تعداد نشریات | 31 |
تعداد شمارهها | 748 |
تعداد مقالات | 7,122 |
تعداد مشاهده مقاله | 10,274,748 |
تعداد دریافت فایل اصل مقاله | 6,910,353 |
مطالعه ترکیبات شیمیایی گال های تشکیل شده توسط زنبورهای گالزای بلوط (Hym.: Cynipidae) در استان کرمانشاه (مطالعه موردی: شهرستان جوانرود) | ||
تحقیقات آفات گیاهی | ||
دوره 14، شماره 3، آذر 1403، صفحه 45-58 اصل مقاله (1.18 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22124/iprj.2024.28603.1598 | ||
نویسندگان | ||
معصومه پایدار1؛ عباسعلی زمانی1؛ محسن سعیدی* 2 | ||
1گروه گیاهپزشکی، دانشکده کشاورزی، دانشگاه رازی، کرمانشاه، ایران | ||
2گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه رازی، کرمانشاه، ایران | ||
چکیده | ||
درختان بلوط (Quercus infectoria) یکی از اجزای اصلی جوامع جنگلی غرب ایران هستند و در حفظ آب و خاک این منطقه نقش حیاتی دارند. زنبورهای گالزای بلوط (Hymenoptera: Cynipidae) باعث ایجاد گال روی اندامهای مختلف درختان بلوط میشوند. این پژوهش با هدف بررسی غلظت برخی متابولیت های گیاهی در بافتهای مختلف درختان بلوط و برخی از گال های برگی تشکیلشده توسط زنبورهای گالزا و تغییرات آنها در طول فصل رشد در منطقه جوانرود انجام شد. به این منظور، چهار نوع گال (Neuroterus numismalis Geoffroy, Neuroterus quercusbaccarum L., Cynips divisa Harting و Cynips quercusfolii L.)، برگهای حاوی گال و برگهای سالم زیر آنها به عنوان واحد نمونه گیری از جنگلهای بلوط واقع در شهرستان جوانرود جمعآوری شدند. در این بررسی غلظت برخی ترکیبات غذایی و متابولیتهای ثانویه مانند قندهای محلول و نامحلول، فنل کل، تانن کل و تانن متراکم اندازه گیری شدند. نتایج حاصل از تجزیه واریانس دادهها نشان داد که غلظت متابولیت های مختلف در طول فصل در چهار نوع گال مختلف و دو بافت مورد بررسی با هم تفاوت معنیداری داشتند. بالاترین غلظت کربوهیدرات ها و نشاسته در هر چهار نوع گال و دو نوع بافت گیاهی در مهرماه به دست آمد. در مقابل بیشترین میزان نیتروژن کل و پروتئین خام در شهریورماه حاصل شد. چون بافت گال تنها منبع تغذیه برای حشره گالزا محسوب میشود، بنابراین، به نظر می رسد که کیفیت مواد غذایی آن برای حشره گالزا اهمیت زیادی دارد. | ||
کلیدواژهها | ||
پروتئین؛ تانن؛ فنل؛ قند؛ نیتروژن | ||
مراجع | ||
Abrahamson, W. G., Hunter, M. D., Melika, G., & Price, P. W. (2003). Cynipid gall-wasp communities correlate with oak chemistry. Journal of Chemical Ecology, 29, 209-223. DOI: https://doi.org/10.1023/A:1021993017237
Allison, S. D., & Schultz, J. C. (2005). Biochemical responses of chestnut oak to a galling cynipid. Journal of Chemical Ecology, 31, 151-166. DOI: https://doi.org/10.1007/s10886-005-0981-5
AOAC. (1995). Official methods of analysis 16th Ed. Association of official analytical chemists. Washington DC, USA.
