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Incorporating non-monotone trust region algorithm with line
search method for unconstrained optimization
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Abstract. This paper concerns an efficient trust region framework that exploits a new non-monotone
line search method. The new algorithm avoids the sudden increase of the objective function values in
the non-monotone trust region method. Instead of resolving the trust region subproblem whenever the
trial step is rejected, the proposed algorithm employs an Armijo-type line search method in the direction
of the rejected trial step to construct a new point. Global and superlinear properties are preserved under
appropriate conditions. Comparative numerical experiments depict the efficiency and robustness of the
new algorithm using the Dolan-More performance profiles.
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1 Introduction
Here, the following unconstrained optimization problem is considered:
min{ f(x)|x € R"}, (1)

where f : R" — R is a twice continuously differentiable function. Among the various methods that have
been presented to solve problem (1), two of the most famous categories are line search (LS) and trust
region (TR) methods [6, 18]. The sequence of iterations in LS and TR methods is as follows:

xk+1:xk+pka k:172737"'7

where xp € R" is a given initial point. In the LS method p; = o dy, where, d is the search direction and
oy is called the step length. Several inexact LS methods have been proposed, see for example [4, 12,24].
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On the other hand, in the TR method, py is called the trial step, which is obtained by solving the following
subproblem:

. 1
min Wi(p) = fi+gip+ =p" Bip, )
peR? 2
s.t. Pl < Ak,

where y(p) is an approximate model of f, fi = f(xx), gk = Vf(xx), Bx € R™" is an approximation of
exact Hessian H;, = V? f(xx) and A¢> 0 is the TR radius that is updated in each iteration. We refer to
Il - || as the Euclidean norm.
The agreement between the objective function f and model y;(p) is measured by the so-called TR
ratio r; defined as follows:
i fla+pr)
Vi (0) — wi(pe)

The ry value, helps us to decide whether to accept or reject the trial step pg. If ry is close to unity,
then the trial step py is accepted, x;+1 = X + px and the algorithm can expand the TR radius for the next
iteration. Conversely, if ry is a positive number close to zero or even negative, we conclude that there is no
reasonable agreement between the exact and the approximate model. Therefore, the trial step is rejected
and the TR radius should be shrunk. Consequently, the TR subproblem must be solved again. Hence, the
computational cost of the algorithm may increase. To overcome this defect, a new class of TR algorithms
incorporating LS rules has been developed that avoids resolving the TR subproblem [11, 19]. Although
this combination had favorable results, it has been shown in [13, 14, 22] that when the sequence {x;} is
trapped near the presence of narrow curved valleys, the monotone LS becomes obsolete. To overcome
this shortcoming, the use of non-monotone techniques seems very meaningful.

Perhaps the first non-monotone technique is the “watchdog technique” proposed by Chamberlain et
al. [5]. Based on this scheme, Grippo et al. [13] proposed a non-monotone LS method in the following
form:

Tk

S+ owpie) < fiey + O 0ugi Pre

in which ¢ € (0,1),
fl(k) = ogrflgaq;((k){fk_’}’ k= 0, 1,2, ceny

9(0)=0,0<¢(k) <min{¢(k—1)+1,N} forall k > 1 and N > 0. Despite the good advantages of this
technique, Zhang and Hager [26] found that this method suffers from various weaknesses. Therefore a
non-monotone technique based on the weighted average of previous consecutive iterations was proposed
by them. Their method can overcome the shortcomings of previous methods. However, the numerical
results presented in [15,26] indicate that updating some parameters becomes an encumbrance at each
iteration.

The first exploitation of the non-monotone technique in the TR framework was presented by Deng
et al. [7]. Further development of this technique was done by [22,25,27]. The basic difference between
the monotone and non-monotone TR algorithms is due to the definition of the ratio r;. The most popular
non-monotone TR ratio is defined as follows:

s Jiwy — f G+ pr)
T w0 —wilpr)

3
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Since the factor f;(x) only appears in the numerator, the non-monotone ratio (3) may increase consid-
erably, especially for large values of N. So, by placing fj) in the denominator, Fu and Sun [10] provided
more reasonable information about the exact and approximate models. Some modified versions of the
non-monotone TR ratio have been proposed, see for example [, &].

