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Abstract. In this paper, we model and analyze a machine repair system characterized as an M/M/2
queue with finite source L, operating under the triadic policy (0,Q,N,M), considering impatience, and
both multiple and single working vacations. The two servers can be active, on working vacation, or dor-
mant depending on the number of failed machines in the system, following the triadic policy (0,Q,N,M).
We analyze the system’s steady-state using the matrix-geometric method. Various performance measures
are numerically presented and accurately interpreted. Finally, the Quadratic Fit Search method is em-
ployed to determine the optimal service rate µ∗v and the optimal expected cost. Additionally, the effect
of system parameters on the cost function is investigated. This study offers a comprehensive analytical
framework for complex queueing environments, informing decision-making and operational efficiency
across various industrial sectors.
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1 Introduction

Optimal performance in industrial systems management hinges on the effective collaboration between
humans and machines. This is particularly evident when system failures occur, necessitating immediate
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repairs. Queueing systems have emerged as a significant tool in predicting queue characteristics across
various sectors, including manufacturing systems and call centers [10, 14, 15, 19].

Key concepts in queueing theory such as server vacations (servers are temporarily unavailable due
to a variety of reasons such as maintenance, rest periods, or system updates), working vacation (a period
during which the service is provided at a slower rate, rather than being completely stopped), customer
balking (choosing not to join the queue), and reneging (leaving before service) are critical in understand-
ing and optimizing these systems. Several studies, including those by [1–5,7,18], have delved into these
concepts.

Triadic policy in queueing models has garnered considerable interest among researchers. Rhee [16]
pioneered the introduction of the triadic policy in the context of the M/M/2 queueing system model.
The controllable M/M/2 system, when operated under the triadic (0,Q,N,M) policy, was studied by
Wang et al. [20]. A comparative numerical analysis for various cases of mixed standbys (using the
Runge-Kutta/ANFIS methods) for a single unreliable server system was presented by Jain et al. [6].
Lin et al. [12] examined an M/M/2 system with infinite capacity, deriving analytical closed-form so-
lutions for the queueing system operating under the triadic (0,Q,N,M) policy, and conducted a cost
optimization to determine the optimal operating parameters (0,Q,N,M). Additionally, Laxmi et al. [11]
analyzed an M/M/2 model with the triadic (0,Q,N,M) policy and a second optional service using the
matrix-geometric method. Liou et al. [13] employed a recursive method to obtain analytical steady-state
solutions for the controllable M/M/2 system under the triadic (0,Q,N,M) policy. They formulated an
optimization problem to ascertain the minimum cost for the machine repair system and subsequently
identified the optimal operating parameters for (0,Q,N,M). Later, Ketema [8] considered an M/M/2
machine repair system with multiple working vacations (MWV), impatient customers, and the triadic
policy (0,Q,N,M). Ketema et al. [9] implemented the triadic policy (0,Q,N,M) in the M/M/2 machine
repair problem, identifying the optimal working vacation service rate η∗, along with the optimal oper-
ating triadic parameters (0,Q∗,N∗,M∗). Recently, Sharma et al. [17] applied the genetic algorithm, the
artificial bee colony algorithm, and particle swarm optimization to obtain the optimum cost function for
an M/M/2/L machine repair system with triadic policy and discouragement.

Working vacation queues, triadic policy, balking, and reneging often coexist in real-world scenarios
across various sectors, including industry, healthcare, construction, and infrastructure. Although previ-
ous studies have investigated the impact of multiple working vacations under triadic policies on system
performance in machine repair systems, there remains a critical gap regarding the economic and cost
implications of integrating triadic policies with working vacations (both single and multiple), balking,
and reneging in machine repair contexts.

