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Abstract. Let R and S be rings, C = SCR a faithfully semidualizing bimodule, and m a
non-negative integer. In this paper, we present some homological properties relative to the class
of R-modules of C-weak injective dimension at most m and the class of S-modules of C-weak
flat dimension at most m. We introduce and study weak cotorsion modules with respect to m
and C by using the class of modules of C-weak flat dimension at most m.
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1 Introduction
Throughout this paper, m is a non-negative integer, n is a positive integer, R and S are fixed
associative rings with unites, and all R- or S-modules are understood to be unital left R- or
S-modules (unless specified otherwise). SM (resp. MR) is used to denote that M is a left
S-module (resp. right R-module). Also, SMR is used to denote that M is an (S,R)-bimodule
which means that M is both a left S-module and a right R-module, and these structures are
compatible. Right R- or S-modules are identified with left modules over the opposite rings Rop

and Sop.
Enochs in [8] introduced the concept of cotorsion modules as a generalization of cotorsion

abelian groups. It differs from Matlis’ definition in [19] whose concern was with domains.
Since then, the investigation of these modules have become a vigorously active area of research.
We refer the reader to [3, 8, 17] for background on cotorsion modules. In [18], Mao and Ding
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introduced the concept of m-cotorsion modules as a new classification of cotorsion modules by
using of the class of modules of flat dimension at most m.

Gao and Wang in [12] introduced the concept of weak injective and weak flat modules by
using super finitely presented modules. They investigated the properties of modules with weak
injective and weak flat dimension at most m. In [25], Zhao investigated homological properties of
modules with finite weak injective and weak flat dimensions. Gao and Zhao in [13] introduced
the concept of C-weak injective and C-weak flat modules by using a semidualizing bimodule
C = SCR. Throughout this paper, C = SCR stands for a faithfully semidualizing bimodule.

Selvaraj and Prabakaran in [21] introduced a particular case of m-cotorsion modules and
called them m-weak cotorsion modules by using of the class of modules of weak flat dimension
at most m instead of the class of modules of flat dimension at most m.

In recent years, homological algebra on weak injective and weak flat modules have been
researched extensively by many authors (see, for example, [1,2,12,13,21,25]). In this paper, we
introduce and study C-m-weak cotorsion modules by using of the class of modules of C-weak
flat dimension at most m.

In Section 2, some fundamental concepts and some preliminary results are stated. In Sec-
tion 3, we give some homological relationships between the classes WI(S)≤m, WF(R)≤m,
WIC(R)≤m, WFC(S)≤m, AC(R), and BC(S), where these classes are the class of S-modules
of weak injective dimension at most m, the class of R-modules of weak flat dimension at most
m, the class of R-modules of C-weak injective dimension at most m, the class of S-modules
of C-weak flat dimension at most m, the Auslander class under C, and the Bass class under
C, respectively. Among other results, we prove that (i) for an R-module M (resp. S-module
N), M ∈ WIC(R)≤m (resp. N ∈ WFC(S)≤m) if and only if M ∈ AC(R) (resp. N ∈ BC(S))
and C ⊗R M ∈ WI(S)≤m (resp. HomS(C,N) ∈ WF(R)≤m), and (ii) the classes WIC(R)≤m

and WFC(S)≤m are preenveloping and covering. Section 4 is devoted to introduce an study
C-m-weak cotorsion modules. We investigate the relationship between C-m-weak cotorsion
modules and reduced C-m-weak cotorsion modules. For an Rop-module M , we show that if
RR ∈ WIC(R)≤m and RopRop ∈ WFC(R

op)≤m, then M is a C-m-weak cotorsion Rop-module
if and only if M is a direct sum of an injective Rop-module and a reduced C-m-weak cotorsion
Rop-module. We also find that when every module is C-m-weak cotorsion.

2 Preliminaries
In this section, some fundamental concepts are recalled and notations are stated.

Definition 1. (see [4, Section 1 and Definitions 3.1 and 3.2], [11, Definition 2.1], [12, Definitions
2.1 and 3.2], [8, Section 2], [18, Definition 4.1], [21, Definition 1], [13, 1.2, 1.3, and 1.4, and
Definition 2.1], and [23, Definition 3.1])

(i) An R-module M is called finitely n-presented if there exists an exact sequence

Fn −→ Fn−1 −→ · · · −→ · · · −→ F1 −→ F0 −→ M −→ 0

such that Fi is a finitely generated free (equivalently, finitely generated projective) R-
module for all 0 ≤ i ≤ n. An R-module M is called FPn-injective or (n, 0)-injective
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(resp. FPn-flat or (n, 0)-flat) if Ext1R(L,M) = 0 (resp. TorR1 (L,M) = 0) for any finitely
n-presented R-module (resp. Rop-module) L;

(ii) An R-module M is called super finitely presented if there exists an exact sequence

· · · −→ Fi+1 −→ Fi −→ · · · −→ F1 −→ F0 −→ M −→ 0

such that Fi is a finitely generated free (equivalently, finitely generated projective) R-
module for all i ≥ 0. An R-module M is called weak injective (resp. weak flat) if
Ext1R(L,M) = 0 (resp. TorR1 (L,M) = 0) for any super finitely presented R-module (resp.
Rop-module) L. We denote the class of all weak injective (resp. weak flat) R-modules by
WI(R) (resp. WF(R));

(iii) For any R-module M , the weak injective dimension (resp. weak flat dimension) of M ,
denoted by widR(M) (resp. wfdR(M)), is defined to be the smallest non-negative integer
k such that Extk+1

R (L,M) = 0 (resp. TorRk+1(L,M) = 0) for all super finitely presented R-
modules (resp. Rop-module) L. If no such k exists, set widR(M) = ∞ (resp. wfdR(M) =
∞). We denote the class of all R-modules with weak injective (resp. weak flat) dimension
less than or equal to m by WI(R)≤m (resp. WF(R)≤m);

(iv) An R-module M is said to be cotorsion if Ext1R(L,M) = 0 for any flat R-module L. An
R-module M is called m-cotorsion if Ext1R(L,M) = 0 for any R-module L ∈ F(R)≤m,
where the symbol F(R)≤m denotes the class of all R-modules with flat dimension less
than or equal to m. An R-module M is said to be m-weak cotorsion if Ext1R(L,M) = 0
for any R-module L ∈ WF(R)≤m. We denote the class of all m-cotorsion (resp. m-weak
cotorsion) R-modules by Cm(R) (resp. WCm(R));

