
Legendre-collocation method to solve the second kind Cauchy
integral equations

Arezoo Heidari †, Saeid Khezerloo ‡∗, Alireza Gilani §, Rahele Noraei § Muhammad Arghand §

† Department of Mathematics, South Tehran Branch, Islamic Azad University, Tehran, Iran
Email(s): s khezerloo@azad.ac.ir

Journal of Mathematical Modeling
Vol. 13, No. 2, 2025, pp. 209-218. Research Article JMM

�
�

�
�

�
�

�
�

Abstract. A numerical solution for the second kind singular integral equations with Cauchy kernel is
developed using the collocation method. To achieve this, we approximate the Cauchy integral equation
using the collocation method and Legendre orthogonal polynomial expansions. The accuracy of our pro-
posed method is assessed through convergence and error analysis. Finally, several numerical examples
are presented to demonstrate the high efficiency of the method.
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1 Introduction

Cauchy singular integral equations play a significant role in engineering and applied sciences, both in
research and practical applications. These equations are commonly used to describe various phenom-
ena, including electromagnetic radiation, unsteady aerodynamic behaviour, electron microscopy, control
problems, viscoelasticity, thermoelasticity, and fluid dynamics [7, 8, 11]. Consider an integral equation
that includes the unknown function f under the integral sign of an improper integral in the sense of
Cauchy, represented as follows

f (λ ) = g(λ )+
∮ 1

−1

f (x)
λ − x

dx, −1 < λ < 1, (1)

In this context, g is a known function, and the symbol
∮

denotes the Cauchy principal value integral,
which is defined as follows ∮ 1

−1
= lim

ε→0+
(
∫

λ−ε

−1
+
∫ 1

λ+ε

).

In the special case of the problem mentioned above, the corresponding equation∮ 1

−1

f (x)
λ − x

dx =−g(λ ), −1 < λ < 1,
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represents the simplest singular integral equation of the first kind. This equation has a bounded solution,
which is discussed in various contexts [3].

Now, consider Eq. (1) and assume that f ∈ Hα [−1,1], meaning that f is Hölder’s continuous on
the interval [−1,1], with Hölder index α , where 0 < α ≤ 1. For all points l1, l2 ∈ [−1,1], the following
condition holds

| f (l2)− f (l1)| ≤M |l2− l1|α ,

where M is independent of l1 and l2. General methods for solving this equation have been studied, par-
ticularly regarding its existence and uniqueness. According to references [4, 11], the function g belongs
to Hα [−1,1] on [−1,1] and we investigate solutions f that are Hölder continuous on any closed interval
within the interior of (−1,1) and are integrable at the endpoints −1 and +1.

In this work, the Collocation method is considered for solving the Cauchy type singular integral
equations using Legendre polynomials. Let {pk(x)}∞

k=0 denote the sequence of Legendre polynomials of
degree k defined on the interval [−1,1]. These polynomials satisfy the following recurrence relation [15]

p0(x) = 1, p1(x) = x,

pk+1(x) =
2k+1
k+1

xpk(x)−
k

k+1
pk−1(x), k = 1,2, . . . . (2)

Additionally, the Legendre polynomials form an orthogonal set, such that∫ 1

−1
pi(x)p j(x)dx = hiδi j, i, j = 0,1,2, . . . ,

where δi j is the Kronecker delta and hi = 2/(2i+1) for any i = 0,1,2, . . . . According to approxima-
tion theory, a function f ∈ L2([−1,1]) can be approximated by a series of Legendre polynomials basis
functions in the following form

fn(x) =
n

∑
j=0

c j p j(x), (3)

where c j are unknown constants that need to be determined. Let us define

I( fn,λ ) =
∮ 1

−1

fn(x)
λ − x

dx, −1 < λ < 1. (4)

From Eq. (3), we obtain

I( fn,λ ) =
n

∑
j=0

c j

∮ 1

−1

p j(x)
λ − x

dx =
n

∑
j=0

c jq j(λ ),

where

q0(λ ) =
∮ 1

−1

1
λ − x

dx = ln
(

1+λ

1−λ

)
, q1(λ ) = λq0(λ )−2,

and

q j(λ ) =
∮ 1

−1

p j(x)
λ − x

dx, j = 2,3, . . . .

It can be easily shown that q j(x) satisfies the recurrence relation given by Eq. (2), specifically

q j+1(λ ) =
2 j+1
j+1

λq j(λ )−
j

j+1
q j−1(λ ), j = 1,2, . . . .