This paper addresses this gap by proposing a comprehensive machine repair model incorporating fea-
tures such as impatience timers, balking, single and multiple working vacations, finite capacity, triadic
policy, and two repairmen. While some of these aspects have been discussed separately in the machine
repair queueing literature, no previous work has combined all these features into a single model, even in
recent studies. The queueing literature reveals that there are only a few articles focused on the queue-
ing model with vacations and a triadic policy. Moreover, it is important to note that most research on
multi-server vacation queueing models assumes an infinite customer source capacity. However, the anal-
ysis of finite-source vacation systems is often more practical and insightful than that of infinite vacation
queues. The implications of finite system capacity include the loss of incoming customers due to queue
saturation. We use the matrix-geometric method to derive steady-state probabilities and various perfor-
mance measures and reliability indices of the queueing system, such as the expected number of failed
and operating machines, mean queue length, and average rates of balking, reneging, and customer loss.



An M/M/2/L machine repair model with triadic policy 185

Additionally, we construct an expected cost function and formulate an optimization problem to determine
the optimal cost. The Quadratic Fit Search (QFS) method is then employed to solve this problem and
identify the optimal service rate during vacation periods, aiming to minimize the expected cost. Finally,
we present numerical examples to illustrate how different parameters of the model affect the stationary
characteristics of the system. This study has the potential to significantly impact industry and technology
systems, particularly in terms of cost optimization and operational efficiency across diverse industrial
sectors.

The remainder of the paper is structured as follows: Section 2 presents the mathematical description
of the proposed model. In Section 3, we establish the balance equations and transition matrix, followed
by the presentation of steady-state results for the queueing model. Section 4 delves into the use of the
matrix-geometric method to provide detailed steady-state results. Performance measures are discussed in
Section 5. Section 6 exhibits some significant cases relevant to our proposed model. Section 7 showcases
numerical results depicting various system performance measures and an analysis of the optimal cost
function. Finally, the paper concludes with a summary in Section 8.

2 Model description

We consider a machine repair model with capacity L operating machines maintained by a two repairman.
The assumptions of the model are built up as follows:

1. If the operating machine fails, it joins the system to repair. The inter-arrivals for the failed machine
accrued according to an exponential process with rate λ .

2. Failed machine decides either to join the queue with probability βi, or balk with probability 1−βi,
0≤ i≤ L, where: β0 = 1, 0 < βi+1 ≤ βi ≤ 1, 1≤ i≤ L−1 and βL = 0.

3. Service times follows an exponential distribution with rate µ in busy period and µv in the vacation
period (µv < µ). The First-In-First-Out (FIFO) service discipline is adopted.

4. When the failed machine enters the system, it activates a timer T0 (respectively T1). This time T0
(resp. T1) is a random variable exponentially distributed with rate ξ0 in the dormant and working
vacation period (resp. ξ1 in the busy period). Failed machine leaves the queue with probability α ,
he can return to the system with probability 1−α .

5. The triadic policy:

• It takes the systemic bellow:

� When the queue of machines waiting for service reaches N, one server will immediately
begin the busy period.
� After some time, if the queue of machines waiting for service reaches surpasses level M

(M > N), the second server becomes operational.
� When the total number of machines in the system drops to Q (Q < N), and both servers

are actively serving, the server that has just finished servicing becomes inactive.

We define a policy denoted as the triadic (0,Q,N,M) policy, where Q, N, and M serve as key
parameters. Additionally, when the system experiences a complete depletion of machines
while one server remains active, all servers enter a working vacation period denoted as (WV ).
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• Within a WV period, one of the servers attends to incoming machines at a rate typically
lower than the regular service rate. Upon completing the vacation, if the system size is N,
both servers switches to a normal busy period, operating under a triadic policy. However, if
the system size falls short of N, they embark on another WV cycle, repeating this process
until the system reaches size N by the end of the vacation period. This policy is referred to
as the multiple working vacation (MWV ) policy.
• In a single working vacation (SWV ) policy, servers take precisely one WV when the system

becomes empty. If there are at least N machines remaining at the end of the vacation period,
both servers transition to a regular busy period under a triadic policy. Otherwise, they remain
idle in the system, awaiting the arrival of N machines rather than initiating another WV .

6. We consider vacation durations, assuming they follow an exponential distribution with rates φ .
Our approach combines the analysis of SWV and MWV models. To facilitate this, we introduce an
indicator function denoted by γ , where

γ =

{
0, for the MWV results,
1, for the SWV results.