We know that by taking the maximum in the parameter fj(), it is possible to ignore a good function
value. In trying to deal with this defect, a non-monotone parameter was introduced by Ahookhosh and
Amini [2] as follows:

R = M figy + (1= 1) f

where M € [Nmin, Mmax| TOr Npmin € [0,1) and Nyax € [Mmin, 1]. Taking advantage of the non-monotone
term of in [2], a modified non-monotone TR method with Armijo-type LS method was presented by
Rezaee and Babaie-Kafaki [20]. Kamandi and Amini [16] found that in some problems, for example,
OSCIGRAD, the difference between the current value fj and the non-monotone parameter R; becomes
too large and in this case, a large increase is allowed to happen in the next iteration. Another disadvantage
of the above non-monotone technique is its strong dependence on the choice of memory parameter ¢ (k)
and parameter 1. However, there is no specific rule to adjust them.

Considering the mentioned weaknesses, in this study, we propose a new non-monotone TR combined
with the LS method, which prevents the sudden increase of the objective function values in the non-
monotone TR method, but does not depend on the choice of ¢ (k) and 1. The properties of global
convergence and superlinearity are preserved under appropriate conditions.

The remainder of this paper is arranged as follows. Description of the new algorithm is given in Sec-
tion 2. Analysis of global and superlinear properties are discussed in Section 3. Preliminary numerical
results are reported in Section 4, and finally conclusions are given in Section 5.

2 New algorithm

This section is dedicated to describing the structure of the new algorithm. Similar to [16], first we define
sequence {Qy} as follows:

07 if k:07 Orfl(k)_fk>v‘fk|7
Ok =
Qk*l—*—l? 0.W,

where V is a positive parameter. When the relative difference between fj(;) and the value of the current
function is large, it makes the algorithm monotone, which prevents the sudden increase of the values of
the objective function for the next iteration. Second, we define sequence {I; } as follows:

0, if k=0, Orfk<fk—la
I, =
Li_1+1, ow.

The sequence {I;} counts the number of successive increments in the values of the objective func-
tion. Moreover, having the above sequences for fixed natural numbers N and I, we define the new
non-monotone parameter Dy, as:

max {fi_;}, if I <I,
Dy = ogjgnk{fk ]} k @)

f(xk)a 0.W,
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where n; = min{Qy,N}. The new non-monotone parameter not only prevents the sudden increase of
objective function values but also does not depend on the choice of ¢ (k) and 1. Finally, we define the
TR ratio as follows:

. Dy —fla+pi)

Fr = ) )
v (0) — wi(pr)
so that, Dy, is updated by (4).

To avoid resolving the TR subproblem, here we use a non-monotone version of the Armijo-type LS
procedure proposed by Wan et al. [23]. Based on this LS, we calculate oy as the largest quantity in the
set {sx, sk, P25k, ... }» which satisfies the following inequality:

1
flax+axpr) < Dy + o0y <gl{Pk_205k£Lk||PkH2)a (6)

where Dy is updated by (4), sy = —g! pr/Lx|| px||* is a positive constant, p € (0,1),0 € (0, %), € [0, +o)
and the parameter L; is an approximation of the Lipschitz constant, which can be estimated by L; =
Ivk=1ll/llpk=1|l, in which yx_; = gk — gk—1. If £ =0 and Dy = fi, then the new LS rule (6) reduces to
the Armijo LS rule [4].

The general framework of the new algorithm is as follows:

Algorithm 1 Non-monotone trust region line search algorithm (NTRLS)

Inputs: Give initial point xg € R”, positive definite matrix By € R € >0,0< up <1, 0<c; <1<
c2, N,JI>0,A0>0,p€(0,1), o€ (0,%), £ €[0,+400) and Ly > 0. Compute f(xp) and set k = 0.
Step 1: Compute g;. If ||g«|| < €, then stop.