(v) A degreewise finite projective resolution of an R-module M is a projective resolution of M

· · · −→ Pi+1 −→ Pi −→ · · · −→ P1 −→ P0 −→ M −→ 0,

such that Pi is a finitely generated projective (equivalently, finitely generated free) R-
module for all i ≥ 0;

(vi) An (S,R)-bimodule C = SCR is semidualizing if the following conditions hold:

(a1) SC admits a degreewise finite S-projective resolution;
(a2) CR admits a degreewise finite Rop-projective resolution;
(b1) The homothety map Sγ : SSS −→ HomRop(C,C) is an isomorphism;
(b2) The homothety map γR : RRR −→ HomS(C,C) is an isomorphism;
(c1) ExtiS(C,C) = 0 for all i ≥ 1;
(c2) ExtiRop(C,C) = 0 for all i ≥ 1.

A semidualizing bimodule SCR is faithfully semidualizing if it satisfies the following con-
ditions for all modules SN and MR:

(1) If HomS(C,N) = 0, then N = 0;
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(2) If HomRop(C,M) = 0, then M = 0.

By [15, Proposition 3.2], there exist many examples of faithfully semidualizing bimodules
were provided over a wide class of non-commutative rings;

(vii) The Auslander class AC(R) with respect to C consists of all R-modules M satisfying the
following conditions:

(A1) TorRi (C,M) = 0 for all i ≥ 1;
(A2) ExtiS(C,C ⊗R M) = 0 for all i ≥ 1;
(A3) The natural evaluation homomorphism µM : M −→ HomS(C,C⊗RM) is an isomor-

phism (of R-modules).

The Bass class BC(S) with respect to C consists of all S-modules N satisfying the following
conditions:

(B1) ExtiS(C,N) = 0 for all i ≥ 1;
(B2) TorRi (C,HomS(C,N)) = 0 for all i ≥ 1;
(B3) The natural evaluation homomorphism νN : C ⊗R HomS(C,N) −→ N is an isomor-

phism (of S-modules).

It is an important property of Auslander and Bass classes that they are equivalent under
the pair of functors:

AC(R)
C⊗R−

∼
// BC(S)

HomS(C,−)
oo

(see [15, Proposition 4.1]);
(viii) An R-module is called C-FPn-injective if it has the form HomS(C,E) for some FPn-

injective S-module E. An S-module is called C-FPn-flat if it has the form C ⊗R F for
some FPn-flat R-module F ;

(ix) An R-module is called C-weak injective if it has the form HomS(C,E) for some weak
injective S-module E. An S-module is called C-weak flat if it has the form C ⊗R F for
some weak flat R-module F . We denote the class of all C-weak injective R-modules by
WIC(R) and the class of C-weak flat S-modules by WFC(S). Therefore WIC(R) =
{HomS(C,E) : E ∈ WI(S)} and WFC(S) = {C ⊗R F : F ∈ WF(R)};

(x) The C-weak injective dimension of an R-module M is defined that C-widR(M) ≤ m if and
only if there exists an exact sequence

0 −→ M −→ E0 −→ E1 −→ · · · −→ Em−1 −→ Em −→ 0

of R-modules such that Ei ∈ WIC(R) for all 0 ≤ i ≤ m. If no such exact sequence exists,
set C-widR(M) = ∞. Also, the C-weak flat dimension of an S-module N is defined that
C-wfdS(N) ≤ m if and only if there exists an exact sequence

0 −→ Fm −→ Fm−1 −→ · · · −→ F1 −→ F0 −→ N −→ 0
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of S-modules such that Fi ∈ WFC(S) for all 0 ≤ i ≤ m. If no such exact sequence exists,
set C-wfdS(N) = ∞. We denote the class of all R-modules with C-weak injective (resp.
C-weak flat) dimension less than or equal to m by WIC(R)≤m (resp. WFC(R)≤m).

The following propositions, which are needed in the next section, show that the classes
WI(R)≤m and WF(R)≤m are closed under direct summands, direct products, direct sums,
direct limits, and extensions.

Proposition 1. The following assertions hold:
(i) The class WI(R)≤m is closed under direct summands, direct products, direct sums, and

direct limits;
(ii) The class WF(R)≤m is closed under direct summands, direct products, direct sums, and

direct limits.

Proof. (i). Let M ∈ WI(R)≤m, let M ′ be a summand of M , and let L be a super finitely pre-
sented R-module. There exists an R-module M ′′ such that M ∼= M ′⊕M ′′. Since Extm+1

R (L,M) =
0 and Extm+1

R (L,M) ∼= Extm+1
R (L,M ′) ⊕ Extm+1

R (L,M ′′) by [20, Proposition 7.22], we have
Extm+1

R (L,M ′) = 0. Thus M ′ ∈ WI(R)≤m. Now, let {Mj}j∈J be a family of R-modules (resp.
direct system of R-modules with J directed) such that Mj ∈ WI(R)≤m for all j ∈ J , and L a su-
per finitely presented R-module. Since Extm+1

R (L,Mj) = 0 for all j ∈ J , Extm+1
R (L,

∏
j∈J Mj) ∼=∏

j∈J Ext
m+1
R (L,Mj) from [20, Proposition 7.22], and Extm+1

R (L,
⊕

j∈J Mj) ∼=
⊕

j∈J Ext
m+1
R (L,Mj)

(resp. Extm+1
R (L, lim−→j∈J Mj) ∼= lim−→j∈J Ext

m+1
R (L,Mj)) by [5, Lemma 2.9(2)], we get

Extm+1
R (L,

∏
j∈J Mj) = 0 and Extm+1

R (L,
⊕

j∈J Mj) = 0 (resp. Extm+1
R (L, lim−→j∈J Mj) = 0).

Hence
∏

j∈J Mj ∈ WI(R)≤m and
⊕

j∈J Mj ∈ WI(R)≤m (resp. lim−→j∈J Mj ∈ WI(R)≤m).
(ii). By using [20, Propositions 7.6 and 7.8] and [5, Lemma 2.10(2)], the proof is similar to

that of (i).

