| تعداد نشریات | 32 |
| تعداد شمارهها | 831 |
| تعداد مقالات | 8,016 |
| تعداد مشاهده مقاله | 45,210,927 |
| تعداد دریافت فایل اصل مقاله | 8,584,657 |
On $\mathbb{Z}_k-$vertex-magic labeling of prime graph $PG(\mathbb{Z}_n)$ | ||
| Journal of Algebra and Related Topics | ||
| دوره 13، شماره 2، اسفند 2025، صفحه 27-37 اصل مقاله (164.54 K) | ||
| نوع مقاله: Research Paper | ||
| شناسه دیجیتال (DOI): 10.22124/jart.2024.26022.1601 | ||
| نویسندگان | ||
| M. H. Khuluq* 1؛ V. H. Krisnawati2؛ N. Hidayat3 | ||
| 1Department of Mathematics, Faculty of Mathematics and Sciences, University of Brawijaya, Malang, Indonesia | ||
| 2Department of Mathematics, Faculty of Mathematics and Sciences, University of Brawijaya, Malang, Indonesia | ||
| 3Department of Mathematics, Faculty of Mathematics and Sciences, University of Brawijaya, Malang, Indonesia | ||
| چکیده | ||
| Let $G=(V(G),E(G))$ be a graph, $(\mathcal{A},+)$ be an Abelian group with identity $0_{\mathcal{A}}$, and $(\mathcal{{R}},+,\cdot)$ be a ring. The $\mathcal{A}$-vertex-magic labeling of $G$ is a mapping from $V(G)$ to $\mathcal{A}-\{0_{\mathcal{A}}\}$ such that the total labels of every adjacent vertex with $u$ are equal for every $u$ in $V(G)$. The prime graph over ${\mathcal{R}}$, denoted by $PG(\mathcal{R})$, is a graph with $V(PG(\mathcal{R}))={\mathcal{R}}$ such that $uv$ is an edge if and only if $u\mathcal{R}v=\{0_{\mathcal{R}}\}$ or $v{\mathcal{R}}u=\{0_{\mathcal{R}}\}$, for every vertex $u\neq v$. In this article, we discuss the $\mathbb{Z}_k$-vertex-magic labeling of the prime graph over ther ring $\mathbb{Z}_n$. We study some literature to develop the properties of $\mathbb{Z}_k$-vertex-magic labeling of $PG(\mathcal{R})$. We investigate some classes of prime graphs over ring $\mathbb{Z}_n$ for $n=p, n=p^2,$ and $n=pq$, with $p\neq q$ primes. | ||
| کلیدواژهها | ||
| Abelian group؛ Group-vertex-magic labeling؛ Prime graph؛ Ring | ||
| مراجع | ||
|
[1] D. F. Anderson, M. C. Axtell and J. A. Stickles, Zero-divisor graphs in commutative rings, Commutative algebra: Noetherian and non-Noetherian perspectives, (2011), 23–46. [2] D. F. Anderson and A. Badawi, The total graph of a commutative ring, Journal of Algebra, 320 (2008), 2706–2719. [3] N. Ashrafi, H. R. Maimani, M. R. Pournaki and S. Yassemi, Unit graphs associated with rings, Communications in Algebra, 38 (2010), 2851–2871. [4] S. Balamoorthy, S. V. Bharanedhar and N. Kamatchi, On the products of group vertex magic graphs, AKCE International Journal of Graphs and Combinatorics, 19 (2022), 268-275. [5] S. Bhavanari, S Kuncham and N. Dasari, Prime graph of a ring, Journal of Combinatorics, Information & System Sciences, 35 (2010), 27-42. [6] G. Chartrand, L. Lesniak and P. Zhang, Graphs & Digraphs, CRC Press, 2016. [7] S. Derrible and C. Kennedy, Applications of graph theory and network science to transit network design, Transp Rev, 31 (2011), 495–519. [8] J. A. Gallian, Contemporary Abstract Algebra, Chapman Hall/CRC, 2021. [9] J. A. Gallian, A dynamic survey of graph labeling, Electron. J. Comb., 2022. [10] I. Gray, J. MacDougall and W. Wallis, On vertex-magic labeling of complete graphs, Bull. Inst. Combin. Appl, 38 (2003), 42–44. [11] N. Kamatchi, K. Paramasivam, A. V. Prajeesh, K. M. Sabeel and S. Arumugam, On group vertex magic graphs, AKCE International Journal of Graphs and Combinatorics, 17 (2020), 461–465. [12] M. H. Khuluq, V. H. Krisnawati and N. Hidayat, On