Bellows, E., Heatley, M., Shah, N., Archer, N., Giles, T., & Fray, R. (2024). Comparative transcriptome reprogramming in oak galls containing asexual or sexual generations of gall wasps. Plant Biology, 26(5),798-810. DOI: https://doi.org/10.1111/plb.13670
Ben-Shlomo, R., Talal, S., & Inbar, M. (2022). The dynamics and the timeline of speciation in the gall-forming aphid Geoica spp. within and among pistacia host tree species. Molecular Phylogenetics and Evolution, 174, 107549. DOI: https://doi.org/10.1016/j.ympev.2022.107549
Castro, A., Oliveira, D., Moreira, A., Lemos-Filho, J., & Isaias, R. (2012). Source–sink relationship and photosynthesis in the horn-shaped gall and its host plant Copaifera langsdorffii Desf. (Fabaceae). South African Journal of Botany, 83, 121-126. DOI: https://doi.org/10.1016/j.sajb.2012.08.007
Chen, J. (2024). It's gall relative: metabolic profiling of two morphologically distinct oak leaf galls induced by cynipid wasps. Plant Physiology, 195(1), 248-250. DOI: https://doi.org/10.1093/plphys/kiae032
Chen, X., Yang, Z., Chen, H., Qi, Q., Liu, J., Wang, C., Shao, S., Lu, Q., Li, Y., Wu, H., King-Jones, K., & Chen, S. (2020). A complex nutrient exchange between a gall-forming aphid and its plant host. Frontiers in Plant Science, 11, 811. DOI: https://doi.org/10.3389/fpls.2020.00811
Chen, X., Yang, Z., Chen, H., Qi, Q., Liu, J., Wang, C., Shao, S., Lu, Q., Li, Y., Wu, H., & Chen, M. S. (2020). A complex nutrient exchange between a gall-forming aphid and its plant host. Frontiers in Plant Science, 11, 811. DOI: https://doi.org/10.3389/fpls.2020.00811
Costa-Rezende, U., Fernandes-Cardoso, J. C., Hanson, P., & Oliveira, D. C. (2021). Gall traits and galling insect survival in a multi-enemy context. Revista de Biología Tropical, 69(1), 291-301. DOI: https://doi.org/10.15517/rbt.v69i1.42826
Divekar, P. A., Narayana, S., Divekar, B. A., Kumar, R., Gadratagi, B. G., Ray, A., Singh, A. K., Rani, V., Singh, V., Singh, A. K., & Behera, T. K. (2022). Plant secondary metabolites as defense tools against herbivores for sustainable crop protection. International Journal of Molecular Sciences, 23(5), 2690. DOI: https://doi.org/10.3390/ijms23052690
Elhamouly, N. A., Hewedy, O. A., Zaitoon, A., Miraples, A., Elshorbagy, O. T., Hussien, S., El-Tahan, A., & Peng, D. (2022). The hidden power of secondary metabolites in plant-fungi interactions and sustainable phytoremediation. Frontiers in Plant Science, 13, 1044896. DOI: https://doi.org/10.3389/fpls.2022.1044896
Gätjens-Boniche, O. (2019). The mechanism of plant gall induction by insects: revealing clues, facts, and consequences in a cross-kingdom complex interaction. Revista de Biología Tropical, 67(6), 1359-1382. DOI: https://doi.org/10.15517/rbt.v67i6.33984
Harris, M. O., & Pitzschke, A. (2020). Plants make galls to accommodate foreigners: some are friends, most are foes. New Phytologist, 225(5), 1852-1872. DOI: https://doi.org/10.1111/nph.16340
Hearn, J., Blaxter, M., Schönrogge, K., Nieves-Aldrey, J. L., Pujade-Villar, J., Huguet, E., Drezen, J. M., Shorthouse, J. D., & Stone, G. N. (2019). Genomic dissection of an extended phenotype: Oak galling by a cynipid gall wasp. PLoS Genetics, 15(11), e1008398. DOI: https://doi.org/10.1371/journal.pgen.1008398
Hoffmann, F., Allers, K., Rombey, T., Helbach, J., Hoffmann, A., Mathes, T., & Pieper, D. (2021). Nearly 80 systematic reviews were published each day: observational study on trends in epidemiology and reporting over the years 2000-2019. Journal of Clinical Epidemiology, 138, 1-11. DOI: https://doi.org/10.1016/j.jclinepi.2021.05.022
Huang, M. Y., Huang, W. D., Chou, H. M., Chen, C. C., Chen, P. J., Chang, Y. T., & Yang, C. M. (2015). Structural, biochemical, and physiological characterization of photosynthesis in leaf-derived cup-shaped galls on Litsea acuminata. BMC Plant Biology, 15, 1-12. DOI: https://doi.org/10.1186/s12870-015-0446-0
Ikai, N., & Hijii, N. (2007). Manipulation of tannins in oaks by galling cynipids. Journal of Forest Research, 12, 316-319. DOI: https://doi.org/10.1007/s10310-007-0016-x
Kanjana, N., Li, Y., Shen, Z., Mao, J., & Zhang, L. (2024). Effect of phenolics on soil microbe distribution, plant growth, and gall formation. Science of the Total Environment, 924, 171329. DOI: https://doi.org/10.1016/j.scitotenv.2024.171329
Leach, C. K. (1986). The phenolic contents of some British cynipid galls. Cecidology, 1, 10-2. DOI: https://doi.org/10.1007/978-94-017-0273-7
Li, Y., He, N., Hou, J., Xu, L., Liu, C., Zhang, J., Wang, Q., Zhang, X., & Wu, X. (2018). Factors influencing leaf chlorophyll content in natural forests at the biome scale. Frontiers in Ecology and Evolution, 6, 324791. DOI: https://doi.org/10.3389/fevo.2018.00064
Lichtenthaler, H. K., & Wellburn, A. R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. In: Portland Press Ltd.