Step 2: Solve subproblem (2) to find the trial step py.

Step 3: Compute 7 by (5). If 7 > up, go to Step 5. Otherwise go to Step 4.

Step 4: Find step length oy satisfying (6) and set x| = x; + 0 pr. Update the TR radius by Ag; €
[c1][x%+1 — xk||, Ax], and go to Step 6.

Step 5: Set x4 = x;+ pr and Apy | = c2Ag.

Step 6: Calculate the new By using the quasi-Newton updating formula.

Step 7: Set k = k+1 and go to Step 1.

It is worth noting that the quasi-Newton updating formula is explained in the numerical experiments
in Section 4.

3 Convergence analysis

Here, we turn to discuss the convergence properties of Algorithm 1. To this end, we require the following
assumptions [2].

Assumption 1. The level set I'(xg) = {x|f(x) < f(x0)} C 3, where 3 is a closed and bounded subset of
R"
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Assumption 2. There exists a positive constant A such that
p'Bip > Alpl*, VYpeR"andkeN.

Assumption 3. The matrix By, is uniformly bounded, i.e., there exists a constant A; > 0 such that || By || <
Ay, Vke N

Remark 1. Let f be a twice continuously differentiable function. Therefore Assumption 1 shows that
there exists a constant Ao > 0, such that

Hvzf('xk)H SA27 VXES. (7)
Furthermore, from the mean value theorem, it is concluded that

le(x) =gl < Aallx—yll, Vx,yeS, (®)

which implies that g(x) is Lipschitz continues in the 3. Consequently, from (8) for the sequence {L;}, we
have 0 < L; < As.

At each iteration, a trial step py is generated by solving the TR subproblem (2). Strong theoretical
and implementation results for the proposed algorithm can be obtained if the trial step py satisfies

wk<o>—wk<pk>zvngknmin{Ak |','§’;'|',} V>0, ©)
and
e s
gkka '}/Hngmll’l Aka”BkH 3 szoa (10)

where 7y € (0,1) is a constant. Similar to [19], we can solve the TR subproblem inaccurately so that (9)
and (10) hold.

For the remainder of this paper, we suppose that Assumptions 1-3 are true. Moreover, we use two
index set I = {k: 7 > to} and J = {k : 7 < Uo}, in order to ease of operations.

Lemma 1. Let {x;} be the sequence generated by Algorithm 1. Then for all k we have fi1 < Dy.

Proof. We consider two cases:

Case 1. k € 1. From (5) and (9), we can write fy1 < Dy — toY||gk || min {Ak, %}, therefore, we obtain
Jrr1 <Dy, forall k € 1.

Case 2. k € J. Through (10) we know that g/ p; < 0, for all k. Therefore, from this inequality along with
(6), we conclude

1
fir1 —Dr < ooy (gf pr— EakELkakHZ) < ooygi pr <0,
hence, we have f; 1 < Dy, forall k € J. O

Lemma 2. The sequence {x;} generated by Algorithm 1 is contained in the level set I'(xo) and the
sequence {Dy} is convergent.
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Proof. The proof is similar to the proof of [ 16, Lemma 3.6] and thus it is omitted. O
Lemma 3. Step 4 of Algorithm 1 is well-defined.

Proof. If k € I, the proof is straightforward. Let k € J, for the purpose of deriving a contradiction,
suppose that there exists k € J such that

) . 1 . )
f(xk+p’sepr) > D+ op?si(gf e — EPJSMLkHPkHz), vjeNuU{0}.
From Lemmas | and 2, we obtain

I+ pIsipi) — fi
psk

1.
> o (gf i — EP’SkakHPkHZ)-
Since f is differentiable and p € (0, 1), by taking the limit with j — oo, we get

i > o8l pr. (11)

Due to the fact that o € (0, %), inequality (11) leads us to ng pr > 0, which contradicts (10). This
implies that for any k € J , there exists a j; > 0, such that (6) holds [15]. O

