JMM

Incorporating non-monotone trust region algorithm with line search method for unconstrained optimization

Seyed Hamzeh Mirzaei, Ali Ashrafi*,

Department of Mathematics, Statistics and Computer Science, Semnan University, Semnan, Iran Email(s): shmirzaei@semnan.ac.ir, a_ashrafi@semnan.ac.ir

Abstract. This paper concerns an efficient trust region framework that exploits a new non-monotone line search method. The new algorithm avoids the sudden increase of the objective function values in the non-monotone trust region method. Instead of resolving the trust region subproblem whenever the trial step is rejected, the proposed algorithm employs an Armijo-type line search method in the direction of the rejected trial step to construct a new point. Global and superlinear properties are preserved under appropriate conditions. Comparative numerical experiments depict the efficiency and robustness of the new algorithm using the Dolan-More performance profiles.

Keywords: Unconstrained optimization, trust region, line search, non-monotone technique. *AMS Subject Classification 2010*: 90C30, 90C53, 49M37.

1 Introduction

Here, the following unconstrained optimization problem is considered:

$$\min\{f(x)|x\in\mathbb{R}^n\},\tag{1}$$

where $f : \mathbb{R}^n \to \mathbb{R}$ is a twice continuously differentiable function. Among the various methods that have been presented to solve problem (1), two of the most famous categories are line search (LS) and trust region (TR) methods [6, 18]. The sequence of iterations in LS and TR methods is as follows:

$$x_{k+1} = x_k + p_k, \quad k = 1, 2, 3, \dots,$$

where $x_0 \in \mathbb{R}^n$ is a given initial point. In the LS method $p_k = \alpha_k d_k$, where, d_k is the search direction and α_k is called the step length. Several inexact LS methods have been proposed, see for example [4, 12, 24].

© 2025 University of Guilan

^{*}Corresponding author

Received: 23 August 2024 / Revised: 8 November 2024 / Accepted: 12 November 2024 DOI: 10.22124/jmm.2024.28257.2492

On the other hand, in the TR method, p_k is called the trial step, which is obtained by solving the following subproblem:

$$\min_{p \in \mathbb{R}^n} \Psi_k(p) = f_k + g_k^T p + \frac{1}{2} p^T B_k p,$$
(2)
s.t. $\|p\| \le \Delta_k,$

where $\Psi_k(p)$ is an approximate model of f, $f_k = f(x_k)$, $g_k = \nabla f(x_k)$, $B_k \in \mathbb{R}^{n \times n}$ is an approximation of exact Hessian $H_k = \nabla^2 f(x_k)$ and $\Delta_k > 0$ is the TR radius that is updated in each iteration. We refer to $\|\cdot\|$ as the Euclidean norm.

The agreement between the objective function f and model $\psi_k(p)$ is measured by the so-called TR ratio r_k defined as follows:

$$r_k = \frac{f_k - f(x_k + p_k)}{\psi_k(0) - \psi_k(p_k)}.$$

The r_k value, helps us to decide whether to accept or reject the trial step p_k . If r_k is close to unity, then the trial step p_k is accepted, $x_{k+1} = x_k + p_k$ and the algorithm can expand the TR radius for the next iteration. Conversely, if r_k is a positive number close to zero or even negative, we conclude that there is no reasonable agreement between the exact and the approximate model. Therefore, the trial step is rejected and the TR radius should be shrunk. Consequently, the TR subproblem must be solved again. Hence, the computational cost of the algorithm may increase. To overcome this defect, a new class of TR algorithms incorporating LS rules has been developed that avoids resolving the TR subproblem [11, 19]. Although this combination had favorable results, it has been shown in [13, 14, 22] that when the sequence $\{x_k\}$ is trapped near the presence of non-monotone techniques seems very meaningful.

Perhaps the first non-monotone technique is the "watchdog technique" proposed by Chamberlain et al. [5]. Based on this scheme, Grippo et al. [13] proposed a non-monotone LS method in the following form:

$$f(x_k + \alpha_k p_k) \le f_{l(k)} + \sigma \alpha_k g_k^T p_k,$$

in which $\sigma \in (0, 1)$,

$$f_{l(k)} = \max_{0 \le j \le \phi(k)} \{ f_{k-j} \}, \quad k = 0, 1, 2, ...,$$

 $\phi(0) = 0, 0 \le \phi(k) \le \min\{\phi(k-1)+1, N\}$ for all $k \ge 1$ and $N \ge 0$. Despite the good advantages of this technique, Zhang and Hager [26] found that this method suffers from various weaknesses. Therefore a non-monotone technique based on the weighted average of previous consecutive iterations was proposed by them. Their method can overcome the shortcomings of previous methods. However, the numerical results presented in [15, 26] indicate that updating some parameters becomes an encumbrance at each iteration.

The first exploitation of the non-monotone technique in the TR framework was presented by Deng et al. [7]. Further development of this technique was done by [22, 25, 27]. The basic difference between the monotone and non-monotone TR algorithms is due to the definition of the ratio r_k . The most popular non-monotone TR ratio is defined as follows:

$$\hat{r}_k = \frac{f_{l(k)} - f(x_k + p_k)}{\psi_k(0) - \psi_k(p_k)}.$$
(3)

Since the factor $f_{l(k)}$ only appears in the numerator, the non-monotone ratio (3) may increase considerably, especially for large values of N. So, by placing $f_{l(k)}$ in the denominator, Fu and Sun [10] provided more reasonable information about the exact and approximate models. Some modified versions of the non-monotone TR ratio have been proposed, see for example [1,8].

We know that by taking the maximum in the parameter $f_{l(k)}$, it is possible to ignore a good function value. In trying to deal with this defect, a non-monotone parameter was introduced by Ahookhosh and Amini [2] as follows:

$$R_k = \eta_k f_{l(k)} + (1 - \eta_k) f_k,$$

where $\eta_k \in [\eta_{min}, \eta_{max}]$ for $\eta_{min} \in [0, 1)$ and $\eta_{max} \in [\eta_{min}, 1]$. Taking advantage of the non-monotone term of in [2], a modified non-monotone TR method with Armijo-type LS method was presented by Rezaee and Babaie-Kafaki [20]. Kamandi and Amini [16] found that in some problems, for example, OSCIGRAD, the difference between the current value f_k and the non-monotone parameter R_k becomes too large and in this case, a large increase is allowed to happen in the next iteration. Another disadvantage of the above non-monotone technique is its strong dependence on the choice of memory parameter $\phi(k)$ and parameter η_k . However, there is no specific rule to adjust them.

Considering the mentioned weaknesses, in this study, we propose a new non-monotone TR combined with the LS method, which prevents the sudden increase of the objective function values in the non-monotone TR method, but does not depend on the choice of $\phi(k)$ and η_k . The properties of global convergence and superlinearity are preserved under appropriate conditions.