Proposition 2. The following statements hold true:
(i) The class WI(R)≤m is closed under extensions;
(ii) The class WF(R)≤m is closed under extensions.

Proof. (i). Let
0 −→ M ′ −→ M −→ M ′′ −→ 0

be a short exact sequence of R-modules with M ′,M ′′ ∈ WI(R)≤m. By putting n = 0 in [2,
Proposition 3.2], there exist the exact sequences

0 −→ M ′ −→ E′
0 −→ E′

1 −→ · · · −→ E′
m−1 −→ E′

m −→ 0

and
0 −→ M ′′ −→ E′′

0 −→ E′′
1 −→ · · · −→ E′′

m−1 −→ E′′
m −→ 0

such that E′
i and E′′

i are injective for all 0 ≤ i ≤ m− 1, and E′
m and E′′

m are in WI(R). From
Horseshoe lemma, we have the exact sequences

0 −→ M −→ E′
0 ⊕ E′′

0 −→ · · · −→ E′
m−1 ⊕ E′′

m−1 −→ Mm −→ 0



122 M. Amini, A. Vahidi, E. Chamani

and
0 −→ E′

m −→ Mm −→ E′′
m −→ 0.

For all 0 ≤ i ≤ m−1, E′
i⊕E′′

i is in WI(R) by [12, Proposition 2.3(1)] and Mm is in WI(R) from
[10, Proposition 2.6(1)]. Thus, again by taking n = 0 in [2, Proposition 3.2], M ∈ WI(R)≤m.

(ii). This is similar to that of (i).

Remark 1. Every C-FPn-injective (resp. C-FPn-flat) module is C-weak injective (resp. C-
weak flat).

The following example shows that the converse of Remark 1 is not always true. Recall that
a ring R is said to be an (n, 0)-ring or n-regular ring if every finitely n-presented R-module is
projective (see [16, Section 1] and [26, Definition 3.7]).

Example 1. Let K be a field, E a K-vector space with infinite rank, and A a Noetherian
ring of global dimension 0. Set B = K ⋉ E the trivial extension of K by E and R = A × B
the direct product of A and B. By [16, Theorem 3.4(3)], R is a (2, 0)-ring which is not a
(1, 0)-ring. Since every super finitely presented R-module is finitely 2-presented, it follows that,
for every R-module M and every super finitely presented R-module L, Ext1R(L,M) = 0 (resp.
TorR1 (L,M) = 0). Hence every R-module is weak injective (resp. weak flat). If C = R = S,
then every R-module is C-weak injective (resp. C-weak flat). On the other hand, there exists
an R-module which is not C-FP1-injective (resp. C-FP1-flat), since if every R-module is C-
FP1-injective (resp. C-FP1-flat), [26, Theorem 3.9] implies that R is a (1, 0)-ring and this is a
contradiction.

3 Homological properties of modules with C-weak injective and
C-weak flat dimensions at most m

In this section, we give some homological relationships between the classes WI(S)≤m, WF(R)≤m,
WIC(R)≤m, WFC(S)≤m, AC(R), and BC(S). From here to the end of the article, m is a non-
negative integer and C = SCR is a faithfully semidualizing bimodule.

The first main result of this section shows that, for an R-module M (resp. S-module N),
M ∈ WIC(R)≤m (resp. N ∈ WFC(S)≤m) if and only if M ∈ AC(R) (resp. N ∈ BC(S)) and
C ⊗R M ∈ WI(S)≤m (resp. HomS(C,N) ∈ WF(R)≤m).

Theorem 1. Let M be an R-module and N an S-module. Then the following statements hold
true:

(i) C-widR(M) ≤ m if and only if M ∈ AC(R) and widS(C ⊗R M) ≤ m;
(ii) C-wfdS(N) ≤ m if and only if N ∈ BC(S) and wfdR(HomS(C,N)) ≤ m.

Proof. (i). (⇒) Assume that C-widR(M) ≤ m. Then M ∈ AC(R) by [13, Proposition 3.3(2)]
and widS(C ⊗R M) ≤ m from [13, Proposition 3.2].

(⇐) Assume that M ∈ AC(R) and widS(C ⊗R M) ≤ m. Thus M ∼= HomS(C,C ⊗R M) and
so C-widR(M) ≤ m by [13, Proposition 3.2].

(ii). This is similar to the first part.
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In the following corollaries, we prove that the classes WIC(R)≤m and WFC(S)≤m are closed
under direct summands, direct products, direct sums, direct limits, and extensions.

Corollary 1. The following assertions hold:

(i) The class WIC(R)≤m is closed under direct summands, direct products, direct sums, and
direct limits;

(ii) The class WFC(S)≤m is closed under direct summands, direct products, direct sums, and
direct limits.

Proof. (i). Let M ∈ WIC(R)≤m and let M ′ be a summand of M . Then, from Theorem 1(i), M ∈
AC(R) and C⊗RM ∈ WI(S)≤m, and also there exists an R-module M ′′ such that M ∼= M ′⊕M ′′.
By [15, Proposition 4.2(a)], it follows that M ′ ∈ AC(R). Also, from [20, Theorem 2.65], we have
C⊗RM ∼= (C⊗RM ′)⊕ (C⊗RM ′′) which shows by Proposition 1(i) that C⊗RM ′ ∈ WI(S)≤m.
Hence M ′ ∈ WIC(R)≤m from Theorem 1(i). Now, let {Mj}j∈J be a family of R-modules (resp.
direct system of R-modules with J directed) such that Mj ∈ WIC(R)≤m for all j ∈ J . Then,
by Theorem 1(i), Mj ∈ AC(R) and C ⊗R Mj ∈ WI(S)≤m for all j ∈ J . Hence, from [15,
Proposition 4.2(a)],

∏
j∈J Mj ∈ AC(R) and

⊕
j∈J Mj ∈ AC(R) (resp. lim−→j∈J Mj ∈ AC(R))

and, by Proposition 1(i),
∏

j∈J(C⊗RMj) ∈ WI(S)≤m and
⊕

j∈J(C⊗RMj) ∈ WI(S)≤m (resp.
lim−→j∈J(C ⊗R Mj) ∈ WI(S)≤m) and so C ⊗R (

∏
j∈J Mj) ∈ WI(S)≤m from [5, Lemma 2.10(2)]

and C⊗R (
⊕

j∈J Mj) ∈ WI(S)≤m by [20, Proposition 7.6] (resp. C⊗R (lim−→j∈J Mj) ∈ WI(S)≤m

from [20, Proposition 7.8]). Thus
∏

j∈J Mj ∈ WIC(R)≤m and
⊕

j∈J Mj ∈ WIC(R)≤m (resp.
lim−→j∈J Mj ∈ WIC(R)≤m) by Theorem 1(i).