Lemma 4. For all k € J the step length oy satisfies

(1-0o)pA

O = A2(1 +G€) '

Proof. Assume o = % , then from Step 4 of Algorithm 1, we can write

1
fOo+apr) >Dk+oa(g,{pk—EaeLkakHz). (12)

By Taylors expansion, we have

1
it api) = fit agi pit 507 PV £ (G P (13)

where §; € (xg,xx + apy). From (7), (12) and (13) together with Lemmas | and 2, we obtain

1 1
oolg pe— EOCELkHPkHz) <aghpi+ 5062/\2||PkH2'

Therefor, we have
1
— (1= 0)gipe < llpellP o (14 00). (14)

Considering (2) and (9) we get —g,{ Pk = % p,{kak. Combining this inequality and (14) along with
Assumption 2 imply that (1 — o)A ||pi||? < @/ px||*A2 (14 o£). Hence the proof is completed. O

Lemma 5. Let {x;} be the sequence that is generated by Algorithm 1. Then we have

lim Dk = lim f(xk).
k—ro0 k—ro0
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Proof. We consider the following two cases:

Case 1. k € I. Hence we have
Sy = Jiet1 o De—fin

Vi (0) = wie(pe) — Wi (0) — wie(px

> Uo-
)

The remainder of the proof is similar to the proof of [ 1, Theorem 3.2] and thus it is omitted.

Case 2. k € J. Now for k > N, from (6) we have
f(awy) = fg—1) + %—1)Pix-1))

1
< D1y + 00 1) (&1 1) Prie—1) — 5 k-1 Ly [ Prge-1) %)

1
<fGage-1) + 00 (ng(kfl)pl(k—l) - Eal(k—l)ELl(k—l) Pi(—1) 7).
Since
T 1, 5
we have
li T i o
Jim &e—1) 811y Prce—1) = im Gy | Pre—n) | = 0

The remainder of the proof can be found in [13] and thus it is omitted.

225

O

Lemma 6. Suppose that the sequence {x;} generated by Algorithm 1 is not convergent, i.e., there exists

a constant € > 0 such that
gkl > €,

for all k. Therefore, we have limy_,. min {Ak, i’%} =0, where £ =1+ Eafk”BjH'
<J<
Proof. We firstly show that there exists a constant ¥ > 0 such that

Srr1 SDk—ﬁmin{Ak,g}, Vk € N.
i

To this end, we consider two cases:

Case 1. If k € I, then by (5), (9) and (15), we have

) ) € . €
Dy — fir1 > Ho?||gk|| min Ak,w > Hoyeming Ay, —- ¢ = Oy min< Ay, —- ¢,
% %

where ¥ = Ug7Ye.
Case 2. If k € J, then by (6), (10), (15) and Lemma 4, we can write

1
fix1 <D+ o0y <ngpk - 206k€Lk||pk||2> < Dy + O 0yg) px

o(l—o)pA

£ £
<p, U0t indA SV D wminda, &
T A (1t of) ygmm{ k’zk} k %mm{ "’,zk}’

where %, = %ys.

(15)

(16)
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By setting ¥ = min{ 3, %}, we can see that (16) holds for all k € N. Therefore, Lemma 5 and taking a
limit completes the proof. Ul

Lemma 7 ([15]). Let {x;} be the sequence generated by Algorithm 1. Suppose that all conditions of
Lemma 6 hold. Then for all sufficiently large k, we have

Ac> %. (17)
Theorem 1. For the sequence {x;} generated by Algorithm 1 we have
lim inf gy = 0.
Proof. By contrary, assume that there exists a constant € > 0 such that (15) holds. Thus, there exists an

integer k such that, for k > k, (17) holds. This fact together with (16), show that

. € 1
Jik) Z D = [t +19m1n{Ak,$k} = fert +08§ﬁ('