Legendre-collocation method to solve the second kind Cauchy integral equation 211

From [14], we have derived a recurrence relation concerning certain values of f represented as follows

I( fn,λ ) =
n

∑
i=0

qn+1(λ )−qn+1(ti)
(λ − ti)p′n+1(ti)

f (ti), (5)

c j =
n

∑
i=0

f (ti)
h jµi

p j(ti), j = 0, . . . ,n, (6)

Here, ti are the roots of the equation pn+1(x) = 0 and µi = ∑
n
k=0 p2

k(ti) for each i = 0,1,2, . . . ,n. Further-
more, several authors have studied Cauchy integral equations using various numerical methods. These
methods include methods based on Bernstein polynomials [17, 18], the collocation method [5, 17], the
Galerkin method [10], successive approximations [9], Chebyshev polynomial [13], the Adomian decom-
position method [8], the differential transform method [1, 6], Gaussian elimination [12], Sinc approxi-
mations [2], GaussLegendre collocation [16], and so on.

The remainder of this paper is organized as follows. In Section 2, we describe the method for solving
Cauchy-type singular integral equations. Error analysis and convergence of the method are discussed
in Section 3. In Section 4, we demonstrate the efficiency of this method and present some numerical
examples. Finally, Section 5 is devoted to the conclusion of this paper.

2 Algorithmic solution procedure

In this section, we approximate the unknown function f defined in Eq. (3) over the interval (−1,1) using
fn, such that the following functional is minimized

R( fn) = ‖g(λ )− fn(λ )+
∮ 1

−1

fn(x)
λ − x

dx‖L∞[−1,1]

= ‖g(λ )−
n

∑
j=0

c j p j(λ )+
n

∑
j=0

c jq j(λ )‖L∞[−1,1], −1 < λ < 1. (7)

Furthermore, by utilizing (5) we can express R( fn) as follows

R( fn) = ‖ fn(λ )−g(λ )−
n

∑
i=0

qn+1(λ )−qn+1(ti)
(λ − ti)p′n+1(ti)

f (ti)‖L∞[−1,1]

= ‖ fn(λ )−g(λ )−
n

∑
i=0

Vi(λ ) f (ti)‖L∞[−1,1],

where

Vi(λ ) =
qn+1(λ )−qn+1(ti)
(λ − ti)p′n+1(ti)

.

From Eqs. (3), (6), and (7) we obtain

R( fn) = ‖
n

∑
j=0

n

∑
i=0

1
µih j

p j(ti) f (ti)p j(λ )−
n

∑
i=0

f (ti)Vi(λ )−g(λ )‖L∞[−1,1]

= ‖
n

∑
i=0

(
1
µi

n

∑
j=0

1
h j

p j(ti)p j(λ )−Vi(λ )

)
f (ti)−g(λ )‖L∞[−1,1], −1 < λ < 1, (8)
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where f (ti), i = 0, . . . ,n are unknowns. Clearly, if g ∈ πn, where πn is the set of polynomials of degree
at most n, then by selecting any n+ 1 arbitrary values from the interval (−1,1), we have R( fn) = 0.
Consequently, the minimization problem described in (8) has a unique solution. Additionally, if g ∈
L2[−1,1], we can easily determine the minimum of R( fn).

In addition, if g ∈Cn+1[−1,1], we can uniquely determine the unknown values f (ti) for i = 0, . . . ,n
by interpolating g with a polynomial of degree at most n. To achieve this, we assume that

λm =−1− ε +mk, m = 0,1, . . . ,n. (9)

where ε > 0 is arbitrary and k = 2−2ε

n . This choice ensures that the singular integral at the endpoint
remains finite. By substituting these points into Eq. (8), we arrive at the conclusion

n

∑
j=0

c∗j

(
p j(λm)−

n

∑
i=0

Vi(λm)p j(ti)
)
= g(λm), m = 0,1, . . . ,n. (10)

Due to the orthogonality of the basis {pn(x)}, the system of equations in Eq. (10) possesses nonsingular
properties, allowing us to obtain a unique solution for the unknowns. Consequently, by solving this
system of n+1 equations with n+1 unknowns, we can compute the coefficients c∗j . Finally, we define

f ∗n (x) =
n

∑
j=0

c∗j p j(x). (11)

The following algorithm demonstrate the step-by-step process of the proposed scheme through an algo-
rithmic solution procedure.