The remainder of this paper is arranged as follows. Description of the new algorithm is given in Section 2. Analysis of global and superlinear properties are discussed in Section 3. Preliminary numerical results are reported in Section 4, and finally conclusions are given in Section 5.

2 New algorithm

This section is dedicated to describing the structure of the new algorithm. Similar to [16], first we define sequence $\{Q_k\}$ as follows:

$$Q_k = \begin{cases} 0, & \text{if } k = 0, \text{ or } f_{l(k)} - f_k > \mathbf{v} | f_k |, \\ Q_{k-1} + 1, & \text{o.w}, \end{cases}$$

where v is a positive parameter. When the relative difference between $f_{l(k)}$ and the value of the current function is large, it makes the algorithm monotone, which prevents the sudden increase of the values of the objective function for the next iteration. Second, we define sequence $\{I_k\}$ as follows:

$$I_k = \begin{cases} 0, & \text{if } k = 0, \text{ or } f_k < f_{k-1}, \\ I_{k-1} + 1, & \text{o.w.} \end{cases}$$

The sequence $\{I_k\}$ counts the number of successive increments in the values of the objective function. Moreover, having the above sequences for fixed natural numbers \overline{N} and \overline{I} , we define the new non-monotone parameter D_k as:

$$D_{k} = \begin{cases} \max_{0 \le j \le n_{k}} \{f_{k-j}\}, & \text{if } I_{k} \le \bar{I}, \\ f(x_{k}), & \text{o.w,} \end{cases}$$
(4)

where $n_k = \min\{Q_k, \bar{N}\}$. The new non-monotone parameter not only prevents the sudden increase of objective function values but also does not depend on the choice of $\phi(k)$ and η_k . Finally, we define the TR ratio as follows:

$$\hat{r}_{k} = \frac{D_{k} - f(x_{k} + p_{k})}{\psi_{k}(0) - \psi_{k}(p_{k})},$$
(5)

so that, D_k is updated by (4).

To avoid resolving the TR subproblem, here we use a non-monotone version of the Armijo-type LS procedure proposed by Wan et al. [23]. Based on this LS, we calculate α_k as the largest quantity in the set { s_k , ρs_k , $\rho^2 s_k$,...}, which satisfies the following inequality:

$$f(x_k + \alpha_k p_k) \le D_k + \sigma \alpha_k \left(g_k^T p_k - \frac{1}{2} \alpha_k \ell L_k \| p_k \|^2 \right), \tag{6}$$

where D_k is updated by (4), $s_k = -g_k^T p_k / L_k ||p_k||^2$ is a positive constant, $\rho \in (0, 1), \sigma \in (0, \frac{1}{2}), \ell \in [0, +\infty)$ and the parameter L_k is an approximation of the Lipschitz constant, which can be estimated by $L_k = ||y_{k-1}|| / ||p_{k-1}||$, in which $y_{k-1} = g_k - g_{k-1}$. If $\ell = 0$ and $D_k = f_k$, then the new LS rule (6) reduces to the Armijo LS rule [4].

The general framework of the new algorithm is as follows:

Algorithm 1 Non-monotone trust region line search algorithm (NTRLS)

Inputs: Give initial point $x_0 \in \mathbb{R}^n$, positive definite matrix $B_0 \in \mathbb{R}^{n \times n}$, $\varepsilon > 0$, $0 < \mu_0 < 1$, $0 < c_1 < 1 < c_2$, $\overline{N}, \overline{I} > 0$, $\Delta_0 > 0$, $\rho \in (0, 1)$, $\sigma \in (0, \frac{1}{2})$, $\ell \in [0, +\infty)$ and $L_0 > 0$. Compute $f(x_0)$ and set k = 0. **Step 1:** Compute g_k . If $||g_k|| < \varepsilon$, then stop. **Step 2:** Solve subproblem (2) to find the trial step p_k . **Step 3:** Compute \hat{r}_k by (5). If $\hat{r}_k \ge \mu_0$, go to Step 5. Otherwise go to Step 4. **Step 4:** Find step length α_k satisfying (6) and set $x_{k+1} = x_k + \alpha_k p_k$. Update the TR radius by $\Delta_{k+1} \in [c_1||x_{k+1} - x_k||, \Delta_k]$, and go to Step 6. **Step 5:** Set $x_{k+1} = x_k + p_k$ and $\Delta_{k+1} = c_2 \Delta_k$. **Step 6:** Calculate the new B_{k+1} using the quasi-Newton updating formula. **Step 7:** Set k = k + 1 and go to Step 1.

It is worth noting that the quasi-Newton updating formula is explained in the numerical experiments in Section 4.

3 Convergence analysis

Here, we turn to discuss the convergence properties of Algorithm 1. To this end, we require the following assumptions [2].

Assumption 1. The level set $\Gamma(x_0) = \{x | f(x) \le f(x_0)\} \subset \mathfrak{I}$, where \mathfrak{I} is a closed and bounded subset of \mathbb{R}^n .

Non-monotone trust region line search algorithm

Assumption 2. There exists a positive constant λ such that

$$p^T B_k p \ge \lambda \|p\|^2$$
, $\forall p \in \mathbb{R}^n \text{ and } k \in \mathbb{N}$.

Assumption 3. The matrix B_k is uniformly bounded, i.e., there exists a constant $\Lambda_1 > 0$ such that $||B_k|| \le \Lambda_1$, $\forall k \in \mathbb{N}$.

Remark 1. Let f be a twice continuously differentiable function. Therefore Assumption 1 shows that there exists a constant $\Lambda_2 > 0$, such that

$$\|\nabla^2 f(x_k)\| \le \Lambda_2, \quad \forall x \in \mathfrak{S}.$$
(7)

Furthermore, from the mean value theorem, it is concluded that

$$\|g(x) - g(y)\| \le \Lambda_2 \|x - y\|, \quad \forall x, y \in \mathfrak{I},$$
(8)

which implies that g(x) is Lipschitz continues in the \mathfrak{S} . Consequently, from (8) for the sequence $\{L_k\}$, we have $0 \leq L_k \leq \Lambda_2$.

At each iteration, a trial step p_k is generated by solving the TR subproblem (2). Strong theoretical and implementation results for the proposed algorithm can be obtained if the trial step p_k satisfies

$$\psi_k(0) - \psi_k(p_k) \ge \gamma \|g_k\| \min\left\{\Delta_k, \frac{\|g_k\|}{\|B_k\|}\right\}, \quad \forall k \ge 0,$$
(9)

and

$$g_k^T p_k \le -\gamma \|g_k\| \min\left\{\Delta_k, \frac{\|g_k\|}{\|B_k\|}\right\}, \quad \forall k \ge 0,$$
(10)

where $\gamma \in (0, 1)$ is a constant. Similar to [19], we can solve the TR subproblem inaccurately so that (9) and (10) hold.

For the remainder of this paper, we suppose that Assumptions 1–3 are true. Moreover, we use two index set $I = \{k : \hat{r}_k \ge \mu_0\}$ and $J = \{k : \hat{r}_k < \mu_0\}$, in order to ease of operations.

