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Abstract. It is shown that the radius of spatial analyticity σ(t) of the solution u(t) for the Benjamin-
Bona-Mahony equation on the circle does not decay faster than c|t|−2/3 (for some constant c> 0) as |t|→
∞ . This improves the work [A. A. Himonas, G. Petronilho, Evolution of the radius of spatial analyticity
for the periodic Benjamin-Bona-Mahony Equation, Proc. Amer. Math. Soc. 148 (2020) 2953–2967],
where the authors obtained a decay rate of order ct−1 for large t. The proof of our main theorems is
based on a modified Gevrey space, Cauchy-Schwartz inequality, a method of almost conservation law
and Sobolev embedding.

Keywords: Periodic BBM Equation, radius of analyticity of solutions, modified Gevrey spaces, lower bound for the
radius.
AMS Subject Classification 2010: 35A01, 35B40.

1 Introduction

Consider the initial value problem (IVP) associated with the Benjamin-Bona-Mahony (BBM) equation
on the circle T= R/2πZ,{

∂tu−∂ 2
x ∂tu+∂xu+ 1

2 ∂x(u2) = 0, (x, t) ∈ T×R,
u(x,0) = φ(x), x ∈ T,

(1)

where u := u(x, t) is a real-valued function. The BBM equation (1) was introduced in [2] to study
the dynamics of small-amplitude surface water waves propagating unidirectionally. The well-posedness
and ill-posedness of (1) in the Sobolev spaces Hs(T) have been extensively studied (see for instance,
[2, 3, 5, 15] and references therein).

Besides the well-posedness theory in the L2-based Sobolev spaces, another fundamental question for
nonlinear dispersive partial differential equations (PDEs) is about the asymptotic lower bound on the
radius of spatial analyticity of solution in the Gevrey spaces. According to the Paley-Wiener Theorem
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[14], the radius of spatial analyticity of a function can be characterized by decay property of its Fourier
transform. It is therefore natural to take initial data in the Gevrey space Gσ ,s := Gσ ,s(T) equipped with
the norm

‖ f‖2
Gσ ,s = ∑

k∈Z
exp(2σ |k|)〈k〉2s| f̂ (k)|2, for σ > 0 and s ∈ R,

where 〈·〉=
√

1+ | · |2 and f̂ is the Fourier transform of f given by

f̂ (k) := Fx[ f ](k) =
1√
2π

∫
T

exp(−ikx) f (x) dx, k ∈ Z,

and its inverse Fourier transform is defined as

f (x) =
1√
2π

∑
k∈Z

exp(ikx) f̂ (k).

It is clear that G0,s = Hs, where Hs := Hs(T) denotes the L2-based Sobolev space of order s equipped
with the norm (see the discussion in [1])

‖ f‖2
Hs = ∑

k∈Z
〈k〉2s| f̂ (k)|2,

while for σ > 0, any function in Gσ ,s(T) has a radius of analyticity of at least σ > 0 at each point x ∈ T.
Of course, this fact is contained in the Paley-Wiener Theorem which is stated as follows.

Theorem ( Paley-Wiener Theorem). Let σ > 0 and s ∈ R. A 2π-periodic function f (x) is in Gσ ,s(T)
if and only if it is the restriction to the real line of a function F(x + iy) which is 2π-periodic in x,
holomorphic in the strip

Sσ = {x+ iy ∈ C : |y|< σ},

and satisfies the bound
sup
|y|<σ

‖F(·+ iy)‖Hs(T) < ∞.

Since the work of Kato and Masuda [13], several papers looked at spatial analyticity (see, e.g, [6–10,
12,17] and references therein). Coming back to (1), Himonas and Petronilho [11] obtained the algebraic
decay rate of order t−1 for large time t. In fact, the authors in [11] used the conservation of energy
functional

E(t) =
∫
T

(
u2 +(∂xu)2)dx, (2)

to obtain the result. For the non-periodic IVP of the BBM equation, Bona and Grujić [4] obtained the
algebraic decay rate of order t−1 for large t. Latter, in [18], Wang improved the result of Bona and Grujić,
and obtained a decay rate of order t−2/3.

The main interest in this paper is to improve the algebraic decay rate of spatial analyticity to solutions
of (1) obtained in [11]. A class of analytic function spaces suitable for our analysis is the modified Gevrey
class Hσ ,s := Hσ ,s(T) (introduced in [6]), which is endowed with the norm

‖ f‖2
Hσ ,s = ∑

k∈Z
cosh2(σ |k|)〈k〉2s| f̂ (k)|2.
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Following that the fact cosh(σ |k|)∼ exp(σ |k|), the norms ‖ · ‖Gσ ,s and ‖ · ‖Hσ ,s are equivalent. The idea
of definition of Hσ ,s is connected to the decay rate of exponential weight of Gσ ,s-norm. The desired
decay rate of order t−1/β (for 0 < β ≤ 1) of the radius of analyticity σ is obtained from the estimate

1− exp(−σ |k|)≤ (σ |k|)β .