Lombardero, M. J., & Ayres, M. P. (2022). Defensive patterns of chestnut genotypes (Castanea spp.) against the gall wasp, Dryocosmus kuriphilus. Frontiers in Forests and Global Change, 5, 1046606. DOI: https://doi.org/10.3389/ffgc.2022.1046606
Makkar, H. P. (2003). Quantification of tannins in tree and shrub foliage: A laboratory manual. Springer Science & Business Media. DOI: https://doi.org/10.1007/978-94-017-0273-7
Markel, K., Novak, V., Bowen, B. P., Tian, Y., Chen, Y. C., Sirirungruang, S., Zhou, A., Louie, K. B., Northen, T. R., Eudes, A., & Shih, P. M. (2024). Cynipid wasps systematically reprogram host metabolism and restructure cell walls in developing galls. Plant Physiology, 195(1), 698-712. DOI: https://doi.org/10.1093/plphys/kiae001
Martini, V., Moreira, A. S. F. P., Kuster, V. C., & Oliveira, D. C. (2020). Photochemical performance and source-sink relationships in galls induced by Pseudophacopteron longicaudatum (Hemiptera) on leaves of Aspidosperma tomentosum (Apocynaceae). Photosynthetica, 58(3), 827-835. DOI: https://doi.org/10.32615/ps.2020.033
Meyer-Rochow, V. B. (2022). Can molecularly engineered plant galls help to ease the problem of world food shortage (and our dependence on pollinating insects)?. Foods, 11(24), 4014. DOI: https://doi.org/10.3390/foods11244014
Miller III, D. G., & Raman, A. (2019). Host–plant relations of gall-inducing insects. Annals of the Entomological Society of America, 112(1), 1-19. DOI: https://doi.org/10.1093/aesa/say034
Motta, S., Guaita, M., Cassino, C., & Bosso, A. (2020). Relationship between polyphenolic content, antioxidant properties and oxygen consumption rate of different tannins in a model wine solution. Food Chemistry, 313, 126045. DOI: https://doi.org/10.1016/j.foodchem.2019.126045
Murakami, R., Ushima, R., Sugimoto, R., Tamaoki, D., Karahara, I., Hanba, Y., Wakasugi, T., & Tsuchida, T. (2021). A new galling insect model enhances photosynthetic activity in an obligate holoparasitic plant. Scientific Reports, 11(1), 13013. DOI: https://doi.org/10.1038/s41598-021-92417-3
Nyman, T., & Julkunen-Tiitto, R. (2000). Manipulation of the phenolic chemistry of willows by gall-inducing sawflies. Proceedings of the National Academy of Sciences, 97(24), 13184-13187. DOI: https://doi.org/10.1073/pnas.230294097
Pandey, K., & Kate, A. S. (2024). Comparative analysis of foliar galls and ungalled leaves of Alstonia scholaris with a focus on tissue ultrastructure and phytochemistry. Biochemical Systematics and Ecology, 115, 104851. DOI: https://doi.org/10.1016/j.bse.2024.104851
Perea, R., Dirzo, R., Bieler, S., & Wilson Fernandes, G. (2021). Incidence of galls on sympatric California oaks: ecological and physiological perspectives. Diversity, 13(1), 20. DOI: https://doi.org/10.3390/d13010020
Pierce, M. P. (2019). The ecological and evolutionary importance of nectar‐secreting galls. Ecosphere, 10(4), e02670. DOI: https://doi.org/10.3390/d13010020