Lemma 1. Let $\{x_k\}$ be the sequence generated by Algorithm 1. Then for all k we have $f_{k+1} \leq D_k$.

Proof. We consider two cases:

- Case 1. $k \in I$. From (5) and (9), we can write $f_{k+1} \leq D_k \mu_0 \gamma ||g_k|| \min \left\{ \Delta_k, \frac{||g_k||}{||B_k||} \right\}$, therefore, we obtain $f_{k+1} \leq D_k$, for all $k \in I$.
- Case 2. $k \in J$. Through (10) we know that $g_k^T p_k \leq 0$, for all k. Therefore, from this inequality along with (6), we conclude

$$f_{k+1} - D_k \leq \sigma \alpha_k \left(g_k^T p_k - \frac{1}{2} \alpha_k \ell L_k \| p_k \|^2 \right) \leq \sigma \alpha_k g_k^T p_k \leq 0,$$

hence, we have $f_{k+1} \leq D_k$, for all $k \in J$.

Lemma 2. The sequence $\{x_k\}$ generated by Algorithm 1 is contained in the level set $\Gamma(x_0)$ and the sequence $\{D_k\}$ is convergent.

Proof. The proof is similar to the proof of [16, Lemma 3.6] and thus it is omitted.

Lemma 3. Step 4 of Algorithm 1 is well-defined.

Proof. If $k \in I$, the proof is straightforward. Let $k \in J$, for the purpose of deriving a contradiction, suppose that there exists $k \in J$ such that

$$f(x_k+\rho^j s_k p_k) \geq D_k+\sigma\rho^j s_k \left(g_k^T p_k-\frac{1}{2}\rho^j s_k \ell L_k \|p_k\|^2\right), \quad \forall j \in \mathbb{N} \cup \{0\}.$$

From Lemmas 1 and 2, we obtain

$$\frac{f(x_k + \rho^j s_k p_k) - f_k}{\rho^j s_k} > \sigma(g_k^T p_k - \frac{1}{2} \rho^j s_k \ell L_k \|p_k\|^2).$$

Since f is differentiable and $\rho \in (0, 1)$, by taking the limit with $j \to \infty$, we get

$$g_k^T p_k \ge \sigma g_k^T p_k. \tag{11}$$

Due to the fact that $\sigma \in (0, \frac{1}{2})$, inequality (11) leads us to $g_k^T p_k \ge 0$, which contradicts (10). This implies that for any $k \in J$, there exists a $j_k > 0$, such that (6) holds [15].

Lemma 4. For all $k \in J$ the step length α_k satisfies

$$\alpha_k > \frac{(1-\sigma)\rho\lambda}{\Lambda_2(1+\sigma\ell)}.$$

Proof. Assume $\alpha = \frac{\alpha_k}{\rho}$, then from Step 4 of Algorithm 1, we can write

$$f(x_k + \alpha p_k) > D_k + \sigma \alpha \left(g_k^T p_k - \frac{1}{2} \alpha \ell L_k \| p_k \|^2 \right).$$

$$(12)$$

By Taylors expansion, we have

$$f(x_k + \alpha p_k) = f_k + \alpha g_k^T p_k + \frac{1}{2} \alpha^2 p_k^T \nabla^2 f(\zeta_k) p_k, \qquad (13)$$

where $\zeta_k \in (x_k, x_k + \alpha p_k)$. From (7), (12) and (13) together with Lemmas 1 and 2, we obtain

$$\sigma lpha ig(g_k^T p_k - rac{1}{2} lpha \ell L_k \| p_k \|^2 ig) < lpha g_k^T p_k + rac{1}{2} lpha^2 \Lambda_2 \| p_k \|^2.$$

Therefor, we have

$$-(1-\sigma)g_k^T p_k < \frac{1}{2} \|p_k\|^2 \alpha \Lambda_2 (1+\sigma\ell).$$
(14)

Considering (2) and (9) we get $-g_k^T p_k \ge \frac{1}{2} p_k^T B_k p_k$. Combining this inequality and (14) along with Assumption 2 imply that $(1-\sigma)\lambda \|p_k\|^2 < \alpha \|p_k\|^2 \Lambda_2 (1+\sigma\ell)$. Hence the proof is completed.

Lemma 5. Let $\{x_k\}$ be the sequence that is generated by Algorithm 1. Then we have

$$\lim_{k\to\infty}D_k=\lim_{k\to\infty}f(x_k).$$

Proof. We consider the following two cases:

Case 1. $k \in I$. Hence we have

$$\frac{f_{l(k)} - f_{k+1}}{\psi_k(0) - \psi_k(p_k)} \ge \frac{D_k - f_{k+1}}{\psi_k(0) - \psi_k(p_k)} \ge \mu_0.$$

The remainder of the proof is similar to the proof of [1, Theorem 3.2] and thus it is omitted.

Case 2. $k \in J$. Now for $k > \overline{N}$, from (6) we have

$$f(x_{l(k)}) = f(x_{l(k-1)} + \alpha_{l(k-1)}p_{l(k-1)})$$

$$\leq D_{l(k-1)} + \sigma \alpha_{l(k-1)} \left(g_{l(k-1)}^T p_{l(k-1)} - \frac{1}{2} \alpha_{l(k-1)} \ell L_{l(k-1)} \| p_{l(k-1)} \|^2 \right)$$

$$\leq f(x_{l(k-1)}) + \sigma \alpha_{l(k-1)} \left(g_{l(k-1)}^T p_{l(k-1)} - \frac{1}{2} \alpha_{l(k-1)} \ell L_{l(k-1)} \| p_{l(k-1)} \|^2 \right).$$

Since

$$\alpha_{l(k-1)}g_{l(k-1)}^T p_{l(k-1)} < 0, \quad -\frac{1}{2}\alpha_{l(k-1)}^2 \ell L_{lk-1} \|p_{l(k-1)}\|^2 < 0$$

we have

$$\lim_{k \to \infty} \alpha_{l(k-1)} g_{l(k-1)}^T p_{l(k-1)} = \lim_{k \to \infty} \alpha_{l(k-1)} \| p_{l(k-1)} \| = 0.$$

The remainder of the proof can be found in [13] and thus it is omitted.

Lemma 6. Suppose that the sequence $\{x_k\}$ generated by Algorithm 1 is not convergent, i.e., there exists a constant $\varepsilon > 0$ such that

$$|g_k\| > \varepsilon, \tag{15}$$

for all k. Therefore, we have $\lim_{k\to\infty} \min\left\{\Delta_k, \frac{\varepsilon}{\mathscr{L}_k}\right\} = 0$, where $\mathscr{L}_k = 1 + \max_{1 \le j \le k} \|B_j\|$.