From Lemma 1, we can write

Jigerny = max {fi 1} < max {fijo1}=max{fir1, fiw} = fiw),

0<j<npy; T 0<j<m+1

thus, for s = 0,1,...,N, we have Jiwy Z - Z Sikrs) 2 Jerst1 + ﬁsﬁ. The remainder of the proof is
similar to [2, Theorem 3.5] and thus it is omitted. O

Theorem 2. Suppose that the sequence {x;} generated by Algorithm I converges to x*, V2 f(x*) is
positive definite, ||B; ' gi|| < & and py = —B; ' gi. If the following condition holds

(V) =Bl _

lim
koo [ |

then the sequence {x;} converges to x* superlinearly. Furthermore, the convergence is quadratically
whenever B, = V2 f(xy).

Proof. The proof can be found in [2, 15,20] and thus it is omitted. ]

4 Numerical experiments

In this section, we aim to investigate the numerical experiments of Algorithm 1, to demonstrate its
performance. Our experiments are performed on a set of test functions with dimensions ranging from
100 to 6000 from Andrei [3] listed in Table 1. The practical implementation of the proposed algorithm
is compared with the following algorithms: 1- Non-monotone adaptive TR algorithm (NATR) [16]. 2-
A modified non-monotone TR line search algorithm (MNMTRLS) [20]. 3- New non-monotone TR
algorithm with new inexact LS (NTR) [17].
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Table 1: List of test function.

Problem Name Dimension Problem Name Dimension

Generalized Rosenbrock 100,500 ARGLINC (CUTE) 100

Perturbed Quadratic 100,500 BDEXP (CUTE) 100,500,1000,3000
Diagonal 4 100,500,1000,3000,6000 HARKERP2 (CUTE) 100

Extended BD1 100,500,1000,3000,6000 Extended DENSCHNB (CUTE) 100,500,1000,3000,6000
Perturbed Quadratic 100,500 Extended DENSCHNF (CUTE) 100,500,1000,3000
Fletchcr (CUTE) 100,500 HIMELH (CUTE) 100,500,1000,3000,6000
NONDQUAR (CUTEr) 100,500 Extended Beal 100,500,1000,3000
DQDRTIC (CUTE) 100,500,1000,3000 Extended Penalty 100,500,1000

Almost Perturbed 100,500 Raydan 2 100,500,1000,3000,6000
Purterbed Tridiagonal 100,500 Diagonal 1 100

LIARWHD (CUTE) 100,500,1000,3000 Diagonal 2 100,500

POWER (CUTE) 100,500 Diagonal 3 100,500

CUBE (CUTE) 100 Hager 100

NONSCOMP (CUTE) 100,500 Genaralized Tridiagonal 1 100

Vardim (CUTE) 100,500 Extended Tridiagonal 1 100,500,1000,3000
QUARTC (CUTE) 100,500,1000,3000 Extended TET 100,500,1000,3000,6000
LIARWHD (CUTE) 100,500,1000,3000 Generalized Tridiagonal 2 100

DIXON3DQ (CUTE) 100,500,1000 Diagonal 5 100,500

HIMMELBG (CUTE) 100,500,1000,3000 Extended Himmelblau 100,500

Partial Perturbed 100,500 Generalized PSC1 100,500

DIXMAANA 300,1500,3000 Extended PSC1 100,500,1000,3000
DIXMAANB 300,1500,3000 Extended Powell 100,500

DIXMAANC 300,1500,3000 Extended BD1 100,500,1000,3000,6000
DIXMAAND 300,1500,3000 Extended Maratos 100,500

DIXMAANE 300,1500 Quadratic QF1 100,500

DIXMAANF 300,1500 Extended quadratic penalty QP1  100,500,1000,3000
DIXMAANG 300,1500 Extended quadratic penalty QP2 100,500,1000,3000
DIXMAANH 300,1500 Quadratic 100,500

DIXMAANI 300 Extended quadratic 100,500,1000,3000,6000
DIXMAANIJ 300 Extended Tridiagonal 2 100,500,1000,3000
DIXMAANK 300 Broyden Tridiagonal 100,500