(ii). By using [20, Proposition 7.22] and [5, Lemma 2.9(2)], the proof is similar to that of
(i).

Corollary 2. The following statements hold true:

(i) The class WIC(R)≤m is closed under extensions;
(ii) The class WFC(S)≤m is closed under extensions.

Proof. (i). Let
0 −→ M ′ −→ M −→ M ′′ −→ 0

be a short exact sequence of R-modules with M ′,M ′′ ∈ WIC(R)≤m. Then, from Theorem
1(i), M ′ and M ′′ are in AC(R) (and so TorR1 (C,M

′′) = 0), and C ⊗R M ′ and C ⊗R M ′′ are in
WI(S)≤m. Thus, M ∈ AC(R) from [15, Corollary 6.3] and

0 −→ C ⊗R M ′ −→ C ⊗R M −→ C ⊗R M ′′ −→ 0

is a short exact sequence of S-modules by applying the functor C⊗R− to the above short exact
sequence. Hence, C ⊗R M ∈ WI(S)≤m from Proposition 2(i). Therefore, M ∈ WIC(R)≤m by
Theorem 1(i).

(ii). This is similar to that of (i).
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Assume that M ′ is an R-submodule of M . We say that M ′ is a pure submodule of M and
M/M ′ is a pure quotient of M if

0 −→ A⊗R M ′ −→ A⊗R M −→ A⊗R M/M ′ −→ 0

is an exact sequence for all Rop-modules A, equivalently, if

0 −→ HomR(B,M ′) −→ HomR(B,M) −→ HomR(B,M/M ′) −→ 0

is an exact sequence for all finitely 1-presented R-modules B [9, Definition 5.3.6].
In the next corollary, we prove that the classes WIC(R)≤m and WFC(S)≤m are closed under

pure submodules and pure quotients.

Corollary 3. Let M ′ be a pure submodule of R-module M and let N ′ be a pure submodule of
S-module N . Then the following statements hold true:

(i) M ′ ∈ WIC(R)≤m and M/M ′ ∈ WIC(R)≤m whenever M ∈ WIC(R)≤m;
(ii) N ′ ∈ WFC(S)≤m and N/N ′ ∈ WFC(S)≤m whenever N ∈ WFC(S)≤m.

Proof. (i). Since M ′ is a pure submodule of R-module M ,

0 −→ C ⊗R M ′ −→ C ⊗R M −→ C ⊗R M/M ′ −→ 0

is an exact sequence and C ⊗R M ′ is a pure submodule of C ⊗R M by [20, Proposition 2.57].
Assume that M ∈ WIC(R)≤m. Then M ∈ AC(R) and C ⊗R M ∈ WI(S)≤m from Theorem
1(i). By putting n = 0 in [2, Proposition 3.7(1)], we deduce that C ⊗R M ′ ∈ WI(S)≤m and
C⊗RM/M ′ ∈ WI(S)≤m. Thus [13, Corollary 2.3] implies that C⊗RM ′ and C⊗RM/M ′ are in
BC(S). Hence, by [13, Lemma 2.9(2)], M ′ and M/M ′ are in AC(R). Therefore M ′ and M/M ′

are in WIC(R)≤m from Theorem 1(i).
(ii). By using [20, Theorem 2.76], the proof is similar to that of (i).

The following result is another application of Theorem 1.

Corollary 4. Let M ∈ WIC(R)≤m and let

0 −→ M −→ M0 −→ M1 −→ · · · −→ Mm−1 −→ Mm −→ 0

be an exact sequence of R-modules with M0,M1, . . . ,Mm−1 ∈ WIC(R). Then Mm ∈ WIC(R).

Proof. By Theorem 1(i), C ⊗R M is in WI(S)≤m, C ⊗R Mi is in WI(S) for all 0 ≤ i ≤ m− 1,
and M,M0,M1, . . . ,Mm−1 are in AC(R) and so Mm is in AC(R) from [15, Corollary 6.3]. Thus
TorRj (C,M) = 0 and TorRj (C,Mi) = 0 for all j ≥ 1 and all 0 ≤ i ≤ m. Hence, by applying the
functor C ⊗R − to the above exact sequence, we obtain the exact sequence of S-modules

0 −→ C ⊗R M −→ C ⊗R M0 −→ · · · −→ C ⊗R Mm−1 −→ C ⊗R Mm −→ 0.

By putting n = 0 in [2, Proposition 3.2], we deduce that C ⊗R Mm ∈ WI(S). Therefore,
Mm ∈ WIC(R) from Theorem 1(i).
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The next corollary will be needed in the next section.
Corollary 5. Let N ∈ WFC(S)≤m and let

0 −→ Nm −→ Nm−1 −→ · · · −→ N1 −→ N0 −→ N −→ 0

be an exact sequence of S-modules with N0, N1, . . . , Nm−1 ∈ WFC(S). Then Nm ∈ WFC(S).
Proof. By using [2, Proposition 3.3], this is sufficiently similar to that of Corollary 4 to be
omitted. We leave the proof to the reader.

In the course of the remaining parts of the paper, we denote the character module of M by
M∗ := HomZ(M,Q/Z) [20, Page 135].
Proposition 3. Let M be an R-module and N an S-module. Then the following statements
hold:

(i) M ∈ WIC(R)≤m if and only if M∗ ∈ WFC(R
op)≤m;

(ii) N ∈ WFC(S)≤m if and only if N∗ ∈ WIC(S
op)≤m.