Proof. We firstly show that there exists a constant $\vartheta > 0$ such that

$$f_{k+1} \le D_k - \vartheta \min\left\{\Delta_k, \frac{\varepsilon}{\mathscr{L}_k}\right\}, \quad \forall k \in \mathbb{N}.$$
 (16)

To this end, we consider two cases:

Case 1. If $k \in I$, then by (5), (9) and (15), we have

$$D_k - f_{k+1} \ge \mu_0 \gamma \|g_k\| \min\left\{\Delta_k, \frac{\|g_k\|}{\|B_k\|}\right\} \ge \mu_0 \gamma \varepsilon \min\left\{\Delta_k, \frac{\varepsilon}{\mathscr{L}_k}\right\} = \vartheta_1 \min\left\{\Delta_k, \frac{\varepsilon}{\mathscr{L}_k}\right\},$$

where $\vartheta_1 = \mu_0 \gamma \varepsilon$.

Case 2. If $k \in J$, then by (6), (10), (15) and Lemma 4, we can write

$$f_{k+1} \leq D_k + \sigma \alpha_k \left(g_k^T p_k - \frac{1}{2} \alpha_k \ell L_k \| p_k \|^2 \right) \leq D_k + \sigma \alpha_k g_k^T p_k$$

$$\leq D_k - \frac{\sigma(1-\sigma)\rho\lambda}{\Lambda_2 (1+\sigma\ell)} \gamma \varepsilon \min \left\{ \Delta_k, \frac{\varepsilon}{\mathscr{L}_k} \right\} = D_k - \vartheta_2 \min \left\{ \Delta_k, \frac{\varepsilon}{\mathscr{L}_k} \right\},$$

where $\vartheta_2 = \frac{\sigma(1-\sigma)\rho\lambda}{\Lambda_2(1+\sigma\ell)}\gamma\varepsilon$.

By setting $\vartheta = \min{\{\vartheta_1, \vartheta_2\}}$, we can see that (16) holds for all $k \in \mathbb{N}$. Therefore, Lemma 5 and taking a limit completes the proof.

Lemma 7 ([15]). Let $\{x_k\}$ be the sequence generated by Algorithm 1. Suppose that all conditions of Lemma 6 hold. Then for all sufficiently large k, we have

$$\Delta_k \ge \frac{\varepsilon}{\mathscr{L}_k}.\tag{17}$$

Theorem 1. For the sequence $\{x_k\}$ generated by Algorithm 1 we have

$$\lim_{k\to\infty}\inf\|g_k\|=0.$$

Proof. By contrary, assume that there exists a constant $\varepsilon > 0$ such that (15) holds. Thus, there exists an integer \bar{k} such that, for $k \ge \bar{k}$, (17) holds. This fact together with (16), show that

$$f_{l(k)} \ge D_k \ge f_{k+1} + \vartheta \min\left\{\Delta_k, \frac{\varepsilon}{\mathscr{L}_k}\right\} = f_{k+1} + \vartheta \varepsilon \frac{1}{\mathscr{L}_k}.$$

From Lemma 1, we can write

$$f_{l(k+1)} = \max_{0 \le j \le n_{k+1}} \{f_{k-j+1}\} \le \max_{0 \le j \le n_k+1} \{f_{k-j+1}\} = \max\{f_{k+1}, f_{l(k)}\} = f_{l(k)},$$

thus, for $s = 0, 1, ..., \overline{N}$, we have $f_{l(k)} \ge ... \ge f_{l(k+s)} \ge f_{k+s+1} + \vartheta \varepsilon \frac{1}{\mathscr{L}_{k+s}}$. The remainder of the proof is similar to [2, Theorem 3.5] and thus it is omitted.

Theorem 2. Suppose that the sequence $\{x_k\}$ generated by Algorithm 1 converges to x^* , $\nabla^2 f(x^*)$ is positive definite, $\|B_k^{-1}g_k\| \leq \delta_k$ and $p_k = -B_k^{-1}g_k$. If the following condition holds

$$\lim_{k \to \infty} \frac{\|(\nabla^2 f(x^*) - B_k) p_k\|}{\|p_k\|} = 0,$$

then the sequence $\{x_k\}$ converges to x^* superlinearly. Furthermore, the convergence is quadratically whenever $B_k = \nabla^2 f(x_k)$.

Proof. The proof can be found in [2, 15, 20] and thus it is omitted.

4 Numerical experiments

In this section, we aim to investigate the numerical experiments of Algorithm 1, to demonstrate its performance. Our experiments are performed on a set of test functions with dimensions ranging from 100 to 6000 from Andrei [3] listed in Table 1. The practical implementation of the proposed algorithm is compared with the following algorithms: 1- Non-monotone adaptive TR algorithm (NATR) [16]. 2-A modified non-monotone TR line search algorithm (MNMTRLS) [20]. 3- New non-monotone TR algorithm with new inexact LS (NTR) [17].

Problem Name	Dimension	Problem Name	Dimension
Generalized Rosenbrock	100,500	ARGLINC (CUTE)	100
Perturbed Quadratic	100,500	BDEXP (CUTE)	100,500,1000,3000
Diagonal 4	100,500,1000,3000,6000	HARKERP2 (CUTE)	100
Extended BD1	100,500,1000,3000,6000	Extended DENSCHNB (CUTE)	100,500,1000,3000,6000
Perturbed Quadratic	100,500	Extended DENSCHNF (CUTE)	100,500,1000,3000
Fletchcr (CUTE)	100,500	HIMELH (CUTE)	100,500,1000,3000,6000
NONDQUAR (CUTEr)	100,500	Extended Beal	100,500,1000,3000
DQDRTIC (CUTE)	100,500,1000,3000	Extended Penalty	100,500,1000
Almost Perturbed	100,500	Raydan 2	100,500,1000,3000,6000
Purterbed Tridiagonal	100,500	Diagonal 1	100
LIARWHD (CUTE)	100,500,1000,3000	Diagonal 2	100,500
POWER (CUTE)	100,500	Diagonal 3	100,500
CUBE (CUTE)	100	Hager	100
NONSCOMP (CUTE)	100,500	Genaralized Tridiagonal 1	100
Vardim (CUTE)	100,500	Extended Tridiagonal 1	100,500,1000,3000
QUARTC (CUTE)	100,500,1000,3000	Extended TET	100,500,1000,3000,6000
LIARWHD (CUTE)	100,500,1000,3000	Generalized Tridiagonal 2	100
DIXON3DQ (CUTE)	100,500,1000	Diagonal 5	100,500
HIMMELBG (CUTE)	100,500,1000,3000	Extended Himmelblau	100,500
Partial Perturbed	100,500	Generalized PSC1	100,500
DIXMAANA	300,1500,3000	Extended PSC1	100,500,1000,3000
DIXMAANB	300,1500,3000	Extended Powell	100,500
DIXMAANC	300,1500,3000	Extended BD1	100,500,1000,3000,6000
DIXMAAND	300,1500,3000	Extended Maratos	100,500
DIXMAANE	300,1500	Quadratic QF1	100,500
DIXMAANF	300,1500	Extended quadratic penalty QP1	100,500,1000,3000
DIXMAANG	300,1500	Extended quadratic penalty QP2	100,500,1000,3000
DIXMAANH	300,1500	Quadratic	100,500
DIXMAANI	300	Extended quadratic	100,500,1000,3000,6000
DIXMAANJ	300	Extended Tridiagonal 2	100,500,1000,3000
DIXMAANK	300	Broyden Tridiagonal	100,500
DIXMAANL	300	Diagonal 7 (CUTE)	100,500,1000,3000,6000
BDQRTIC (CUTE)	100,500	Diagonal 8 (CUTE)	100,500,1000,3000,6000
TRIDIA (CUTE)	100,500	Full Hessian FH3	100,500,1000,3000,6000
ARWHEAD (CUTE)	100,500,1000,3000	SINCOS	100,500,1000,3000
BG2 (CUTE)	100,500,1000,3000	Diagonal 9	100,500
ENGVAL1 (CUTE)	100	BIGGSB1 (CUTE)	100,500
EDENSCH (CUTE)	100,500		