DIXMAANL 300 Diagonal 7 (CUTE) 100,500,1000,3000,6000
BDQRTIC (CUTE) 100,500 Diagonal 8 (CUTE) 100,500,1000,3000,6000
TRIDIA (CUTE) 100,500 Full Hessian FH3 100,500,1000,3000,6000
ARWHEAD (CUTE) 100,500,1000,3000 SINCOS 100,500,1000,3000

BG2 (CUTE) 100,500,1000,3000 Diagonal 9 100,500

ENGVALI (CUTE) 100 BIGGSB1 (CUTE) 100,500

EDENSCH (CUTE) 100,500

We performed numerical calculations in MATLAB R2014a (8.3.0.532) programming environment
with a long precision format. The codes were run on a PC processor (Intel (R) Celeron (R) CPU N3350
2.4 GHZ) with 4 GB RAM. The stopping criteria are that the number of iterations exceeds 5000 or

ls(o)| <& =107,

For NTRLS algorithm, we consider tg = 0.1, ¢; =0.25, c =2, Ag=10, N=15, D=6, v=10, p =
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0.5, a9 =0.3, 6 =0.001 and Ly = 0.5. In NTR and MNMTRLS algorithms, we set g = 0.5 and used
the following update formula to calculate n:

In the case of non-identical parameters, NATR, NTR, and MNMTRLS algorithms have been run
with the same parameter values specified in [16], [17], and [20] respectively. In all four algorithms, we
set Byp = I where [ is the identity matrix and the matrix By is updated by the following BFGS formula:

Bipipi B | yivr
pPiBrx  YipK

By 1=Br—

where y; = gr+1 — gk and py = x4 — xx. We let By = By as p,{yk < 0. The TR subproblems are solved
by the Steihaug scheme [21]. The numerical results of the mentioned algorithms are presented in Tables
2 and 3, in which N;, Ny and CPUtime respectively represent the number of iterates, number of function
evaluations and running time. In addition, (-) indicates that the number of iterations exceeds 5000.

With a glance at Tables 2 and 3 it can be seen that the NATR, NTR, and MNMTRLS algorithms have
failed in some cases, while the NTRLS algorithm has solved all the test functions.

Dolan and More [9] proposed a new method to compare the performance of iterative algorithms with
a statistical process by displaying performance profiles. Therefore, in order to have a better comparison,
we use this technique to visually compare the efficiency of four algorithms according to the numerical
results in Tables 2 and 3.

In Fig.s 1, 2 and 3, the efficiency comparisons were drawn using the Dolan and More performance
profile [9] on the number of iterations, the number of function evaluations, and the running time, respec-
tively. It is worth noting that in all mentioned algorithms the number of gradient evaluations is equal to
the number of iterations. From Fig. 1 we can see that for nearly 65% of the test problems, the NTRLS
algorithm is the best solver and in Fig. 2 we observe that NTRLS obtains the most wins in approximately
58% of all the test problems.

From Fig. 3, we observe that in more than 40% of cases, the new algorithm is faster than the other
algorithms. Another important factor of these three figures is that the graph of the NTRLS algorithm
grows up faster than the others, which means in the cases that this algorithm does not get the best result,
it performs closer to the performance index of the best algorithm. Therefore, we can conclude that the
new algorithm is more efficient and robust compared to the others mentioned algorithms.

5 Conclusions

Considering the advantages of the non-monotone technique, to avoid resolving the TR subproblem, we
have presented a new non-monotone LS method in the TR framework, which prevents the sudden in-
crease of objective function values in the non-monotone TR method. In other words, we have used the
Armijo-type LS method in the direction of the failed trial step to create a new point. The global and su-
perlinear properties have been proven under appropriate conditions. Finally, the proposed algorithm has
been tested on 75 test functions. Comparative numerical experiments have clearly shown the efficiency
and robustness of the proposed algorithm using the Dolan-More performance profile.
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Figure 3: Performance profiles for the running time
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