All parameters are respectively independent.
Before continuing with the analysis, we briefly summarize the assumptions and notations used in our

queueing model:
L System capacity (Number of operating machines)
M,N and Q Threshold machines values (M > N > Q)
λ Rate by which the arriving failed machines joins the system
µ Rate of service in the regular busy periods
µv Rate of service in working vacation period
ξi, i = 0;1 Impatience time rate of failed machines
φ Vacation time rate of server
1−βi Balking probability of failed machines
α Reneging probability of failed machines from the queue

We also denote that for 0≤ i≤ L:

λi = (L− i)λβ i,

ζm,i = iαξm, m = {0,1}.

3 Steady-state analysis

We can define the Quasi-Birth-and-Death process of {N(t),J(t)} with the state space Ω , where,

Ω = {(0,0)∪ (n, j) : 0≤ n≤ L, j = {0,1,2,3}},

N(t) ≡ Number of customers in the system at time t, and

J(t) =


0, if the servers in WV period,
1, if one server is active during regular busy period,
2, if both servers are active during regular busy period,
3, if both servers are dormant.

Figure 1 represents the state-transition diagram for the queueing model.
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Figure 1: State-transition diagram.

3.1 Balance equations

The balance equations of the model are:
For J(t) = 0:

(λ0 + γφ)P0,0 = µvP0,1 +µP1,1, n = 0, (1)

[λn +µv +ζ0,n−1 + γφ ]P0,n = λn−1P0,n−1 +(µv +ζ0,n)P0,n+1, 1≤ n≤ N−1, (2)

[λN +µv +ζ0,N−1 +φ ]P0,N = λN−1P0,N−1 +(µv +ζ0,N)P0,N+1, n = N, (3)

[λn +µv +ζ0,n−1 +φ ]P0,n = λn−1P0,n−1 +(µv +ζ0,n)P0,n+1, N +1≤ n≤ L−1, (4)

[ζ0,L−1 +µv +φ ]P0,L = λL−1PL−1, n = L. (5)

For J(t) = 1:

[µ +λ1]P1,1 = (µ +ζ1,1)P1,2, n = 1, (6)

[λn +µ +ζ1,n−1]P1,n = λn−1P1,n−1 +(µ +ζ1,n)P1,n+1, 2≤ n≤ Q−1, (7)

[λQ +µ +ζ1,Q−1]P1,Q = λQ−1P1,Q−1 +(µ +ζ1,Q)P1,Q+1 +2µP2,Q+1, n = Q, (8)

[λn +µ +ζ1,n−1]P1,n = λn−1P1,n−1 +(µ +ζ1,n)P1,n+1, Q+1≤ n≤ N−1, (9)

[λn +µ +ζ1,n−1]P1,n = λn−1P1,n−1 +(µ +ζ1,n)P1,n+1 +λN−1P3,N−1, n = N, (10)

[λn +µ +ζ1,n−1]P1,n = λn−1P1,n−1 +(µ +ζ1,n)P1,n+1, N +1≤ n≤M−2, (11)

[λM−1 +µ +ζ1,M−2]P1,M−1 = λM−2P1,M−2, n = M−1. (12)
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For J(t) = 2:

[λQ+1 +2µ]P2,Q+1 = [2µ +ζ1,Q+1]P2,Q+2, n = Q+1, (13)

[λn +2µ +(n−1)αξ1]P2,n = λn−1P2,n−1 +(2µ +ζ1,n)P2,n+1, Q+2≤ n≤ N−1, (14)

[λn +2µ +ζ1,n−1]P2,n = λn−1P2,n−1 +(2µ +ζ1,n)P2,n+1 +φP0,n, N ≤ n≤M−1, (15)

[λM +2µ +ζ1,M−1]P2,M = λM−1P2,M−1 +(2µ +ζ1,M)P2,M+1

+φP0,M +λM−1P1,M−1, n = M, (16)

[λn +2µ +ζ1,n−1]P2,n = λn−1P2,n−1 +(2µ +ζ1,n)P2,n+1 +φP0,n, M+1≤ n≤ L−1, (17)

[2µ +ζ1,L−1]P2,L = λL−1P2,L−1 +φP0,L, n = L. (18)

