تعداد نشریات | 31 |
تعداد شمارهها | 757 |
تعداد مقالات | 7,162 |
تعداد مشاهده مقاله | 10,347,626 |
تعداد دریافت فایل اصل مقاله | 6,937,292 |
On the genus and crosscap of the total graph of commutative rings with respect to multiplication | ||
Journal of Algebra and Related Topics | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 14 آذر 1403 | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22124/jart.2024.27463.1667 | ||
نویسندگان | ||
M. Nazim* 1؛ C. Abdioglu2؛ N. Rehman3؛ Sh. A. Mir4 | ||
1School of Computational Sciences, Faculty of Science and Technology, JSPM University, Pune-412207, India | ||
2Department of Mathematics Faculty of Education Karamanoglu Mehmetbey University Karaman - Turkey | ||
3Department of Mathematics Aligarh Muslim University Aligarh | ||
4Department of Mathematics, Aligarh Muslim University, Aligarh | ||
چکیده | ||
Let $\mathcal{S}$ be a commutative ring and $Z(\mathcal{S})$ be its zero-divisors set. The total graph of $\mathcal{S}$ with respect to multiplication, denoted by $T_{Z(\mathcal{S})}(\Gamma(\mathcal{S}))$, is an undirected graph with vertex set as the ring elements $\mathcal{S}$ and two distinct vertices $\alpha$ and $\beta$ are adjacent if and only if $\alpha\beta \in Z(\mathcal{S})$. The graph $T_{Z(\mathcal{S})}(\Gamma(\mathcal{S}^*))$ is a subgraph of $T_{Z(\mathcal{S})}(\Gamma(\mathcal{S}))$ with vertex set $\mathcal{S}^*$ (set of nonzero elements of $\mathcal{S}$). In this paper, we characterize finite rings $\mathcal{S}$ for which $T_{Z(\mathcal{S})}(\Gamma(\mathcal{S}^*))$ belongs to some well-known families of graphs. Further, we classify the finite rings $\mathcal{S}$ for which $T_{Z(\mathcal{S})}(\Gamma(\mathcal{S}^*))$ is planar, toroidal or double toroidal. Finally, we analyze the finite rings $\mathcal{S}$ for which the graph $T_{Z(\mathcal{S})}(\Gamma(\mathcal{S}^*))$ has crosscap at most two. | ||
کلیدواژهها | ||
Crosscap of a graph؛ genus of a graph؛ total graph with respect to multiplication؛ zero-divisor graph | ||
آمار تعداد مشاهده مقاله: 81 |