), 32-43. doi: 10.1111/jpn.13225 Wessling-Resnick, M. (2017). Iron: Basic nutritional aspects. In Molecular, genetic, and nutritional aspects of major and trace minerals. Academic Press. Pp. 161-173. Wu, S., Li, X., Chen, X., Zhu, Y., & Yao, J. (2021). Optimizing the growth and immune system of dairy calves by subdividing the pre-weaning period and providing different milk volumes for each stage. Animal Nutrition, 7(4), 1296-1302. doi: 10.1016/j.aninu.2021.06.007 Wysocka, D., Snarska, A., & Sobiech, P. (2020). Iron in cattle health. Journal of Elementology, 25(3), 1175-1185. doi: 10.5601/jelem.2020.25.2.1960 Xiao, J., Chen, T., Alugongo, G. M., Khan, M. Z., Li, T., Ma, J., & Cao, Z. (2021). Effect of the length of oat hay on growth performance, health status, behavior parameters and rumen fermentation of Holstein female calves. Metabolites, 11(12), 890. doi: 10.3390/metabo11120890 Yasui, T., Ryan, C. M., Gilbert, R. O., Perryman, K. R., & Overton, T. R. (2014). Effects of hydroxy trace minerals on oxidative metabolism, cytological endometritis, and performance of transition dairy cows. Journal of Dairy Science, 97(6), 3728-3738. doi: 10.3168/jds.2013-7331 Yu, B., Huang, W. J., & Chiou, P. W. S. (2000). Bioavailability of iron from amino acid complex in weanling pigs. Animal Feed Science and Technology, 86(1-2), 39-52. doi: 10.1016/S0377-8401(00)00154-1 | ||
آمار تعداد مشاهده مقاله: 224 تعداد دریافت فایل اصل مقاله: 17 |