For J(t) = 3:

λ0P3,0 = φP0,0, n = 0, (19)

[λn +ζ0,n−1]P3,n = λn−1P3,n−1 +ζ0,nP3,n+1 + γφP0,n, 1≤ n≤ N−2, (20)

[λN−1 +ζ0,N−2]P3,N−1 = λN−2P3,N−2 + γφP0,N−1, n = N−1. (21)

To study the MWV and SWV cases, we multiply equations (19)–(21) by the indicator γ . So the dormant
state being represented by the following equations:

λ0P3,0 = γφP0,0, n = 0, (22)

[λn +ζ0,n−1]P3,n = γ[λn−1P3,n−1 +ζ0,nP3,n+1 + γφP0,n], 1≤ n≤ N−2, (23)

[λN−1 +ζ0,N−2]P3,N−1 = γ[λN−2P3,N−2 + γφP0,N−1], n = N−1. (24)

4 Resolution method

In this section, we use the matrix-geometric method to analyze the steady-state behavior of a machine
repair problem incorporating Single Working Vacation (SWV ), Multiple Working Vacation (MWV ),
reneging, balking, and a triadic policy. This method is chosen for its ability to efficiently handle high-
dimensional systems with recursive structures and provide precise steady-state solutions for Markovian
processes. Its strength in computing performance metrics such as queue lengths, server utilization,
and availability rates, even with complex service policies, makes it ideal for our analysis. The matrix-
geometric method’s robustness and adaptability enhance the accuracy and relevance of our study’s find-
ings, offering valuable insights into the behavior and reliability of queueing systems. We define the
steady-state probability vectors π = [π0,π1, . . . ,πL], where

π0 = [P0(0),P3(0)], (25)

π j = [P0( j),P1( j),P3( j)], 1≤ j ≤ Q, (26)

π j = [P0( j),P1( j),P2( j),P3( j)], Q+1≤ j ≤ N−1, (27)

π j = [P0( j),P1( j),P2( j)], N ≤ j ≤M−1, (28)

π j = [P0( j),P2( j)], M ≤ j ≤ L. (29)
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4.1 Matrix-geometric representations

Now, we employ the matrix-geometric method to derive the obvious iterative expression for the steady-
state probability vectors. The balance equations (1)–(24) can be written in the following matrix form:

πQ = 0, (30)

where Q is the infinitesimal generator which can be written as:

Q =



A0 B0
C0 A1 B1

C1 A2 B2
C2 A3 B3

. . . . . . . . .
. . . . . . . . .

CL−2 AL−2 BL−2
CL−1 AL−1 BL−1

CL AL


. (31)

To formulate the set of transition matrices for the suggested model, starting with the notations below:


νm,i = λi +ζm,i−1, m = {0,1},
ηi =−diag([λi +2µ +ζ1,i−1,0]) ,
ϖi =−diag([λi +µv +ζ0,i−1 +φ ,λi +µ +ζ1,i−1]) .

The sub-transition matrices B0,A0,C1, . . . ,BL−1,AL,CL of infinitesimal generator Q (see, equation (31)),
are represented as follows:

A0 =−B0,

Ai =


−[ν0,i + γφ +µv] 0 0 γφ

0 −[ν1,i +µ] 0 0
0 0 0 0
0 0 0 −ν0,i

 , i = 1, . . . ,Q,

Ai =


−[ν0,i + γφ +µv] 0 0 γφ

0 −[ν1,i +µ] 0 0
0 0 −[ν1,i +2µ] 0
0 0 0 −ν0,i

 , i = Q+1, . . . ,N−1,

Ai =

[
ϖ i diag([φ ,0])

O2×2 ηi

]
4×4

, i = N, . . . ,M−1,

Ai =

[
−diag([λi +µv +ζ0,i−1 +φ ,0]) diag([φ ,0])

O2×2 ηi

]
4×4

, i = M, . . . ,L,
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B0 = diag([λ0,0,0,λ0])4×4 , i = 0,