Since the hyperbolic cosine function cosh(σ |k|) satisfies the estimate

1− sech(σ |k|)≤ (σ2|k|)β , 0 < β ≤ 1,

an application of our method in the new space Hσ ,s can yield a decay rate of order t−1/(2β ) for some
0 < β ≤ 1 provided that the nonlinear estimates of the approximate conservation law can dissolve the
weight |k|2β . In this manuscript, we managed to obtain the decay rate of order t−2/3 for the IVP (1) (this
result corresponds to β = 3/4).

Observe that the modified Gevrey spaces satisfy the following embedding property:

Hσ ,s ⊂ Hσ ′,s′ ⊂ Hs′ , ∀ 0 < σ
′ < σ and s,s′ ∈ R. (3)

As a consequence of this property and the existing well-posedness theory in H1, IVP (1) with initial data
φ ∈ Hσ0,1 for all σ0 > 0 has a unique and smooth solution for all time.

Before leaving the introduction, we state our main result as follows.

Theorem 1 (Improved lower bounds of spatial analyticity radius). Assume that φ ∈Hσ0,1(T) with σ0 > 0.
Then, the global C∞ solution u, of (1) satisfies u(t) ∈ Hσ(t),1, ∀ t ∈ R, with the radius of analyticity
σ := σ(t) satisfying an asymptotic lower bound

σ ≥ c|t|−2/3, (4)

where c > 0 is a constant depending on ‖φ‖Hσ0 ,1 .

Since the BBM equation given in (1) is invariant under the change of variables (x, t)→ (−x,−t),
we may restrict ourselves to positive times t ≥ 0. Following this, the rest of the paper is organized as
follows. In Section 2, we discuss on the local-in-time well-posedness result of the IVP (1). In Section
3, an almost conservation law for a modified energy functional associated with Iu := Fx[cosh(σ |k|)û] is
derived. Finally, our main result which is stated in Theorem 1 is proved in Section 4 by combining the
local result and the almost conservation law.

Notation 1. For any positive numbers a and b, the notation a . b is used when there exists a positive
constant C such that a≤Cb. We also write a∼ b when a . b . a hold.

2 Local well-posedness in Hσ0,1

We outline the argument in [11] that enables the authors to obtain the local well-posedness result for (1)
in Gσ0,1 for σ0 > 0.

Now, denote

ϕ(D) := ∂x
(
1−∂

2
x
)−1

. (5)
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By applying
(
1−∂ 2

x
)−1 to (1), we obtain{

∂tu+ϕ(D)(u+ 1
2 u2) = 0,

u(x,0) = φ(x).
(6)

Then, Duhamel’s integral formula allows us to write IVP (6) in the equivalent integral equation of the
form

u(t) = φ −
t∫

0

ϕ(D)(u(t ′)+
1
2

u2(t ′))dt ′. (7)

Now, applying the contraction mapping argument in the space C
(
[0,T ];Hσ ,1

)
to the integral equation

(7), and then using the bilinear estimate (Its proof can be found in [18, Lemma 2.1].)

‖uv‖Hσ ,1 ≤C‖u‖Hσ ,1‖v‖Hσ ,1 , ∀ σ > 0 and u,v ∈ Hσ ,1(T), (8)

the fact ‖k|(1+ |k|2)−1 ≤ 1, the Parseval’s identity∫
T

f (x)g(x)dx = ∑
k∈Z

f̂ (k) ĝ(k),

and Sobolev embedding yields the following local result.

Theorem 2. Let φ ∈ Hσ0,1 for σ0 > 0. Then, there exists a time T > 0 and a unique solution u of (1) on
the time interval (0,T ) such that u ∈C

(
[0,T ];Hσ0,1

)
. Moreover, the solution depends continuously on

the initial data φ , and the existence time is given by

T ∼ (1+‖φ‖Hσ0 ,1)
−1 . (9)

Furthermore,

‖u‖L∞
T Hσ0 ,1 . ‖φ‖Hσ0 ,1 . (10)

3 Almost conservation law

To prove an almost conservation law for the model (1), we follow the argument used in [18]. To do this,
we first define a Fourier multiplier operator

Fx[Iu](k) = m(k)Fx[u](k), (11)

where

m(k) = cosh(σ |k|), k ∈ T, σ > 0. (12)

It is clear that

‖cosh(σ |D|)u‖Hs ∼ ‖u‖Hσ ,s ∼ ‖Iu‖Hs . (13)
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Using the Taylor expansion

eσ |k| =
∞

∑
n=0

(σ |k|)n

n!
. (14)

Since cosh(σ |k|) = 1
2(e

σ |k|+ e−σ |k|), we have

m2(k) = 1+
1
2

∞

∑
n=1

(2σ |k|)n

(2n)!
. (15)

Define a modified energy functional associated with Iu by

Eσ (t) =
1
2

∫
T

(
(Iu)2 +(∂xIu)2)dx.

Observe that for σ = 0, we have Iu = u, and therefore the energy is conserved, i.e., E0(t) = E0(0) for all
time t. But, this fails to hold for σ > 0. In what follows, we will prove the following almost conservation
law.