Table 1: List of test function.

We performed numerical calculations in MATLAB R2014a (8.3.0.532) programming environment with a long precision format. The codes were run on a PC processor (Intel (R) Celeron (R) CPU N3350 2.4 GHZ) with 4 GB RAM. The stopping criteria are that the number of iterations exceeds 5000 or

$$\|g(x_k)\| \leq \varepsilon = 10^{-5}.$$

For NTRLS algorithm, we consider $\mu_0 = 0.1, c_1 = 0.25, c_2 = 2, \Delta_0 = 10, \bar{N} = 15, \bar{D} = 6, v = 10, \rho = 0.1, c_1 = 0.25, c_2 = 2, \Delta_0 = 10, \bar{N} = 10, \bar{D} = 0.1, c_1 = 0.25, c_2 = 2, \Delta_0 = 10, \bar{N} = 10, \bar{D} = 0.1, c_1 = 0.25, c_2 = 2, \Delta_0 = 10, \bar{N} = 10, \bar{D} = 0.1, c_1 = 0.25, c_2 = 0.1, c_2 = 0.1, c_1 = 0.25, c_2 = 0.1, c_1 = 0.25, c_2 = 0.1, c_2 c$

0.5, $\alpha_0 = 0.3$, $\sigma = 0.001$ and $L_0 = 0.5$. In NTR and MNMTRLS algorithms, we set $\eta_0 = 0.5$ and used the following update formula to calculate η_k :

$$\eta_k = egin{cases} rac{\eta_0}{2}, & k=1, \ rac{\eta_{k-1}+\eta_{k-2}}{2}, & k\geq 2. \end{cases}$$

In the case of non-identical parameters, NATR, NTR, and MNMTRLS algorithms have been run with the same parameter values specified in [16], [17], and [20] respectively. In all four algorithms, we set $B_0 = I$ where I is the identity matrix and the matrix B_k is updated by the following BFGS formula:

$$B_{k+1} = B_k - \frac{B_k p_k p_k^T B_k}{p_k^T B_k p_k} + \frac{y_k y_k^T}{y_k^T p_k},$$

where $y_k = g_{k+1} - g_k$ and $p_k = x_{k+1} - x_k$. We let $B_{k+1} = B_k$ as $p_k^T y_k \le 0$. The TR subproblems are solved by the Steihaug scheme [21]. The numerical results of the mentioned algorithms are presented in Tables 2 and 3, in which N_i, N_f and *CPU time* respectively represent the number of iterates, number of function evaluations and running time. In addition, (-) indicates that the number of iterations exceeds 5000.

With a glance at Tables 2 and 3 it can be seen that the NATR, NTR, and MNMTRLS algorithms have failed in some cases, while the NTRLS algorithm has solved all the test functions.

Dolan and More [9] proposed a new method to compare the performance of iterative algorithms with a statistical process by displaying performance profiles. Therefore, in order to have a better comparison, we use this technique to visually compare the efficiency of four algorithms according to the numerical results in Tables 2 and 3.

In Fig.s 1, 2 and 3, the efficiency comparisons were drawn using the Dolan and More performance profile [9] on the number of iterations, the number of function evaluations, and the running time, respectively. It is worth noting that in all mentioned algorithms the number of gradient evaluations is equal to the number of iterations. From Fig. 1 we can see that for nearly 65% of the test problems, the NTRLS algorithm is the best solver and in Fig. 2 we observe that NTRLS obtains the most wins in approximately 58% of all the test problems.

From Fig. 3, we observe that in more than 40% of cases, the new algorithm is faster than the other algorithms. Another important factor of these three figures is that the graph of the NTRLS algorithm grows up faster than the others, which means in the cases that this algorithm does not get the best result, it performs closer to the performance index of the best algorithm. Therefore, we can conclude that the new algorithm is more efficient and robust compared to the others mentioned algorithms.

5 Conclusions

Considering the advantages of the non-monotone technique, to avoid resolving the TR subproblem, we have presented a new non-monotone LS method in the TR framework, which prevents the sudden increase of objective function values in the non-monotone TR method. In other words, we have used the Armijo-type LS method in the direction of the failed trial step to create a new point. The global and superlinear properties have been proven under appropriate conditions. Finally, the proposed algorithm has been tested on 75 test functions. Comparative numerical experiments have clearly shown the efficiency and robustness of the proposed algorithm using the Dolan-More performance profile.