Bi = diag([λi,λi,0,λi])4×4 , i = 1, . . . ,Q,

Bi = diag([λi,λi,λi,λi])4×4 , i = Q+1, . . . ,N−2,

Bi = diag([λi,λi,λi,0])4×4 , i = N−1, . . . ,M−2,

Bi = diag([λi,0,λi,0])4×4 , i = M−1, . . . ,L−1,

C1 = [µv,µ,0,0]
T
4×1 , i = 1,

Ci = diag([µv +ζ0,i−1,µ +ζ1,i−1,0,ζ0,i−1])4×4 , i = 2, . . . ,Q,

CQ+1 = diag([µv +ζ0,Q,µ +ζ1,Q,2µ,ζ0,Q])4×4 , i = Q+1,

Ci =

[
diag([µv +ζ0,i−1,µ +ζ1,i−1]) diag([φ ,0])

O2×2 diag([2µ +ζ1,i−1,0])

]
4×4

, i = N, . . . ,M−1,

Ci =

[
diag([µv +ζ0,i−1,0]) diag([φ ,0])

O2×2 diag([2µ +ζ1,i−1,0])

]
4×4

, i = M, . . . ,L.

4.2 Steady-state probabilities

The steady-state probabilities can be determined by solving equations (1)–(24) using the matrix-geometric
method recursively as follows:
Starting with equation (30), we have

π0A0 +π1C1 = 0,
π0B0 +π1A1 +π2C2 = 0,

...
πL−2BL−2 +πL−1AL−1 +πLCL = 0,
πL−1BL−1 +πLAL = 0.

(32)

Using system of equations (32), we obtain the general term as:

π0A0 +π1C1 = 0, (33)

πi−1Bi−1 +πiAi +πi+1Ci+1 = 0, 1≤ i≤ L−1, (34)

πL−1BL−1 +πLAL = 0. (35)

Using equation (35), we get recursively πL:

πL = πL−1BL−1(AL)
−1 = πL−1ψL, (36)

where ψL = BL−1(AL)
−1, i = L−1.

Combining (34) and (36), we obtain

πL−1 = πL−2(−BL−1)(AL +ψLCL)
−1 = πL−2ψL−1,

where ψL−1 = (−BL−1)(AL +ψLCL)
−1.

Recursively, we obtain π1:

π1 = π0ψ1, where ψ1 = (−B0)(A1 +ψ2C2)
−1.
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Next, from equation (33), we get:
π0(A0 +ψ1C1) = 0.

To obtain π0, we have to solve the equation:

π0(A0 +(−B0)(A1 +ψ2C2)
−1C1) = 0.

Then, we can obtain the general expression of πi based on ψi, 1≤ i≤ L:

πL = πL−1ψL = · · ·= π0(ψ1ψ2ψ3 . . .ψL) = π0

L

∏
i=1

ψi,

where ψi =

{
(−Bi−1)[Ai +(ψi+1Ci+1)]

−1, 1≤ i≤ L−1,
(−Bi−1)(Ai)

−1, i = L.

After obtaining π0,π1, . . . ,πL, the normalization equation gives

L

∑
i=0

πe4 = 1,

π0

[
e4 +

L

∑
i=1

(
i

∏
r=1

ψr

)
e4

]
= 1, where e4 = (1,1,1,1)t .

5 Performance measures

In this section, we obtain different performance measures and reliability indices, which are presented in
what follows.

1. The expected number of failed machines in the system:

E[N] =
L

∑
n=0

nπ0,n +
M−1

∑
n=1

nπ1,n +
L

∑
n=Q+1

nπ2,n + γ

N−1

∑
n=1

nπ3,n.

2. The expected number of operating machines in the system:

E[OP] = L−E(N).