Theorem 3 (Almost conservation law). Let φ ∈ Hσ ,1. Assume that u ∈C
(
(0,T );Hσ ,1

)
is the local-in-

time solution to the IVP (1) that is constructed in Theorem 2. Then

sup
t∈[0,T ]

Eσ (t)≤ Eσ (0)+Cσ
3
2 [Eσ (0)]

3
2 .

Proof. Multiplying (1) with 2I2u and integrating over T, we obtain

d
dt

Eσ (t) =−2(u∂xu, I2u), (16)

where (·) denotes the inner product in L2(T) and we used the fact

(∂xu, I2u) =
∫
T

1
2

∂x(Iu)2dx = 0.

Here, we need to estimate −2(u∂xu, I2u). By using integration by parts and the Parseval’s identity, we
obtain

−2(u∂xu, I2u) =
∫
T
(∂xI2u)u2dx = ∑

k1+k2+k3=0
ik1m2(k1)û(k1)û(k2)û(k3). (17)

Let m j = m(k j) for j = 1,2,3. By symmetry and the Parseval’s identity, we have (see [18, Eq. (3.6)])

−2(u∂xu, I2u) =
∫
T
(∂xI2u)u2dx =

i
3 ∑

k1+k2+k3=0
(k1m2

1 + k2m2
2 + k3m3

3)û(k1)û(k2)û(k3). (18)

By inserting (15) into (18) and then using Lemma 3.3 of [18] and triangle inequality, we obtain

−2(u∂xu, I2u) =
i
6 ∑

k1+k2+k3=0

∞

∑
n=1

(2σ |k|)n

(2n)!
(k2n+1

1 + k2n+1
2 + k2n+1

3 )û(k1)û(k2)û(k3)

≤C ∑
k1+k2+k3=0

σ
3
2 |k1k2k3|

5
6 eσ(|k1|+|k2|+|k3|)û(k1)û(k2)û(k3)

≤Cσ
3
2 ∑

k1+k2+k3=0
|k1k2k3|

5
6 eσ |k1|eσ |k2|eσ |k3||û(k1)||û(k2)||û(k3)|. (19)
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Let ŵ = |û|. Now, using the Parseval’s identity and Sobolev embedding, we obtain

−2(u∂xu, I2u)≤Cσ
3
2

∫
T
(|D|

5
6 eσ |D|w)3 dx

≤Cσ
3
2

∥∥∥|D| 56 eσ |D|w
∥∥∥3

L3

≤Cσ
3
2

∥∥∥|D|eσ |D|w
∥∥∥3

L2

∼Cσ
3
2

∥∥∥|k|eσ |k||û|
∥∥∥3

L2

∼Cσ
3
2 ‖|k|cosh(σ |k|)|û|‖3

L2

≤Cσ
3
2 ‖Iu‖3

H1 . (20)

Consequently, integrating (16) in time over the interval (0,s) for s≤ T and then plugging (20) and using
Hölder’s inequality in time gives

Eσ (s) = Eσ (0)+Cσ
3
2

s∫
0

‖Iu‖3
H1 dt

≤ Eσ (0)+Cσ
3
2 T‖Iu‖3

L∞
T H1

≤ Eσ (0)+Cσ
3
2 ‖Iu‖3

L∞
T H1 . (21)

From (10) and (13), we get

‖Iu‖L∞
T H1 ∼ ‖u‖L∞

T Hσ ,1 ≤C‖φ‖Hσ ,1 ∼C‖Iφ‖H1 . (22)

On the other hand

‖Iφ‖2
H1 = ∑

k∈Z
〈k〉2m2(k)|φ̂(k)|2

= ∑
k∈Z

(m2(k)|φ̂(k)|2 + k2m2(k)|φ̂(k)|2)

=
∫
T
(Iφ(x))2 +(∂xIφ(x))2) dx

= 2Eσ (0). (23)

It follows from (22) and (23) that

‖Iu‖L∞
T H1 ≤CE

1
2
σ (0). (24)

Finally, using (24) in (21) gives the desired estimate in Theorem 3.

4 Proof of Theorem 1

Assume that φ ∈ Hσ0,1 for some σ0 > 0. Then, vσ0(0) = cosh(σ0|D|)φ ∈ H1, and hence we have

Eσ0(0)∼ ‖vσ0(0)‖2
H1 < ∞. (25)
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Now by Theorem 2 there is a unique solution u to (1) satisfying

u ∈C
(
(0,T );Hσ0,1(T)

)
,

with existence time T as in (9). Then, following the argument in [16, 17] we can construct a solution on
[0,T ∗] for arbitrarily large time T ∗. To do this, we apply the almost conservation law in Theorem 3 to
repeat the above local result on successive short time intervals of size T to reach T ∗ by adjusting the strip
width parameter σ according to the size of T ∗. This strategy established the bound

sup
t∈[0,T ∗]

Eσ (t)≤ 2Eσ (0),

for σ satisfying
σ ≥ c(T ∗)−

2
3 .

This implies that Eσ (t)< ∞ for every 0≤ t ≤ T ∗, and hence

u(t) ∈ Hσ(t),1 with σ(t) := σ ≥ c(T ∗)−
2
3 ,

for all 0≤ t ≤ T ∗, where c > 0 is a constant depending on the initial data norm.
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