Algorithm 1.
Input: Read n and ε > 0.
Step 1: Calculate k = (2−2ε)/n and λm = −1− ε +mk, where m = 0,1, . . . ,n. Next, we consider the
Legendre polynomials given in (2). The values ti, which are the roots of the Legendre polynomials, are
obtained by solving the equation pn+1(x) = 0.
Step 2: Compute

µi =
n

∑
k=0

p2
k(ti), and h j =

2
2 j+1

, i, j = 0,1,2, . . . .

Step 3: Calculate the recurrence relations given by the following equations

q0(λ ) = ln
(

1+λ

1−λ

)
, q1(λ ) = λq0(λ )−2,

q j+1(λ ) =
2 j+1
j+1

λq j(λ )−
j

j+1
q j−1(λ ), j = 1,2, . . . .

Step 4: Solve Eq. (10) using any numerical method to find the solutions for the unknowns c∗j .
Output: By solving the n+1 equations with n+1 unknowns, you will obtain the values of c∗j . Finally,
compute f ∗n (x) using (11).
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3 Error analysis

we first establish the decay rates of the coefficients in the Legendre series expansion. We then demon-
strate the error bounds of the truncated Legendre series in the uniform norm through two theorems.
Finally, we derive the error analysis and convergence of the collocation method. We analyze the decay
rates of the Legendre coefficients using the following theorem.

Theorem 1. If f is analytic inside and on the Bernstein ellipse ερ with foci at ±1 and with the major
and minor semi-axis summing to ρ > 1, then for each n≥ 0,

| f (x)− fn(x)| ≤
(2nρ +3ρ−2n−1)`(ερ)M

πρn+1(ρ−1)2(1−ρ−2)
= Mn, x ∈ [−1,1] , (12)

where M = max
z∈ερ

| f (z)| and `(ερ) denotes the length of the circumference of ερ .

Proof. See [19]

Theorem 2. Assuming that the conditions of Theorem 1 are satisfied, we have f ∗n → f as n→ ∞.

Proof. To obtain the error estimation for the proposed approximation, let gp,n be the interpolation poly-
nomial of g at n+1 distinct nodes λm,m = 0,1, . . . ,n. Then, we get

n

∑
j=0

c∗j p j(λ ) = gp,n(λ )+
∮ 1

−1

∑
n
j=0 c∗j p j(x)

λ − x
dx.

Thus,
n

∑
j=0

c∗j(p j(λ )−q j(λ )) = gp,n(λ ). (13)

Now, let

δn(λ ) = f (λ )− f ∗n (λ ) = f (λ )−
n

∑
j=0

c∗j p j(λ ).

Then, Eqs. (1) and (13) yield

δn(λ ) = g(λ )+
∮ 1

−1

f (x)
λ − x

dx−
n

∑
j=0

c∗j p j(λ )

=

(
g(λ )+

∮ 1

−1

f (x)
λ − x

dx
)
−
(

gp,n(λ )+
∮ 1

−1

∑
n
j=0 c∗j p j(x)

λ − x
dx
)

= (g(λ )−gp,n(λ ))+
∮ 1

−1

δn(x)
λ − x

dx.

Consequently, we have

‖ δn(λ )−
∮ 1

−1

δn(x)
λ − x

dx ‖∞ = ‖ g(λ )−gp,n(λ ) ‖∞

≤ |g
(n+1)(ξ (λ ))|
(n+1)!

n

∏
i=0
|λ 2−λ

2
i |

=
Mn+1

(n+1)!
,
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where Mn+1 is an upper bound for |g(n+1)| in [−1,1]. Clearly, we have

lim
n→∞
‖ δn(λ )−

∮ 1

−1

δn(x)
λ − x

dx ‖∞= 0.

The uniqueness theorem for solutions to equation (1) gives us

lim
n→∞
‖ δn(λ ) ‖∞= 0,

and thus, the proof is complete.

4 Numerical examples

To illustrate the performance of our method, we dedicate this section to presenting numerical results
through several examples. In these computations, each table displays the absolute errors of our approxi-
mate solutions.

Example 1. Consider the integral equation

f (λ ) =
λ +2Ln3

λ +2
− λ

λ +2
Ln
∣∣∣∣λ +1
λ −1

∣∣∣∣+∫ 1

−1

f (x)
λ − x

dx,

where the exact solution is given by f (λ ) = λ

λ+2 .

