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Abstract. This paper presents an improvement of the inertial subgradient extragradient algorithm by
using two non-monotonic step size criterion for pseudomonotone equilibrium problems in real Hilbert
spaces. A strong convergence theorem of the suggested algorithm is proved under suitable assumptions
on the equilibrium bifunction and the control parameters. Finally, application and numerical example are
given, which demonstrate the advantages and efficiency of the proposed algorithm.
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1 Introduction

Consider the equilibrium problem ( EPb) stated by Blum and Oettli [14]:{
find v ∈S such that
B(v, t)≥ 0,∀t ∈S ,

(1)

where B is a bifunction : S ×S → R and S is a nonempty, closed and convex subset of a real Hilbert
space H . The problem (1 ) also called as the Ky Fan inequality problem in preliminary studies [4].
The EPb is a fundamental and crucial concept in various disciplines, providing a unifying framework
for a wide range of theoretical and applied problems such as economics, game theory, optimization the-
ory, fixed point problems and variational inequality problems (see e.g., [2, 9, 10]). Many authors have
considered equilibrium problems and their generalizations, such as invex equilibrium, hemiequilibrium
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problems, and quasi-equilibrium problems (see, for instance, [3, 11, 15, 16]). They have also paid signif-
icant attention to the study of the EPb, not only from a theoretical perspective, focusing on the existence
and/or uniqueness of solutions (see, e.g., [8]), but also to developing iterative methods and improving
their convergence analysis in Hilbert spaces. Some of these methods involve the proximal point method
( [5, 13]), extragradient methods [12, 23] and subgradient extragradient methods ( [1, 7, 19, 20]).
In recent years, the inertial method (see e.g., [6, 21]) has gained significant importance in solving EPb
due to its ability to accelerate convergence rates and improve computational efficiency. This method
incorporates inertial terms to enhance the iterative process.
D.V. Thong et al [24] proposed a new iterative scheme with monotonically decreasing step sizes {ρm} to
solve the EPb as follows:

sm = vm + γm(vm− vm−1),

tm = argmin
t∈S

(
ρmB(sm, t)+ 1

2 ‖t− sm‖2
)
= JρmB(sm,.)(sm),

zm = argmin
t∈Tm

(
ρmB(tm, t)+ 1

2 ‖t− sm‖2
)
= JρmB(sm,.)(tm),

vm+1 = (1− δm−θm)vm +θmzm,

where ρ1 > 0, γ > 0, ζ ∈ (0,1), θm ⊂ (1−δm) , lim
m→∞

δm = 0 and
∞

∑
m=1

δm = ∞ and 0≤ γm ≤ γ̃m such that

γ̃m =

{
min

{
γ

2 ,
εm

‖vm−vm−1‖

}
if vm 6= vm−1,

γ

2 else.

Also Tm = {t ∈H : 〈sm−ρmum− tm, t− tm〉 ≤ 0} , um ∈ ∂B(sm, tm) and

ρm+1 =

min
{

ζ(‖sm−tm‖2+‖vm+1−tm‖2)
2M , ρm

}
if M > 0,

ρm otherwise,
(2)

where M = B(sm,vm+1)−B(sm, tm)−B(tm,vm+1). Under several conditions, the authors showed that the
sequences strongly converge to some solution of the EPb. The solution set of the ( EPb) represent by
EQ(B, S ) (see [24]).

Based on the works mentioned above, the purpose of this paper is to suggest a new modified subgra-
dient extragradient algorithm strongly convergent under some appropriate conditions, without the need of
the Lipschitz constants or line-search technique. Rather, we use two non-monotonic step sizes criterion
allowing them to work well. Our results generalize and extend some related results in the literature.

The rest of this paper is organized as follows. Section 2 provides key definitions and related lemmas
used throughout the paper. Section 3 introduces an iterative algorithm for solving problem (1) and
examines its convergence. Section 4 presents the application of the main results to variational inequality
problems. Section 5 includes numerical experiments to illustrate the computational performance of the
proposed algorithm on a test problem and compare it with other algorithms. Finally, Section 6 concludes
the paper with a brief summary.
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2 Basic definitions and lemmas

Throughout this paper, let S be a nonempty, closed and convex subset of a real Hilbert space H . The
inner product is denoted by 〈·, ·〉 and the Euclidean norm ‖.‖. The weak convergence and strong conver-
gence of vm to v are represented by ⇀ and −→, respectively. For every t ∈H , the metric projection
PS (t) is defined by

PS (t) = argmin
s∈S

‖t− s‖ .

Definition 1. A subset of S at t ∈S defined by

NS (t) := {t∗ ∈ H : < t∗,s− t >≤ 0, ∀s ∈S } ,

is called the normal cone.

Definition 2. The subdifferential of convex function h : S → R at t ∈S is defined by

∂h(t) := {u ∈ H : h(s)−h(t)≥< u,s− t >, ∀s ∈S } .