Proof. (i). (⇒) Assume that M ∈ WIC(R)≤m. Then there exists an exact sequence

0 −→ M −→ E0 −→ E1 −→ · · · −→ Em−1 −→ Em −→ 0

of R-modules such that Ei ∈ WIC(R) for all 0 ≤ i ≤ m. Thus, by [20, Lemma 3.53],

0 −→ E∗
m −→ E∗

m−1 −→ · · · −→ E∗
1 −→ E∗

0 −→ M∗ −→ 0

is an exact sequence of Rop-modules and, from [13, Proposition 2.6(2)], E∗
i ∈ WFC(R

op) for all
0 ≤ i ≤ m. Hence M∗ ∈ WFC(R

op)≤m as we desired.
(⇐) Assume that M∗ ∈ WFC(R

op)≤m. Then there exists an exact sequence

0 −→ Fm −→ Fm−1 −→ · · · −→ F1 −→ F0 −→ M∗ −→ 0

of Rop-modules such that Fi ∈ WFC(R
op) for all 0 ≤ i ≤ m. Therefore, by [20, Lemma 3.53],

0 −→ M∗∗ −→ F ∗
0 −→ F ∗

1 −→ · · · −→ F ∗
m−1 −→ F ∗

m −→ 0

is an exact sequence of R-modules and, from [13, Proposition 2.6(1)], F ∗
i ∈ WIC(R) for all

0 ≤ i ≤ m. Thus M∗∗ ∈ WIC(R)≤m. On the other hand, M is a pure submodule of M∗∗

by [24, Proposition 2.3.5] and hence M ∈ WIC(R)≤m from Proposition 3(i).
(ii). This is similar to the first part.

Let F be a class of R-modules and let M be an R-module. A morphism f : F −→ M
(resp. f : M −→ F ) with F ∈ F is called an F-precover (resp. F-preenvelope) of M when
HomR(F

′, F ) −→ HomR(F
′,M) −→ 0 (resp. HomR(F, F

′) −→ HomR(M,F ′) −→ 0) is exact
for all F ′ ∈ F . Assume that f : F −→ M (resp. f : M −→ F ) is an F-precover (resp. F-
preenvelope) of M . Then f is called an F-cover (resp. F-envelope) of M if every morphism g :
F −→ F such that fg = f (resp. gf = f) is an isomorphism. The class F is called (pre)covering
(resp. (pre)enveloping) if each R-module has an F-(pre)cover (resp. F-(pre)envelope) (see [9,
Definitions 5.1.1 and 6.1.1]).

A duality pair over R is a pair (M,N ) such that M is a class of R-modules and N is a class
of Rop-modules, subject to the following conditions:
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(i) For an R-module M , one has M ∈ M if and only if M∗ ∈ N ;
(ii) N is closed under direct summands and finite direct sums.

A duality pair (M,N ) is called (co)product-closed if the class M is closed under (co)products
in the category of all R-modules (see [14, Definition 2.1]).

In the second main result of this section, we show that WIC(R)≤m and WFC(S)≤m are
preenveloping and covering.

Theorem 2. The following statements hold:
(i) (WIC(R)≤m,WFC(R

op)≤m) is a duality pair and the class WIC(R)≤m is preenveloping
and covering;

(ii) (WFC(S)≤m,WIC(S
op)≤m) is a duality pair and the class WFC(S)≤m is preenveloping

and covering.

Proof. (i). By Proposition 3(i), an R-module M is in WIC(R)≤m if and only if M∗ is in
WFC(R

op)≤m. Also, from Corollary 1(ii), WFC(R
op)≤m is closed under direct summands

and direct sums. Thus (WIC(R)≤m,WFC(R
op)≤m) is a duality pair. For the last part, from

Corollary 1(i), the class WIC(R)≤m is closed under direct products and direct sums. Therefore,
by [14, Theorem 3.1], the class WIC(R)≤m is preenveloping and covering.

(ii). This is similar to that of (i).

Recall that, an injective R-module E is said to be an injective cogenerator for R-modules
if for each R-module M and non-zero element m ∈ M , there is f ∈ HomR(M,E) such that
f(m) ̸= 0 (equivalently, HomR(M,E) ̸= 0 for any module M ̸= 0). It is well-known that R∗ is
an injective cogenerator for Rop-modules [9, Definition 3.2.7].

Corollary 6. The following assertions are equivalent:
(i) RR is in WIC(R)≤m;
(ii) Every Rop-module has a monic WFC(R

op)≤m-preenvelope;
(iii) Every injective Rop-module is in WFC(R

op)≤m;
(iv) Every flat R-module is in WIC(R)≤m;
(v) Every projective R-module is in WIC(R)≤m;
(vi) Every R-module has an epic WIC(R)≤m-cover.

Proof. (i)⇒(ii). From Theorem 2(ii), every Rop-module M has a WFC(R
op)≤m-preenvelope

f : M −→ F . By Proposition 3(i), R∗ ∈ WFC(R
op)≤m, and so

∏
j∈J R

∗ ∈ WFC(R
op)≤m from

Corollary 1(ii). Also, R∗ is an injective cogenerator for Rop-modules. Thus we have the exact
sequence 0 −→ M

g−→
∏

j∈J R
∗, and hence there exists a morphism h : F −→

∏
j∈J R

∗ such
that hf = g. Since g is monic, we deduce that f is also monic.

(ii)⇒(iii). Let E be an injective Rop-module. By assumption, E has a monic WFC(R
op)≤m-

preenvelope f : E −→ F . Therefore, the exact sequence

0 −→ E −→ F −→ F/E −→ 0
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is split, and so F ∼= E ⊕ F/E. Hence, from Corollary 1(ii), E is in WFC(R
op)≤m.

(iii)⇒(iv). Let F be a flat R-module. Then, by [20, Poroposition 3.54], F ∗ is an injective
Rop-module and so F ∗ is in WFC(R

op)≤m from assumption, and hence F is in WIC(R)≤m by
Proposition 3(i).

(iv)⇒(v). This is clear.
(v)⇒(i). It is clear.
(i)⇒(vi). From Theorem 2(i), every R-module M has a WIC(R)≤m-cover f : F −→ M .

Also, there is a short exact sequence of R-modules

0 −→ K −→ F ′ g−→ M −→ 0

where F ′ is free. Since R is in WIC(R)≤m, F ′ ∼=
⊕

j∈J R ∈ WIC(R)≤m by Corollary 1(i). So
there exists a map h : F ′ → F such that fh = g. Since g is epic, we deduce that f is also epic.