3. The expected number to have only one server is busy during the WV period:

E[B0] =
L

∑
i=0

π0,n. (37)

4. The expected number to have only one server is busy during the regular busy period:

E[B1] =
M−1

∑
i=1

π1,n. (38)
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5. The expected number to have both servers are busy during the regular busy period:

E[B2] = 2
L

∑
i=Q+1

π2,n. (39)

6. The expected number to have only one server is busy server during the dormant period:

E[B3] = γ

N−1

∑
i=0

π3,n. (40)

7. The expected queue length:

Eq =
L

∑
i=1

(n−1)π0,n +
M−1

∑
i=1

(n−1)π1,n +
L

∑
i=Q+1

(n−2)π2,n + γ

N−1

∑
i=1

(n−1)π3,n. (41)

8. The expected number of idle servers in the system:

E[I] = 2π0,0 +
L

∑
i=1

π0,n +
M−1

∑
i=1

π1,n +2γ

N−1

∑
i=1

π3,n. (42)

9. Machine availability:

AV =
E[OP]

L
. (43)

10. Operative utilization (the fraction of busy servers):

BS =
E[B0]+E[B1]+E[B2]+E[B3]

2
. (44)

11. The average balking rate:

BR =
L

∑
i=1

(n−1)λ (1−bn)π0,n +
M−1

∑
i=1

(n−1)λ (1−bn)π2,n

+
L

∑
i=Q+1

(n−2)λ (1−bn)π2,n + γ

N−1

∑
i=1

(n−1)λ (1−bn)π3,n. (45)

12. The average reneging rate:

AR = ξ0

L

∑
i=1

(n−1)π0,n +ξ1

M−1

∑
i=1

(n−1)π1,n

+ξ1

L

∑
i=Q+1

(n−2)π2,n + γξ0

N−1

∑
i=1

(n−1)π3,n. (46)

13. The average customer loss rate:

LR = BR+AR. (47)
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6 Special cases

Now, we show some particular cases of the analyzed machine repair model:

Cases Vacation
type

Authors Models Resolution
method

φ → ∞, µ = µv, ξ0 = ξ1 = 0,
βi = 1 α = 1 and L = ∞

No vaca-
tion

Liou et al. [13] M/M/2 with
triadic policy

Recursive
method

γ = 1, Q = N = 1, M → ∞,
ξ0 = ξ1 = 0, βi = 1 and α = 1

SWV pol-
icy

He et al. [4] M/M/1 queue Q-matrix
method

γ = 0, ξ0 = ξ1 = 1 and customers
may be impatient before the ser-
vice begins

MWV
policy

Sahrma et al.
[17]

M/M/2 with
triadic policy

Recursive
method

γ = 0 and ξ0 = ξ1 MWV
policy

Ketema [8] M/M/2 with
triadic policy

Recursive
method

γ = 0, ξ0 = ξ1 = 0, βi = 1 and
α = 1

MWV
policy

Ketema et al.
[9]

M/M/2 with
triadic policy

Recursive
method

γ = 0, ξ0 = ξ1 = 0, βi = 1, α = 1,
Q = 1, M = ∞, L = ∞, system
without repairable machines

MWV
policy

Wang et al. [19] M/M/1 with N-
policy

Recursive
method

7 Numerical results

We present the numerical outcomes to investigate how different parameters impact system performance.
To perform the computations, we have implemented the matrix-geometric method, using R-software.
These computations allow us to determine the system’s performance indices. We fix arbitrary some
system parameters as: λ = 1.9, µ = 2, µv = 1.5, φ = 2, ξ0 = 2.5 and ξ1 = 1.
In what follows, we provide interpretations of how various parameters in our model affect the system’s
performance.

• Figure 2 (resp. Figure 3) suggests that a higher rate of machine failures (λ ) results in more ma-
chines reneging (resp. balking). It emphasizes that as customer demand increases, reneging and
balking also rise. We observe that the MWV case is more affected.

• Figure 4 (resp. Figure 5) indicates that the rise in Eq is a direct consequence of the increased
machine failure rate λ . Furthermore, an increase in λ leads to a longer queue, as depicted. This
increasing rate also results in more customer loss, as shown in Figure 9.

• Figure 6 indicates that a higher balking rate (β ) results in fewer machines balking (resp. reneg-
ing). A high customer strength in joining the queue may provoke queued failed machines to leave
without service.