Definition 3. The proximal operator Jτh of a proper, convex and lower semicontinuous function h : S →
R , with a parameter τ > 0 at t ∈H is given by

Jτh(t) := argmin
s∈S

(
τh(s)+

1
2
‖s− t‖2

)
, t ∈H .

Lemma 1 ([25, 27]). Suppose S is a nonempty convex subset of H . Consider h : S → R∪{+∞} as a
convex function that is subdifferentiable and lower semicontinuous. Then, t∗ is a solution to the following
convex optimization problem:

min{h(t) : t ∈S } ,

if and only if

0 ∈ ∂h(t∗)+NS (t∗),

where ∂h(t∗), NS (t∗) are the subdifferential of h and the normal cone of S at t∗, respectively.

Lemma 2 ([17]). Let {am} ,{bm} and {cm} be positive sequences such that

am+1 ≤ ambm + cm, ∀m ∈ N.

If {bm} ⊂ [1,∞),
∞

∑
m=1

(bm−1)< ∞ and
∞

∑
m=1

cm < ∞, then lim
m→∞

am exists.

Lemma 3 ([28]). Let {Jm} ⊂ [0,+∞) and {Lm} ⊂ R be sequences satisfying

Jm+1 ≤ (1− δm)Jm + δmLm, ∀m ∈ N,

where { δm} ⊂ (0,1),
+∞

∑
m=1

δm =+∞. If limsup
m→+∞

Lm ≤ 0 for every subsequence {Jmk} of {Jm} such that

liminf
k→∞

(Jmk+1− Jmk)≥ 0,

then lim
m→∞

Jm = 0.
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3 Algorithm and convergence analysis

In this section, we propose a modified subgradient extragradient algorithm with two non-monotonic step
size criterion for solving EPb (1). Let B be a bifunction: H × H → R with EQ(B, S ) denotes the
solution set of an equilibrium problem over the set S . Denote by −→ and ⇀ the weak convergence and
strong convergence, respectively. For the strong convergence theorem assume the following conditions.

(H1) The bifunction B is pseudomonotone on S , i.e.,

B(v, t)≥ 0⇒ B(t,v)≤ 0, ∀v, t ∈S ,

(H2) B is Lipschitz type continuous on H with two positive constants L1 and L2, i.e.,

B(v, t)+B(t,w)≥ B(v,w)−L1 ‖v− t‖2−L2 ‖t−w‖2 , ∀t,v,w ∈S ,

(H3) B(v, ·) is convex and subdifferentiable on H for each fixed v ∈S ,

(H4) limsup
m→∞

B(vm, t)≤ B(v, t), for every weakly convergent {vm} ⊂ S to v ∈H and t ∈S ,

(H5) let {εm} be a positive sequence such that lim
m→∞

εm
δm

= 0, where {δm}⊂ (0,1) satisfies lim
m→∞

δm = 0 and
∞

∑
m=1

δm = ∞. Also let {σm} ⊂ [0,∞[ and {ωm} ⊂ [1,∞[ such that
∞

∑
m=1

σm < ∞ and
∞

∑
m=1

(ωm−1)< ∞.

Remark 1. From (H1) and (H2), we have B(v,v) = 0, ∀v ∈S (see [26]).

The solution set EQ(B, S ) of EPb (1) is convex and closed under the conditions (H1)-(H4) ( [23]). We
propose the following algorithm for solving EPb (1).

Remark 2. The observation presented below was extracted from Algorithm 1.

• If we choose (δm = 0, γ = 2θ , σm = 0) or (δm = 0, γm = 0, ρm = ρ , µ = 1), the algorithm reduces
to the Algorithm 3.4 in [22] and the standard extragradient algorithm in [23], respectively.

• Notice that, the sequence {ρm} defined by (4) is non-monotonic step size, independent to the Lips-
chitz constants and does not need any Armijo line-search technique.

Remark 3. From the expression (3), is apparent that lim
m→+∞

γm

δm
‖vm− vm−1‖= 0. Indeed, γm ≤ εm

‖vm−vm−1‖

and lim
m→∞

εm
δm

= 0, implies

lim
m→∞

γm

δm
‖vm− vm−1‖ ≤ lim

m→∞

εm

δm
‖vm− vm−1‖= 0.

In order to establish the strong convergence of Algorithm 1, our initial steps involves proving the
following basic results.

Lemma 4. The sequence {ρm} created by (4) is well defined and lim
m→+∞

ρm exists.
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Algorithm 1

Initialization: Given v0,v1 ∈S , ρ1 > 0, γ > 0, ζ ∈ (0,1) and µ ∈
(

0,
2

(1+ζ )

)
. Select the

sequences { δm} ,{σm} and {ωm} to satisfy (H5).
Step 1: Compute

sm = (1−δm)(vm + γm(vm− vm−1)),

where 0≤ γm ≤ γ̃m such that

γ̃m =

{
min

{
γ, εm
‖vm−vm−1‖

}
if vm 6= vm−1,

γ else,
(3)

Step 2: Compute

tm = argmin
t∈S

(
ρmB(sm, t)+

1
2
‖t− sm‖2

)
= JρmB(sm,·)(sm).