(vi)⇒(i). By assumption, RR has an epic WIC(R)≤m-cover f : F −→ R. Therefore, the
exact sequence

0 −→ Ker(f) −→ F −→ R −→ 0

is split, and so F ∼= Ker(f)⊕R. Hence, from Corollary 1(i), RR is in WIC(R)≤m.

For a class of R-modules F , we denote the class of all R-modules M such that Ext1R(M,F ) =
0 (resp. Ext1R(F,M) = 0) for all F ∈ F by ⊥F (resp. F⊥). For a class of R-modules
(resp. Rop-modules) F , we denote the class of all Rop-modules (resp. R-modules) M such
that TorR1 (M,F ) = 0 (resp. TorR1 (F,M) = 0) for all F ∈ F by ⊤F (resp. F⊤) (see [9, Definition
7.1.1] and [22, Definition 1.10]).

Here, we give more properties of WIC(R)≤m-preenvelopes and WFC(S)≤m-preenvelopes.

Proposition 4. Let M be an R-module and N an S-module. Let f : M −→ F be a WIC(R)≤m-
preenvelope of M where F is flat and g : N −→ G a WFC(S)≤m-preenvelope of N where G is
flat. Then the following statements hold:

(i) Coker(f) ∈ WFC(R
op)⊤≤m;

(ii) Coker(g) ∈ WIC(S
op)⊤≤m.

Proof. (i). Assume that I := Im(f), D := Coker(f), and LWFC(R
op)≤m. Then, we have the

short exact sequence of R-modules

0 −→ I −→ F −→ D −→ 0

and, from Proposition 3(ii), L∗ ∈ WIC(R)≤m. Thus HomR(F,L
∗) −→ HomR(M,L∗) −→ 0

is exact and so HomR(F,L
∗) −→ HomR(I, L

∗) −→ 0 is exact. Hence, by [20, Theorem 2.76],
(L ⊗R F )∗ −→ (L ⊗R I)∗ −→ 0 is exact. Therefore 0 −→ L ⊗R I −→ L ⊗R F is exact
from [20, Lemma 3.53]. On the other hand, we have TorR1 (L,F ) = 0 because F is flat. Thus, by
the long exact sequence

TorR1 (L,F ) −→ TorR1 (L,D) −→ L⊗R I −→ L⊗R F −→ L⊗R D −→ 0,

we get TorR1 (L,D) = 0. Hence D ∈ WFC(R
op)⊤≤m as we desired.

(ii). This is similar to that of (i).
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Theorem 3. Suppose that D is a super finitely presented R-module and that D′ is a super
finitely presented S-module. Then the following statements hold true:

(i) If RR ∈ WIC(R)≤m, then D ∈ WFC(R
op)⊤≤m if and only if D is the cokernel of a

WIC(R)≤m-preenvelope f : M −→ F of an R-module M where F is free;
(ii) If SS ∈ WFC(S)≤m, then D′ ∈ WIC(S

op)⊤≤m if and only if D′ is the cokernel of a
WFC(S)≤m-preenvelope g : N −→ G of an S-module N where G is free.

Proof. (i). (⇒) Since D is a super finitely presented R-module, there exists an exact sequence

· · · −→ Fi+1 −→ Fi −→ Fi−1 −→ · · · −→ F1 −→ F0 −→ D −→ 0

such that Fi is a finitely generated free R-module for all i ≥ 0. Set F := F0 and M :=
Ker(F0 −→ D), and let f be the inclusion map M −→ F . Then we have the short exact
sequence of R-modules

0 −→ M −→ F −→ D −→ 0.

Since RR ∈ WIC(R)≤m, F ∼=
⊕

j∈J R ∈ WIC(R)≤m by Corollary 1(i). Assume that F ′ ∈
WIC(R)≤m. Then F ′∗ ∈ WFC(R

op)≤m from Proposition 3(i) and so TorR1 (F
′∗, D) = 0 because

D ∈ WFC(R
op)⊤≤m. Thus 0 −→ F ′∗⊗RM −→ F ′∗⊗RF is exact. Hence, by [20, Lemma 3.55 and

Proposition 2.56], 0 −→ HomR(M,F ′)∗ −→ HomR(F, F
′)∗ is exact. Therefore HomR(F, F

′) −→
HomR(M,F ′) −→ 0 is exact from [20, Lemma 3.53].

(⇐) It follows from Proposition 4(i).
(ii). This is similar to the first part.

4 C-m-weak cotorsion modules
In this section, we introduce and study C-m-weak cotorsion modules. From here to the end of
the article, we assume that R = S.

Definition 2. An R-module M is called C-m-weak cotorsion if Ext1R(L,M) = 0 for any
R-module L ∈ WFC(R)≤m. We denote the class of all C-m-weak cotorsion R-modules by
CWCm(R).

Remark 2. (i) CWCm(R) = WFC(R)⊥≤m;
(ii) Every injective module is C-m-weak cotorsion;
(iii) Every C-m-weak cotorsion module is C-m′-weak cotorsion for all m′ ≤ m and so

· · · ⊆ CWCm+1(R) ⊆ CWCm(R) ⊆ · · · ⊆ CWC1(R) ⊆ CWC0(R);

Proposition 5. The following assertions hold:
(i) If {Mj}j∈J is a family of R-modules, then

∏
j∈J Mj is C-m-weak cotorsion if and only if

Mj is C-m-weak cotorsion for all j ∈ J ;
(ii) CWCm(R) is closed under direct summands;
(iii) CWCm(R) is closed under extensions.
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Proof. (i). Assume that L ∈ WFC(R)≤m. By [20, Proposition 7.22], Ext1R(L,
∏

j∈J Mj) ∼=∏
j∈J Ext

1
R(L,Mj) and so Ext1R(L,

∏
j∈J Mj) = 0 if and only if Ext1R(L,Mj) = 0 for all j ∈ J .