• Figure 7 suggests that more frequent vacations (φ ) result in fewer busy servers and a lower likeli-
hood of a server being on a working vacation. When the server rarely switches to vacation mode,
customers may not become impatient or renege, leading to a lower mean number of lost customers
due to the absence of reneging.
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• A higher reneging rate (α) leads to more machines reneging, especially when ξ0 or ξ1 are high, as
shown in Figures 10–11. This increase in α also results in a longer queue and more customer loss
due to more machines joining and leaving the queue (see Figures 8–9).

• Figure 12 indicates that a faster service rate (µ) results in fewer idle servers. If α is high, more
machines may decide to leave the queue before being serviced. This can lead to a decrease in
queue length and customer loss (see Figure 13), as there are fewer machines in the queue and
fewer machines leaving without service.

7.1 Cost profit analysis

In this subsection, we investigate the changes on the optimum values of µ∗v via the system parameters on
the expected cost. To this aim, we fix for:

- SWV results: Ci = 2, C0 = 5, C1 = 10, C2 = 25, Cu = 3, and Cv = 15,

- MWV results: Ci = 20, C0 = 50, C1 = 10, C2 = 25, Cu = 80, and Cv = 15, where

Ci ≡ Cost per unit time of idle server in the system.

C0 ≡ Cost per unit time of one busy server during WV .

C1 ≡ Cost per unit time of one busy server during the regular busy period.

C2 ≡ Cost per unit time of two busy servers during the regular busy period.

Cu ≡ Cost for using µ as a service rate.

Cv ≡ Cost for using µv as a service rate.

By linking this set of cost elements to the performance measures, the total expected cost function is
expressed as:

F(µv) = E[I]Ci +E[B0]C0 +E[B1]C1 +E[B2]C2 +µCu +µvCc. (48)

The set of system parameters are fixed as follows: λ = 0.7, µ = 2.5, ξ0 = 2.5, ξ1 = 1.5, β = 0.2, α = 0.7,
φ = 1.5, Q = 5, N = 13 and M = 18.

7.2 The QFS method

In this section, we focus on determining the optimal service rate during vacation periods (µv) to mini-
mize the expected cost (F) in a complex queueing system. Due to the intricate nature of the cost function,
we utilize QFS method to tackle this optimization problem. The QFS method is highly regarded for its
robustness in queueing system optimization, offering several key advantages. It delivers efficient, accu-
rate, and flexible solutions by effectively approximating and minimizing complex cost functions. This
approach not only facilitates precise cost optimization but also enhances decision-making in practical
applications. Its versatility in adapting to various parameters and scenarios makes it particularly effec-
tive for addressing diverse and challenging queueing issues, ensuring improved resource management
and operational efficiency. By applying the QFS method, our study makes a significant contribution to
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Figure 2: The effect of λ vs. AR, for β = 0.6, α =
0.1, φ = 2, L = 10, M = 8, N = 5 and Q = 2.
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Figure 3: The effect of λ vs. BR, for β = 0.6, α =
0.1, L = 10, M = 8, N = 5 and Q = 2.
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optimizing system performance and cost management in real-world contexts. For this analysis, all sys-
tem parameters are assumed to be fixed, with the service rate during vacation periods (µv) being the only
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variable under control, so we define:

xq =
1
2

F(xl)((xm)2− (xu)2)+F(xm)((xu)2− (xl)2)+F(xu)((xl)2− (xm)2)

F(xl)(xm− xu)+F(xm)(xu− xl)+F(xu)(xl− xm)
,
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where, xl,xu and xm are 3-point pattern one of this pattern are replaced with xq.
After applying the QFS method, we obtain the numerical results of the optimum value of µv, and the

optimum cost F∗, which are represented in tables and figures below: From Tables 1–5, we can draw
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Figure 14: The optimum µ∗v for different values of
ξ0 under MWV .
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Figure 15: The optimum µ∗v for different values of
ξ1 under SWV .

Table 1: The expected optimum µ∗v and F∗ corresponding to different values of ξ0.

ξ0 = 2.5 ξ0 = 2.65 ξ0 = 2.8
SWV MWV SWV MWV SWV MWV

µ∗v 0.931 0.687 1.678 0.709 2.36 0.723
F∗ 110.3456 243.9955 153.8345 204.7978 212.2325 243.5766

Table 2: The expected optimum µ∗v and F∗ for different values of ξ1.