Zk−vertex-magic labeling of simple graphs, Cauchy : Jurnal Matematika Murni dan Aplikasi, 8 (2023), 167-174. [13] A. Kotzig and A. Rosa, Magic valuation of finite graphs, Canadian Mathematical Bulletin, 17 (1970), 451–461. [14] V. H. Krisnawati, A. A. G. Ngurah, N. Hidayat and A. R. Alghofari, On the (consecutively) super edge-magic deficiency of subdivision of double stars, Journal of Mathematics, 2020 (2020), 1–16. [15] A. Kumar and V. Kumar, Application of graph labeling in crystallography, Mater Today Proc, 2020. [16] S. M. Lee, F. Saba, E. Salehi and H. Sun, On the V4−magic graphs, Congressus Numerantium, (2002), 59-68. [17] S. M. Lee, H. Sun and I. Wen, On group-magic graphs, Journal of Combinatorial Mathematics and Combinatorial Computing, 38 (2001), 197–207. [18] Q. Liao and W. Liu, The group vertex magicness of unicyclic and bicyclic graphs, arXiv preprint arXiv:2303.04588. [19] R. Likaj, A. Shala, M. Mehmetaj, P. Hyseni and X. Bajrami, Application of graph theory to find optimal paths for the transportation problem, IFAC Proceedings Volumes 46 (2013), 235–240. [20] R. M. Low and S. M. Lee, On group-magic Eulerian graphs, Journal of Combinatorial Mathematics and Combinatorial Computing, 50 (2004), 141-148. [21] R. M. Low and S. M. Lee, On the product of group-magic graphs, Australasian Journal of Combinatorics, (2006), 34–41. [22] R. M. Low and S. M. Lee, On the integer-magic spectra of tessellation graphs, Australasian Journal of Combinatorics, 34 (2006), 1-14. [23] B. Molnar and A. Benczur, The application of directed hyper-graphs for analysis of models of information systems, Mathematics, 10 (2022), 759–769. [24] K. R. A. Navas, V. Ajitha and T. K. M. Varkey, On vertex integer-magic spectra of Caterpillar graphs, Malaya Journal of Matematik, 8 (2020), 1543–1546. [25] A. V. Prajeesh, N. Kamatchi and S. Arumugam, A characterization of group vertex magic trees of diameter up to 5. Australasian Journal of Combinatorics, 85 (2023), 49-60. [26] N. L. Prasanna, K. Sravanthi and N. Sudhakar, Applications of graph labeling in communication networks, Oriental Journal of Computer Science and Technology, 7 (2014), 139-145. [27] A. Prathik, K. Uma and J. Anuradha, An Overview of application of Graph theory, International Journal of ChemTech Research 9 (2016), 242–248. [28] G. Raeisi and M. Gholami, Edge coloring of graphs with applications in coding theory, China Communications, 18 (2021), 181–195. [29] A. Rosa, Edge coloring of graphs with applications in coding theory, In Theory of Graphs (International Symposium, Rome), (1966), 349–355. 30] D. Sensarma and S. S. Sarma, Application of graphs in security, International Journal of Innovative Technology and Exploring Engineering, 8 (2019), 2273–2279. [31] W. Shiu and R. Low, Zk-magic labelings of fans and wheels with magic-value zero, Australasian Journal of Combinatorics, 45 (2009), 309–316. [32] S. Vaidya and N. Shah, Graceful and odd graceful labeling of some graphs, International Journal of Mathematics and Soft Computing, 3 (2013),61–68. [33] M. S. Vinutha and P. Arathi, Applications of graph coloring and labeling in computer science, International Journal on Future Revolution in Computer Science and Communication Engineering, 3 (2017), 14–16. [34] T. M. Wang and C. C. Hsiao, On anti-magic labeling for graph products, Discrete Math, 308 (2008), 3624–3633. | ||
|
آمار تعداد مشاهده مقاله: 327 تعداد دریافت فایل اصل مقاله: 50 |
||