Thus
∏

j∈J Mj is C-m-weak cotorsion if and only if Mj is C-m-weak cotorsion for all j ∈ J .
(ii). Follows from the first part.
(iii). Assume that

0 −→ M ′ −→ M −→ M ′′ −→ 0

is a short exact sequence of R-modules with M ′,M ′′ ∈ CWCm(R) and that L ∈ WFC(R)≤m.
Then Ext1R(L,M

′) = 0 and Ext1R(L,M
′′) = 0. By applying the functor HomR(L,−) to the

above exact sequence, we get the long exact sequence

· · · −→ Ext1R(L,M
′) −→ Ext1R(L,M) −→ Ext1R(L,M

′′) −→ · · ·

which shows that Ext1R(L,M) = 0. Hence M ∈ CWCm(R).

In the following results, we characterize C-m-weak cotorsion modules.

Proposition 6. Let M be an Rop-module and let RR ∈ WIC(R)≤m. Then the following
conditions are equivalent:

(i) M ∈ CWCm(Rop);

(ii) For every short exact sequence of Rop-modules 0 → M → E
f→ D → 0 where E is injective,

f : E −→ D is a WFC(R
op)≤m-precover of D;

(iii) M is the kernel of a WFC(R
op)≤m-precover f : E −→ D of an Rop-module D where E is

injective.

Proof. (i)⇒(ii). Let 0 → M → E
f→ D → 0 be a short exact sequence of Rop-modules where E

is injective. From Corollary 6, E ∈ WFC(R
op)≤m. Assume that E′ ∈ WFC(R

op)≤m. Then, by
assumption, Ext1Rop(E′,M) = 0 and so, from applying the functor HomRop(E′,−) to the above
short exact sequence, it follows that HomRop(E′, E) → HomRop(E′, D) → 0 is exact. Thus
f : E −→ D is a WFC(R

op)≤m-precover of D.
(ii)⇒(iii). This is clear.
(iii)⇒(i). By assumption, there exists a WFC(R

op)≤m-precover f : E −→ D of an Rop-
module D where E is injective and M = Ker(f). Set I := Im(f). Then we have the short
exact sequence of Rop-modules 0 → M → E → I → 0. Assume that L ∈ WFC(R

op)≤m. Then,
HomRop(L,E) → HomRop(L,D) → 0 is exact and so HomRop(L,E) → HomRop(L, I) → 0 is
exact. By applying the functor HomRop(L,−) to the above short exact sequence, we get the
long exact sequence

HomRop(L,E) −→ HomRop(L, I) −→ Ext1Rop(L,M) −→ Ext1Rop(L,E)

which shows that Ext1Rop(L,M) = 0. Therefore M ∈ CWCm(Rop).

Recall that, an module is said to be reduced if it has no non-zero injective submodules
(see [9, Remark 10.1.5]). In the next proposition, we characterize reduced C-m-weak cotorsion
modules.
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Proposition 7. Let M be an Rop-module and let RR ∈ WIC(R)≤m. Then M is a reduced C-m-
weak cotorsion Rop-module if and only if M is the kernel of a WFC(R

op)≤m-cover f : E −→ D
of an Rop-module D where E is injective.

Proof. (⇒) Assume that M is a reduced C-m-weak cotorsion Rop-module. Assume also that E

is an injective envelope of M and D := E/M . Then 0 → M → E
f→ D → 0 is a short exact

sequence of Rop-modules where E is injective. Thus f : E −→ D is a WFC(R
op)≤m-precover of

D from Proposition 6. Since M is reduced, E has no non-zero direct summand contained in M .
Hence f : E −→ D is a WFC(R

op)≤m-cover of D by Theorem 2(ii) and [24, Corollary 1.2.8].
(⇐) Assume that there exists a WFC(R

op)≤m-cover f : E −→ D of an Rop-module D where
E is injective and M = Ker(f). Therefore, from Proposition 6, M is C-m-weak cotorsion.
Assume that M ′ is an injective submodule of M . Thus there is a submodule of E′ of E where
E = M ′ ⊕E′. Assume that i : E′ −→ E is the injection map and π : E −→ E′ is the projection
map. Then f(M ′) = 0 and so fiπ = f . Hence iπ is an isomorphism and so i is an epimorphism.
Therefore E = E′ and so M ′ = 0. Thus M is reduced as we desired.

We are now ready to state and prove the first main result of this section.

Theorem 4. Let M be an Rop-module, let RR ∈ WIC(R)≤m, and let RopRop ∈ WFC(R
op)≤m.

Then M is a C-m-weak cotorsion Rop-module if and only if M is a direct sum of an injective
Rop-module and a reduced C-m-weak cotorsion Rop-module.

Proof. (⇒) Assume that M is a C-m-weak cotorsion Rop-module. Assume also that E is an
injective envelope of M and D := E/M . Then 0 → M → E

f→ D → 0 is a short exact sequence
of Rop-modules where E is injective. By Proposition 6. f : E −→ D is a WFC(R

op)≤m-
precover of D. From Theorem 2(ii), D has a WFC(R

op)≤m-cover g : F −→ D. Also, there
is a short exact sequence of Rop-modules 0 → K ′ → F ′ g′→ D → 0 where F ′ is free. Since
RopRop ∈ WFC(R

op)≤m, F ′ ∼=
⊕

j∈J R
op ∈ WFC(R

op)≤m by Corollary 1(ii). So there exists
a map h : F ′ → F such that gh = g′. Since g′ is epic, we deduce that g is also epic. Set
K := Ker(g). Then, we have the commutative diagram

0 // K

h2

��

j // F

h1

��

g // D // 0

0 // M

k2
��

i // E

k1
��

f // D // 0

0 // K
j // F

g // D // 0

with exact rows. Set K1 := Ker(k1) and K2 := Ker(k2). Since gk1h1 = g, k1h1 is an isomorphism
and so E = K1 ⊕ Im(h1) and F ∼= Im(h1). Thus F and K1 are injective. Hence K is a reduced
C-m-weak cotorsion Rop-module from Proposition 7. On the other hand, by Five Lemma, k2h2
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is an isomorphism and so M = K2⊕Im(h2) and K ∼= Im(h2). We have the commutative diagram

0

��

0

��

0

��
0 // K2

��

// K1

��

// 0

��

// 0

0 // M

k2
��

i // E

k1
��

f // D // 0

0 // K

��

j // F

��

g // D

��

// 0

0 0 0

which shows that K2
∼= K1 by [20, Exercise 2.32]. Hence we have M = K2 ⊕K where K2 is an

injective Rop-module and K is a reduced C-m-weak cotorsion Rop-module.
(⇐) It follows from Remark 2(ii) and Proposition 5(i).