_	_	<u> </u>															_	_										_							_													
	MNMTRLS	0.15625	0.03125	0.03125	0.0625	16.656	0.15625	8.9844	0.03125	1	1.75	0.0625	2/560.0	0	0.45313	1.1875	0.03125	0	0	0.17188		1.6719	1	408.08	0.45515	0.9370 105 5	c.cu1 -	2086.3	2.0469	942.72	ı	2.1406		- 3.6719	1.8438	2.1094	271.45	1.6094	280.17	14.141	16.063	21.25	22.00	620.25 4 E1 AQ	430.02	412.75) 1	
Utime	NTR	0.0625	0.03125	0./3438	0.03125	4.9219	0.046875	11.391	0.0625	15.984	1.0156	0.046875	27210.0	0.03125	0.45313	0.78125	0.03125	0.03125	0.03125	0.0625	0.75	1.6875	247.09	62.391 0.25	C7:0	1.0313	317	2098.3	2.2344	64.328	66.031	1.4531	44. CU0	3.6406	1.5625	1.6094	255.36	1.6719	32.875	14.078	14.672	14.766	16.234	0.28.34 150.06	435.55	412.42	1	71 050
CF	NATR	0.0625	0.03125	0.03175	0.0625	0.57813	0.03125	1.7656	0.03125	12.609	2.7031	0.0625	0.10938 2.1406	0.1400	0.45313	0.21875	0.03125	0.03125	0.015625	0.0625	3.2969	1.4688		75.5	0.42188	0.82813	449.38	1769.4	5.3125	71.172	72.453	3.4688	- 506.41	3.75	1.25	2.7813	253.38	3.2188	29.641	12.359	14.266	19.625	18.156	00.020	430.06	414.88	226.81	10.000
	NTRLS	0.0625	0.03125	C/ 817.0	0.015625	3.0781	0.078125	0.67188	0.046875	10.313	1.8281	0.078125	0.10938	1.0201	0.4375	0.375	0.015625	0	0	0.046875	2.5469	1.6406	791.64	71.859	CZ-0	c/.0	322.42	1824.4	1.8906	69.828	75.984	1.4063	504.05	3.7813	1.5781	1.5625	281.89	1.5	33.156	13.984	14.438	14.891	16.672	621.13	437.23	414.19	85.156	10 200
	MNMTRLS	21/22	8/12	216/289	11/15	429/463	34/56	394/447	10/13	-	408/447	22/24	26/38	5/10	59/74	262/305	7/8	4/7	3/4	34/56		123/128	1	4576/4693	C/4	15/40	+00/000 -	1256/1261	20/22	4598/4713	I	24/28	ı	- 44/45	21/44	24/28	591/595	19/31	1486/1724	9/11	10/33	13/36	14/3/	1/1/1/1	134/135	130/131	-	
$/N_{f}$	NTR	21/22	8/12 200.070	2/0/2/0	10/13	244/251	19/20	322/375	14/16	954/1141	219/293	22/25	25/55	C171407	58/62	188/254	7/8	4/7	3/4	19/20	161/216	125/133	2722/3572	703/930	3/4 12/1 r	13/15	2696/3524	1169/1175	22/27	783/1037	791/1048	17/18	9986/8764	44/45	19/20	17/18	594/603	19/20	358/475	9/10	9/10	9/10	10/11	1/1/1/1	0C1//C1	130/131	-	002011020
N_i	NATR	17/19	8/10 54/1000	5/6 5/6	13/18	83/86	11/13	249/346	9/11	664/835	397/550	11/14	30/41 545/757	10110+0 110	58/60	44/88	6/7	L/9	4/6	11/13	415/543	135/167	1	807/1262	110	11/13	3727/5113	1177/1186	54/87	816/1254	806/1252	34/48	- 72.49.12.109	45/47	15/16	29/38	602/641	43/44	299/489	8/10	9/10	12/13	11/12	1/1/1/20	134/135	130/131	2114/2973	
	NTRLS	22/24	6/10	C6/10	8/12	201/207	19/20	73/108	10/14	649/814	289/392	23/24	30/40	010/0/0	57/62	91/135	7/8	4/7	3/4	19/20	293/392	120/145	4252/5561	815/1115	3/4 10/10	10/13	2609/3529	1195/1201	18/28	813/1112	867/1186	16/18	42/01/02	44/45	19/20	17/19	601/644	19/20	368/510	9/10	9/10	9/10	10/11	1/1/1/1	134/135	130/131	858/1165	000070200
	MNMTRLS	1	3.1094 o	00625	0.25		29.656	0.09375	2.3906	3.3125	0.125	-	3.2813	0.125	0	0.15625	1.5938	0.03125	1.4688	0.21875	0.29688	0.28125	0.28125	5.4531	5150.0	4.6406	4 155.2	89.859	80.703	75.922	6.3906	-	0.0675	21.719	5.4375	0.09375	19.047	0.03125	0.03125	0	0	0.09375	0.25	0 1 0521	1.5251 0.57813	3.6094	12.703	20101
Utime	NTR	9.7188	0.84375	0.03125	0.15625	2.5625	38.469	0.0625	0.75	0.79688	0.046875	4.1563	20.469	0 125	0	0.0625	1.5625	0.0625	0.92188	0.21875	0.26563	0.28125	0.25	5.5	4.9844	4.8125	2.9000 148.97	86.328	82.094	75.734	2.2813	2.375	C216U.U	2.0781	1.75	0	0.0625	17.156	0.03125	0.03125	0.03125	0.26563	0.20315	0 -	1 0 59375	0.85938	1.7031	1020 0
CF	NATR	8.5781	0.75	0 03125	0.15625	4.5156	33.891	0.3125	0.6875	0.78125	0.0625	5.5313	0 7244	0 175	0.03125	0.0625	1.4531	0.0625	0.35938	0.28125	0.28125	0.375	0.34375	5.5156	18/0.0	4./813	4 147.38	86.172	84.531	73.844	2.7813	3.6406	0.02120	2.875	2.5156	0.03125	0.046875	13.719	0	0.09375	0.03125	0.10938	C/812.0	070010.0	0.625	2.7656	2.0469	21010
	NTRLS	9.2344	0.70313	CZ9CI0.0	0.17188	2.5781	32.016	0.078125	0.67188	0.64063	0.078125	3.5	38./19	0.09375	0	0.078125	1.7031	0.078125	0.375	0.23438	0.3125	0.26563	0.28125	5.6094	18/0.0	4./344	4.123	88.641	85.063	74.484	1.8906	2.1875	C20C10.0	2.2031	1.8906	0.015625	0.078125	19.781	0.015625	0.0625	0.03125	0.046875	0.12622	0.021 0.0	0.64063	1.75	1.5781	10200
	MNMTRLS	1	744/791	3/4 10/13	32/57		622/627	25/51	696/736	921/977	31/57	-	325/441 264/306	35/47	1/2	39/65	126/131	11/23	316/364	2/R	9/10	8/9	8/9	80/81	0//0/	12113	02/00 575/596	434/435	420/421	397/398	1567/1673	-	13/16	1250/1358	1023/1110	2/3	19/42	278/290	8/9	13/28	7/10	17/19	62//6	1/2 2051200	0027CUC 801103	1030/1101	2108/2336	20010012
N_f	NTR	972/1177	195/263	3/4 14/16	22/25	506/665	678/683	16/18	198/267	187/252	17/20	630/815	C/07/6807	34/35	1/2	19/22	123/135	17/18	210/283	7/8	9/10	8/9	8/9	80/81	0/ /0/	12/13	569/570	434/435	420/421	397/398	382/502	460/595	8/12	216/267	210/271	2/3	17/18	259/276	8/9	11/15	6/9	44/56	52/25	1/2	79/80	184/249	17/197	31 01230
Ni	NATR	994/1266	154/241	C/S	22/24	746/1036	633/642	57/90	159/248	170/267	15/22	909/1249	C025/15202	34/36	14/15	15/22	139/166	17/18	78/143	8/10	9/10	11/12	10/11	81/82	01/01	12113	568/569	434/435	420/421	394/395	501/691	647/950 944	8/14 50/56	291/353	302/408	3/5	19/20	506/544	6/L	14/25	6/8	26/42	58/99	011 1111515	414/343 78/79	403/554	205/231	1071116
	NTRLS	896/1132	157/225	5/4 10/14	22/25	500/683	626/633	14/23	159/226	177/252	20/24	628/851	3506/468/	34/35	1/2	20/24	125/151	17/18	79/118	7/8	9/10	8/9	8/9	80/81	0//0/	12/13	569/570	434/435	420/421	397/398	332/452	455/624	11/17	205/264	207/274	2/3	17/18	250/278	8/9	11/15	6/9	14/23	37/40	017100	0101007	293/396	174/188	2101020