ξ1 = 0.5 ξ1 = 1 ξ1 = 1.5
SWV MWV SWV MWV SWV MWV

µ∗v 1.365 0.7209 1.366 0.7315 1.367 0.7320
F∗ 134.4433 246.0976 133.3141 244.0929 132.64 242.8901

Table 3: The expected optimum µ∗v and F∗ for different values of µ .

µ = 2.5 µ = 3 µ = 3.5
SWV MWV SWV MWV SWV MWV

µ∗v 1.365 0.7741 1.367 0.7743 1.370 0.7744
F∗ 132.6503 243.5736 133.9659 283.2434 135.3053 322.9609

Table 4: The expected optimum µ∗v and F∗ for different values of φ .

φ = 0.2 φ = 0.4 φ = 0.5
SWV MWV SWV MWV SWV MWV

µ∗v 1.36512 0.7647 1.3451 0.7646 1.2933 0.7644
F∗ 133.4822 248.2272 130.6013 248.2169 121.5498 248.2117

the following conclusions:
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Figure 17: The optimum µ∗v for different values of
L under MWV .

Table 5: The expected optimum µ∗v and F∗ for different values of L.

L = 21 L = 23 L = 25
SWV MWV SWV MWV SWV MWV

µ∗v 1.4225 0.7838 1.0762 0.7741 0.75216 0.7625
F∗ 335.656 243.8514 305.5713 243.5737 273.924 243.3177

– As shown in Table 1 (and similarly in Table 2), as ξ0 (or ξ1) increases, both the optimum expected
cost F∗ and the optimum values µ∗v increase significantly. This is due to the increased number of
failed machines leaving the queue without service during both the working vacation and dormant
periods. Essentially, the system becomes less efficient as more machines leave without service,
leading to higher costs.

– Table 3 reveals that an increase in the service rate µ results in a decrease in the values of the
service rate µ∗v . However, the expected cost values F∗ increase in response to this. This indicates
that while faster service rates can reduce the need for service during vacation periods, they also
increase operational costs.

– According to Table 4, an increase in the vacation rate φ leads to a decrease in both the values of
the service rate µ∗v and F∗. This suggests that more frequent vacations can reduce the need for
service during these periods and lower operational costs.

– Table 5 demonstrates that as L (the number of operating machines) increases, both the optimum
expected cost F∗ and the optimum value µ∗v decrease. This is because, with more operating ma-
chines, the load on each machine decreases, reducing the likelihood of failure and thus the cost of
repairs.

8 Conclusion and future perspectives

In this paper, we analyzed a machine repair queueing model with a triadic policy (0,Q,N,M), which
incorporates features such as balking (machines choosing not to join the queue), reneging (machines
leaving the queue before service), and two types of working vacation policies: Single Working Vacation
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and Multiple Working Vacation. The primary aim of the triadic policy in the design and analysis of
machining systems is to mitigate congestion issues, ensure optimal reliability of repairmen in industrial,
manufacturing, and production sectors, and maintain cost efficiency. To evaluate the steady-state prob-
abilities of the queueing system, we employed the matrix-geometric method, specifically leveraging its
recursive approach. We derived and presented several key performance measures and reliability indices,
including the expected number of failed and operating machines, machine availability, queue length, and
various rates of balking, reneging, and customer loss. Using the matrix-geometric method implemented
in R software, we accurately calculated these metrics and applied the Quadratic Fit Search method to
determine the optimal service rate during vacation periods, to minimize the expected cost. The results,
detailed through comprehensive tables and figures, highlighted how variations in the service rate impact
system performance and cost.

The results obtained can be used as performance assessment measures for the system in question,
applicable to various congestion scenarios encountered in a range of practical domains, such as customer
service centers, communication and network systems, production systems, and science and technology.
Based on the steady-state analysis, there is potential for extending the current model to include multi-
heterogeneous repairmen, encompassing both fully and partially unreliable repairmen, along with reten-
tion and feedback policies. Currently, this study has not undertaken a transient analysis, which represents
the next phase of research.
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