The following lemma is needed in the proof of the second main result of this section.
Lemma 1. Let RR ∈ WFC(R), let M be a C-m-weak cotorsion R-module, and let k be a
non-negative integer. Then the following assertions hold true:

(i) Extk+1
R (L,M) = 0 for any R-module L ∈ WFC(R)≤m+k;

(ii) ExtjR(L,M) = 0 for all j ≥ 1 and any R-module L ∈ WFC(R)≤m;
(iii) The (k − 1)th cosyzygy of M is a C-k +m-weak cotorsion R-module.
Proof. (i). Assume that L ∈ WFC(R)≤m+k. Since RR ∈ WFC(R), every projective R-module
is in WFC(R) by Corollary 1. Thus, from Corollary 5, there is an exact sequence of R-modules

0 −→ Pm+k −→ Pm+k−1 −→ · · · −→ Pk−1 −→ · · · −→ P0 −→ L −→ 0

such that Pi is projective for all 0 ≤ i ≤ m+k−1 and Pm+k ∈ WFC(R). Set K := Ker(Pk−1 −→
Pk−2). It is clear that K ∈ WFC(R)≤m. Thus Ext1R(K,M) = 0 and so Extk+1

R (L,M) = 0

because we have Extk+1
R (L,M) ∼= ExtkR(K0,M) ∼= Extk−1

R (K1,M) ∼= · · · ∼= Ext2R(Kk−2,M) ∼=
Ext1R(K,M) from applying the derived functors of HomR(−,M) to the short exact sequences

0 −→ K0 −→ P0 −→ L −→ 0,

0 −→ Ki −→ Pi −→ Ki−1 −→ 0

for all 1 ≤ i ≤ k − 2, and
0 −→ K −→ Pk−1 −→ Kk−2 −→ 0

where K0 = Ker(P0 −→ L) and Ki = Ker(Pi −→ Pi−1) for all 1 ≤ i ≤ k − 2.
(ii). This follows from the first part.
(iii). Assume that V k−1 is the (k − 1)th cosyzygy of M . By [20, Proposition 8.10(iii)] and

the first part, Ext1R(L, V k−1) = 0 for any R-module L ∈ WFC(R)≤m+k. Therefore V k−1 is a
C-k +m-weak cotorsion R-module.
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Let F be a class of R-modules, let M be an R-module, and let f : M −→ F be an F-envelope
of M . We say that f has the unique mapping property if for any homomorphism g : M −→ F ′

with F ′ ∈ F , there is a unique homomorphism h : F −→ F ′ such that hf = g (see [6, Section
1]).

We end this paper with a result that shows when every module is C-m-weak cotorsion.

Theorem 5. The following conditions are equivalent:
(i) Every R-module is in CWCm(R);
(ii) Every R-module in WFC(R)≤m is projective;
(iii) Ext1R(L,M) = 0 for all R-modules L ∈ WFC(R)≤m and all R-modules M .
Moreover, if RR ∈ WFC(R), then the above conditions are also equivalent to:
(iv) For any integer k, Extk+1

R (L,M) = 0 for all R-modules L ∈ WFC(R)≤m+k and all R-
modules M ;

(v) Every R-module in WFC(R)≤m is in CWCm(R);
(vi) Every R-module M has a WFC(R)⊥≤m-envelope with the unique mapping property.

Proof. (i)⇔(ii). This is clear.
(i)⇔(iii). It is clear.
(i)⇒(iv). Follows from Lemma 1(i).
(iv)⇒(iii). Take k = 0 in (iv).
(i)⇒(v). This is clear.
(v)⇒(i). Since RR ∈ WFC(R)≤m, by Corollary 1(ii), we deduce that every free R-module

is in WFC(R)≤m. Thus, from Corollary 1(ii), WFC(R)≤m contains all projective R-module
because every projective R-module is a direct summand of a free R-module. Also, WFC(R)≤m

is closed under direct limits and extensions by Corollaries 1(ii) and 2(ii). Assume that M
is an R-module and that L ∈ WFC(R)≤m. By Theorem 2(ii), M has a WFC(R)≤m-cover.
From [7, Theorem 5], we deduce that M has an epic WFC(R)≤m-cover f : F −→ M such that
K := Ker(f) ∈ WFC(R)⊥≤m. We have the short exact sequence of R-modules

0 −→ K −→ F −→ M −→ 0.

By applying the derived functors of HomR(L,−) to the above short exact sequence, we get the
long exact sequence

· · · −→ Ext1R(L,F ) −→ Ext1R(L,M) −→ Ext2R(L,K) −→ · · ·

Since F ∈ WFC(R)≤m, F ∈ CWCm(R) by assumption, and so Ext1R(L,F ) = 0. Also, from
Lemma 1(ii), Ext2R(L,K) = 0. Hence Ext1R(L,M) = 0. Therefore M ∈ CWCm(R).

(i)⇒(vi). It is clear.
(vi)⇒(v). Assume that M ∈ WFC(R)≤m. By assumption, M has a WFC(R)⊥≤m-envelope

f : M −→ F with the unique mapping property. Assume that E is an injective envelope of
M , D := Coker(f), and E′ is an injective envelope of D. Then, we have the exact sequences
of R-modules 0 → M

i→ E, M
f→ F

h→ D → 0, and 0 → D
g→ E′. Since f has the unique
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mapping property and E ∈ WFC(R)⊥≤m, there is a unique homomorphism f ′ : F −→ E such
that f ′f = i. Thus f is monic and so

0

��
0 // M

f //

0   B
BB

BB
BB

B F
h //

gh
��

D //

g~~}}
}}
}}
}}

0

E′

is a commutative diagram of R-modules with exact row. Since ghf = 0, it follows that gh = 0
because f has the unique mapping property and E′ ∈ WFC(R)⊥≤m. Hence Im(h) ⊆ ker(g).
Therefore D = 0 and so M ∼= F . Thus M ∈ WFC(R)⊥≤m and so M ∈ CWCm(R).
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