Pilichowski, S., & Giertych, M. J. (2020). Two galling insects (Hartigiola annulipes and Mikiola fagi), one host plant (Fagus sylvatica)–differences between leaf and gall chemical composition. Baltic Forestry, 26(2), 474. DOI: https://doi.org/10.46490/BF474
Qi, Y., Duan, C., Ren, L., & Wu, H. (2020). Growth dynamics of galls and chemical defense response of Pinus thunbergii Parl. to the pine needle gall midge, Thecodiplosis japonensis Uchida & Inouye (Diptera: Cecidomyiidae). Scientific Reports, 10(1), 12289. DOI: https://doi.org/10.1038/s41598-020-69231-4
Sadeghi, S. E., Assareh, H. H., & Tavakoli, M. (2009). Oak gall wasps of Iran. Research Institute of Forests and Rangelands Press. 286 pp. (In Farsi) DOI: https://doi.org/10.22092/irn.2024.364786.1567
Schönrogge, K., Harper, L. J., & Lichtenstein, C. P. (2000). The protein content of tissues in cynipid galls (Hymenoptera: Cynipidae): similarities between cynipid galls and seeds. Plant, Cell & Environment, 23(2), 215-222. DOI: https://doi.org/10.1046/j.1365-3040.2000.00543.x
Sottile, S., Cerasa, G., Massa, B., & Lo Verde, G. (2022). Andricus cydoniae giraud, 1859 junior synonym of Cynips conifica hartig, 1843, as experimentally demonstrated (Hymenoptera: Cynipidae: Cynipini). Insects, 13(2), 200. DOI: https://doi.org/10.3390/insects13020200
Stone, G. N., & Schönrogge, K. (2003). The adaptive significance of insect gall morphology. Trends in Ecology & Evolution, 18(10), 512-522. DOI: https://doi.org/10.1016/S0169-5347(03)00247-7
Takeda, S., Hirano, T., Ohshima, I., & Sato, M. H. (2021). Recent progress regarding the molecular aspects of insect gall formation. International Journal of Molecular Sciences, 22(17), 9424. DOI: https://doi.org/10.3390/ijms22179424
Tlak Gajger, I., & Dar, S. A. (2021). Plant allelochemicals as sources of insecticides. Insects, 12(3), 189. DOI: https://doi.org/10.3390/insects12030189
Traoré, M., Kaal, J., & Cortizas, A. M. (2023). Variation of wood color and chemical composition in the stem cross-section of oak (Quercus spp.) trees, with special attention to the sapwood-heartwood transition zone. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 285, 121893. DOI: https://doi.org/10.1016/j.saa.2022.121893
Ushima, R., Sugimoto, R., Sano, Y., Ogi, H., Ino, R., Hayakawa, H., Shimada, K. & Tsuchida, T. (2024). New gall-forming insect model, Smicronyx madaranus: critical stages for gall formation, phylogeny, and effectiveness of gene functional analysis. Insects, 15(1), 63. DOI: https://doi.org/10.3390/insects15010063
Xiang, Y., Guo, W., Shen, S., Gao, X., & Li, X. (2020). Galling impacts of the gall wasp Leptocybe invasa (Hymenoptera: Eulophidae) on eucalyptus trees vary with plant genotype. International Journal of Tropical Insect Science, 40, 267-275. DOI: https://doi.org/10.1007/s42690-019-00076-9
Zardooei, M., Zamani, A. A., Talebi, A. A., & Salari, H. (2020). The species diversity of oak gall wasps (Hymenoptera: Cynipidae) in Kermanshah province. Taxonomy and Biosystematics, 12(43), 52-66. (In Farsi) DOI: https://doi.org/10.22108/tbj.2021.125399.1128 | ||
آمار تعداد مشاهده مقاله: 57 تعداد دریافت فایل اصل مقاله: 37 |