Table 1: Absolute errors for Example 1.

N ε = 0.001 ε = 0.0001
6 2.289E-3 1.252E-3
8 3.704E-4 1.759E-4
10 6.241E-5 2.513E-5
12 1.098E-5 3.625E-6

Figure 1: Comparison between the exact and approximate solutions of Example 1 with N = 12.
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Example 2. Consider the integral equation as described in [3]

kϕ = ϕ(t)+
∫

L

ϕ(τ)

τ− t
dt = f (t),

where

f (t) =
1

1+ t2

(
t3Ln(

1− t
1+ t

)+ t3 +2t2 +
4−π

2

)
, k(t,τ) = 0,

and L = [−1,1]. The exact solution is given by ϕ(t) = t3

1+t2 .

Table 2: Comparison of absolute errors [3] with the present method considering ε = 0.0001 .

N Present method Method used in [3]
4 1.488E-1 1.129E-1
8 1.162E-2 3.338E-2
16 2.710E-4 4.933E-3

Figure 2: Comparison between the exact and approximate solutions of Example 2 with N = 16

E4(s)

E8(s)

E16(s)

-1.0 -0.5 0.5 1.0

x

0.01

0.02

0.03

0.04

Absolute error

Figure 3: Absolute errors for Example 2 with different values of N considering ε = 0.0001.
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Example 3. Consider the integral equation from [16]

λx(s)+µ

∫ 1

−1

x(t)
t− s

dt = ξ (s), s ∈ (−1,1),

where λ = µ = 1, and

ξ (s) = sinh(s)− chi(−s−1)sinh(s)+ chi(1− s)sinh(s)+Ln(−1− s)sinh(s)−Ln(1− s)sinh(s)

+Ln(
1− s
1+ s

)sinh(s)+ cosh(s)shi(1− s)+ cosh(s)shi(1+ s).

In this context, chi and shi refer to the hyperbolic cosine integral and hyperbolic sine integral, respec-
tively. The exact solution is given by x(s) = sinh(s).

Table 3: Comparison of absolute errors between the present method considering ε = 0.0001 and the method
in [16].

Presented method Method of [16]

Node N = 3 N = 5 N = 7 N = 3 N = 5 N = 7
-1.0 2.21e−4 3.29e−6 2.34e−8 1.91e−3 1.81e−5 8.90e−8
-0.8 6.80e−4 5.97e−7 2.89e−8 3.27e−4 2.71e−6 1.03e−8
-0.6 2.80e−4 1.27e−6 1.56e−9 4.56e−4 3.09e−6 2.75e−10
-0.4 1.81e−4 2.89e−6 1.61e−8 7.13e−4 4.86e−7 4.69e−9
-0.2 8.84e−5 3.93e−6 6.74e−9 5.31e−4 1.50e−6 1.59e−8
-0.2 4.31e−4 1.15e−6 1.13e−9 7.62e−6 2.35e−6 5.44e−10
0.0 7.10e−4 6.16e−7 1.28e−8 4.36e−4 5.16e−6 7.95e−9
0.4 7.88e−4 2.84e−6 3.03e−9 3.80e−4 1.85e−6 1.33e−8
0.6 2.21e−4 6.49e−7 1.93e−8 2.72e−4 2.78e−6 1.17e−8
0.8 5.63e−4 3.64e−7 2.43e−9 9.57e−4 1.95e−6 7.49e−9
1.0 8.19e−5 5.14e−7 2.23e−10 8.32e−5 2.08e−6 1.23e−8

Figure 4: Comparison between the exact and approximate solutions for Example 3 with N = 7.
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Figure 5: Absolute errors for Example 3 in [16] (left) and the absolute errors of the solutions obtained in this paper
considering ε = 0.0001 (right).

This study employs Legendre orthogonal polynomial expansions, offering a robust framework for ap-
proximating solutions due to their inherent orthogonality. This approach significantly reduces the com-
putational effort compared to methods that utilize Bessel basis polynomials and Gauss-Legendre collo-
cation points, making it a more efficient option for solving these equations.

5 Conclusion

We have used an expansion approach for the unknown function and the Cauchy kernel in this study. The
unknown coefficients were defined by applying the collocation method. Using a system of linear equa-
tions, we can compute an approximate solution and eliminate singularities with this method. Through
the provided examples, we show that, although our numerical solution is straightforward and quick, it is
also very accurate and efficient when compared to other approaches used in related studies.
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