Table 2: Numerical results

Non-monotone trust region line search algorithm

-	-		_	_		_	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_	_	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_	_		_
	MNMTRLS	4.5938	3 7344	9.4844	4.7344	13.047	35.016	0,000	49.391	4.5625	2.2188	0.101.0	10.420	118.13	367.5	2222.4	228.98	577.19	220.8	99.359	1613.1	238.14	129.23	359.05	81.063	344.05	8/5.69	251.27	80.188	65.120	300.60	683.88	39.594	813.33	89.281	59.875	40.203	523.11	307.34	702.67	692.69	755.36	50.05	67458	373	563.36	676.47	376.13
Utime	NTR	3.2656	11.203 4 3438	7.5625	4.8438	9.9219	28.75	20 200	53.703	3.2969	C/8.1	1001.0	0.1094 30175	99.625	269.73	383.64	208.75	367.63	221.38	88.672	131.97	222.77	112.5	345.33	59.656	237.31	69.109 222.22	233.02	09.000	210.80	010.670	630.41	39.813	828.64	70.266	60.016	49.422	213.83	383.69	1178	767.05	526.47	90.66C	1138.6	298.36	623.11	450.59	451.59
CP	NATR	2.8438	12.313 4 3906	9.6875	4.7031	6.3594	9.0938	1./969	40.734	2.9063	2.9088	000/1	70.01	100.67	574.17	633.56	187.41	577.25	520.27	151.06	141.3	260.94	106.45	111.69	69.203	214.89	909.9C	100.97	160.09	101 50	8C.101 104 83	369.16	40.25	712.66	59.313	59.516	48.906	284.17	2164.4	847.2	1225.3	451.31	6/3.34 603 73	874.73	299.92	466.61	453.58	600.97
	NTRLS	3.2031	11.281	7.6875	4.8125	10.547	41.922	1.9063	54.172	3.1406	5/.1	C/C.7	1012.0	99.219	207.17	350.88	206.58	337.2	218.73	80.125	165.78	224.67	109.22	184.3	58.844	184.8	/0.281	233.67	101 0	8.191	201.00	783.66	44.391	757.63	70.203	59.906	50	191.64	386.48	620.84	773.69	532.19	520.61	10.22	298.3	595.94	457.98	455.55
	MNMTRLS	10/33	23/24 8/11	20/43	11/13	28/52	84/120 540	2/9	15/19	10/33	0000	06/1	0C/9	14/30	36/49	208/242	23/46	53/57	22/24	10/21	154/174	23/35	13/26	36/50	8/9	33/47	1/8	25/27	8/9 19/50	90/84	14/50 30/54	73/108	4/8	72/75	9/23	L/9	4/5	48/59	4/5	10/12	9/10	10/23	8//	10/12	5/10	7/8	9/32	5/6
l_i/N_f	NTR	2/8	23/24 9/12	16/17	11/12	21/23	66/84	4/8	80/83	8//	C/4	0/0	11/01	12/15	26/29	36/47	21/22	35/43	22/23	9/13	13/15	22/23	11/12	33/36	<i>L/</i> 9	23/24	8//	23/24	8//	21/22	08/20	68/84	4/8	72/75	7/8	6/7	5/6	21/23	5/6	17/18	10/12	8/L	6/8 0/L	17/18	4/8	8/9	6/7	6/7
	NATR	<i>L/9</i>	25/27 9/11	21/22	12/14	13/16	20/25	4/9	60/63	1.19	1/9	0/ 1	2112	12/13	57/88	62/91	19/20	57/84	53/54	15/25	14/19	26/27	11/13	11/13	8/L	21/41	//9	10/11	1116	06/67	10/20	150/160	4/9	61/64	6/7	6/7	5/6	29/30	28/40	13/14	16/18	6/7	01/6	0110	4/8	6/7	6/7	8/9
	NTRLS	8/L	23/24 9/12	16/17	11/12	19/21	92/115	4/8	80/83	8/1	2/4 2/2	0/0	10/17	12/16	20/31	33/45	21/22	32/43	22/23	8/13	16/19	22/23	11/12	18/23	<i>L1</i> 9	18/29	8//	23/24	8//	17/61	01/71	85/94	4/8	65/69	2/8	L/9	5/6	19/21	5/6	10/14	10/12	2//8	9/8	10/14	4/8	8/9	6/7	<i>L/</i> 9
	MNMTRLS	1.0625	10.266 16259	2.0625	1.0156	1.0313	0.53125	1.4219	11.203	30.453	- 1406	2.1400	0.65675	1.1719	74.375	1.5781	402.89	0.90625		378.7	2.0313	22.141		0.375	10.141	43.969	0.67188	0.46875	C20C.U	604C.1	- 260.61	2.6875	4.625	26.938	9.9844	10.109	10.719	9.8125	116.13	104.7	127.09	131.81	404C.4	11 422	6.0156	13.25	2.7656	10.016 135.7
Utime	NTR	0.6875	15.703 21.641	1.9219	0.79688	4.5313	0.51563	2.5469	9.1406	29.25	- 4075	C/ 00.1	0000000	1.0156	1129.9	1.2188	230.84	1.0625	98.984	60.625	1.7031	18.891	70.016	0.3125	11.078	41.781	0.54688	0.46875	0.512.0	57	- 251.64	1.7813	4.625	10.203	8.7031	9.0625	8.0469	9.2813	95.781	84.484	95.781	121.36	4.2344	9,8125	3.7969	72.875	2.8125	18.484 52.313
CP	NATR	1.7031	1.9688 206 58	2.1563	0.625	1.3438	0.53125	3.2469	20.25	29.438	1/8//8	2.1/19	0 46875	0.84375	14.563	1.0625	154.75	0.9375	178.48	136.06	2.0781	2.375	173.52	0.29688	10.484	209.52	0.53122	0.46875	0.5120	10/01	00.061 73.4.5	1.9063	4.8438	27.766	21.063	5	18.078	22.484	85.109	95.281	128.34	119.56	150494	1020.0	3.2656	6.2188	2.7813	11.391 300.64
	NTRLS	0.64063	1.1406 164 58	1.9219	0.75	1.2656	0.64063	C215.1	13.375	29.359	69.188 1.0062	2006.1	0.51563	0.82813	74.109	1.2344	138.88	0.82813	173.06	71.547	1.8125	28.125	94.453	0.3125	11.453	36.5	0.60938	0.46875	0.545.0	C21 C.1	8/C.76	1.9844	5	9.5	8.7188	9.2656	8.375	9.4063	95.297	84.984	95.922	117.13	4.4003	10.094	4	9.3594	3.4844	7.4844 41.5
	MNMTRLS	9/21	101/111 4470/4818	22/45	12/25	12/15	6/7	16/2/	126/139	164/176	-	10114	10/14 8/31	13/16	261/294	19/42	968/1198	15/40		1892/1954	24/47	235/298	,	5/10	67/82	497/540	8/27	2/00 2/00	05//	19/42	-	6/29	11/13	52/56	20/21	22/45	22/23	21/33	11/34	10/33	12/35	12/35	07/6	23/46	13/26	27/52	6/7	20/21 291/303
N_f	NTR	8/12	128/165	20/21	9/10	42/52	6/7	24/20	82/96	162/163	-	17/61	5/6	13/15	636/669	15/16	927/1204	13/15	1000/1312	725/958	20/22	140/170	856/1135	4/9	72/76	505/669 2 %	8/	6/7	21731	01/01	- 501/600	4/5	11/12	20/25	18/19	20/21	17/18	20/21	9/10	8/9	9/10	11/12	9/15	10/01	8/9	137/182	6/7	34/42 95/111
N_i	NATR	18/135	22/27 1250/1713	21/22	7/10	14/21	6/8 25 15 5	55/65	253/255	169/170	2212/30/3	012	611	10/14	101/66	13/14	1060/1469	11/13	1475/2043	1516/2217	74/78	28/35	1928/2956	4/10	72/74	2026/2810	1/9	1/9	C/4	13/14	2038/2821	4/5	12/14	56/92	42/60	11/12	37/49	50/51	8/10	9/10	12/13	11/12	C1/6	2016	7/8	13/25	6/8	23/40 665/667
	NTRLS	7/12	12/15 824/1119	20/21	9/10	15/21	6/8	14/22	111/101	162/163	893/1231	17/61	0/11	11/14	186/198	15/16	606/826	10/13	1249/1702	839/1147	21/23	197/242	1126/1536	4/9	72/76	424/585	6/9	6/7	C/4	01/01	C861/C101	4/5	11/12	19/30	18/20	20/21	17/19	20/21	9/10	8/8	9/10	11/12	8/13	20/21	8/9	20/26	6/L	15/23 82/86

Table 3: Numerical results

Figure 1: Performance profiles for number of iterations

Figure 2: Performance profiles for number of function evaluations

Figure 3: Performance profiles for the running time

References

- [1] M. Ahookhosh, K. Amini, A non-monotone trust region method with adaptive radius for unconstrained optimization, Comput. Math. Appl. **60** (2010) 411–422.
- [2] M. Ahookhoosh, K. Amini, M.R. Peyghami, A non-monotone trust region lin search method for large scale unconstrained optimization, Appl. Math. Model. 36 (2012) 478–487.
- [3] N. Andrei, An unconstrained optimization test functions collection, Adv. Model. Optim. 10 (2008) 147–161.
- [4] L. Armijo, *Minimization of functions having Lipschitz continuous first partial derivatives*, Pac. J. Math. 16 (1966) 1–3.
- [5] R.M. Chamberlain, M.J.D. Powell, C. Lemarechal, H.C. Pedersen, *The watchdog technique for forcing convergence in algorithm for constrained optimization*, Math. Program. Stud. 16 (1982) 1–17.
- [6] A.R. Conn, N.I.M. Gould, P.L. Toint, *Trust Region Methods*, MPS/SIAM Series on Optimization, SIAM, Philadelphia, 2000.
- [7] N.Y. Deng, Y. Xiao, F.J. Zhou, Non-monotonic trust region algorithm, J. Optim. Theory. Appl. 76 (1993) 259–285.
- [8] X. Ding, Q. Qu, X. Wang, A modified filter non-monotone adaptive retrospective trust region method, PLOS ONE. 16 (2021) e0253016.
- [9] E.D. Dolan, J.J. More, *Benchmarking optimization software with performance profiles*, Math. Program. **91** (2002) 201–213.
- [10] J.H. Fu, W.Y. Sun, Non-monotone adaptive trust region method for unconstrained optimization problems, Appl. Math. Comput. 163 (2005) 489–504.
- [11] E.M. Gertz, *Combination Trust Region Line Search Methods for Unconstrained Optimization*, University of California, San Diego, 1999.
- [12] A.A. Goldstein, On steepest descent, SIAM J. Contro. 3 (1965) 147–151.
- [13] L. Grippo, F. Lampariello, S. Lucidi, A non-monotone line search technique for Newtons method, SIAM J. Numer. Anal. 23 (1986) 707–716.
- [14] L. Grippo, F. Lampariello, S. Lucidi, A truncated Newton method with non-monotone line search for unconstrained optimization, J. Optim. Theory. Appl. 60 (1989) 401–419.
- [15] N.Z. Gu, J.T. Mo, Incorporating non-monotone strategies into the trust region method for unconstrained optimization, Appl. Math. Comput. 55 (2008) 2158–2172.
- [16] A. Kamandi, K. Amini, A new non-monotone adaptive trust region algorithm, Appl. Math. 67 (2021) 233–250.

- [17] J. Liu, C. Ma, A non-monotone trust region method with new inexact line search for unconstrained optimization, Numer. Algorithms **64** (2013) 1–20.
- [18] J. Nocedal, S.J. Wright, Numerical Optimization, Springer, NewYork, 2006.
- [19] J. Nocedal, Y.X. Yuan, Combining trust region and line search techniques, In: Yuan, Y. (ed.) Advances in Nonlinear Programming, pp. 153–175. Kluwer Academic Publishers, Dordrecht, 1998.
- [20] S. Rezaee, S. Babaie-Kafaki, A modified non-monotone trust region line search method, J. Appl. Math. Comput. 57 (2018) 421–436.
- [21] T. Steihaug, The conjugate gradient method and trust regions in large scale optimization, SIAM J. Numer. Anal. 20 (1983) 626–637.
- [22] P.L. Toint, An assessment of non-monotone line search techniques for unconstrained optimization, SIAM J. Sci. Comput. 17 (1996) 725–739.
- [23] Z. Wan, S. Huang, X.D. Zheng, New cautious BFGS algorithm based on modified Armijotype line search, J. Inequal. Appl. 2012 (2012) 241.
- [24] P. Wolfe, Convergence conditions for ascent methods, SIAM. Rev. 11 (1986) 226–235.
- [25] X. Xiao, E.K.W. Chu, Non-monotone trust region methods, Technical Report 95/17. Monash University. Clayton, Australia, 1995.
- [26] H. Zhang, W.W. Hager, A non-monotone line search technique and its application to unconstrained optimization, SIAM J. Optim. 14 (2004) 1043–1056.
- [27] F. Zhou, Y. Xiao, A class of non-monotone stabilization trust region methods, Computing **53** (1994) 119–136.