If sm = tm, then stop, and tm is a solution. Otherwise, go to next step.
Step 3:

vm+1 = argmin
t∈Tm

(
µρmB(tm, t)+

1
2
‖t− sm‖2

)
= JµρmB(tm,·)(sm),

where the half-space Tm is given by

Tm = {t ∈H : 〈sm−ρmum− tm, t− tm〉 ≤ 0} ,um ∈ ∂B(sm, tm),

and

ρm+1 =

 min
{

ζ(‖sm−tm‖2+‖vm+1−tm‖2)
2M ,ωmρm +σm

}
if M > 0,

ωmρm +σm otherwise,
(4)

where M = B(sm,vm+1)−B(sm, tm)−B(tm,vm+1).

Proof. Since B fulfills (H2), it follows that

ζ

(
‖sm− tm‖2 +‖vm+1− tm‖2

)
2(B(sm,vm+1)−B(sm, tm)−B(tm,vm+1))

≥
ζ

(
‖sm− tm‖2 +‖vm+1− tm‖2

)
2
(

L1 ‖sm− tm‖2 +L2 ‖vm+1− tm‖2
)

≥ ζ

2max{L1,L2}
.

This, in addition to the expression (4), gives ρm+1 ≥ min
{

ζ

2max{L1,L2} ,ρm

}
. Moreover,

ρm ≥min
{

ζ

2max{L1,L2} ,ρ1

}
. In contrast, it becomes clear from expression (4) that

ρm+1 ≤ ωmρm +σm, ∀m≥ 1.

It follows from condition (H5) and Lemma 2 that lim
m→+∞

ρm exists. Since min
{

ζ

2max{L1,L2} ,ρ1

}
is the
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lower boundary of {ρm}, then lim
m→+∞

ρm := ρ > 0.

Lemma 5. Let {sm}, {tm} and {vm} represent the sequences generated by Algorithm 1. Then

(i) < sm− tm, t− tm >≤ ρm (B(sm, t)−B(sm, tm)) , ∀t ∈S ,

(ii) if tm = sm, then tm ∈ EQ(B, S ),

(iii) for all r ∈ EQ(B, S ), the following inequality is holds:

‖vm+1− r‖2 ≤ ‖sm− r‖2−µ
∗
m

(
‖vm+1− tm‖2 +‖sm− tm‖2

)
, (5)

where

µ
∗
m =


µ

(
1− ζ ρm

ρm+1

)
if µ ∈ (0,1),

2−µ− ζ µρm
ρm+1

if µ ∈ [1,
2

(1+ζ )
).

Proof. (i) According to Lemma 1 and tm = JρmB(sm,.)(sm), we have

0 ∈ ∂

(
ρmB(sm, t)+

1
2
‖t− sm‖2

)
(tm)+NS (tm).

Then, there exists um ∈ ∂B(sm, tm) and ϑ ∈ NS (tm), such that

ρmum + tm− sm +ϑ = 0.

By the definition of NS , we get

< sm− tm, t− tm >= ρm < um, t− tm >+< ϑ , t− tm >≤ ρm < um, t− tm >, ∀t ∈S .

Since um ∈ ∂B(sm, tm), we have

< um, t− tm >≤ B(sm, t)−B(sm, tm), ∀t ∈S .

From the last two inequalities, we obtain

< sm− tm, t− tm >≤ ρm (B(tm, t)−B(sm, tm)) , ∀t ∈S . (6)

(ii) If tm = sm, then from inequalities (6) and ρm > 0, we find B(tm, t) ≥ 0, for all t ∈ S . Thus tm ∈
EQ(B, S ).

(iii) We have vm+1 = JµρmB(tm,.)(sm), as similar arguments to the proof of (i), we obtain

< sm− vm+1, t− vm+1 >≤ µρm (B(tm, t)−B(tm,vm+1)) , ∀t ∈Tm. (7)
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In particular, substituting t = vm+1 in (6) and t = r in (7 ), we get{
〈sm− tm,vm+1− tm〉 ≤ ρm (B(sm,vm+1)−B(sm, tm)) ,
〈sm− vm+1,r− vm+1〉 ≤ µρm (B(tm,r)−B(tm,vm+1)) .

So, from the pseudo monotonicity of B, we have B(r, tm)≥ 0. Thus B(tm,r)≤ 0. Then

2µρm (B(sm,vm+1)−B(sm, tm)−B(tm,vm+1))

≥ 2µ < sm− tm,vm+1− tm >+2 < sm− vm+1,r− vm+1 >

≥ µ ‖sm− tm‖2 +µ ‖vm+1− tm‖2−µ ‖vm+1− sm‖2 +‖vm+1− sm‖2

+‖vm+1− r‖2−‖sm− r‖2 .

Therefore,

‖vm+1− r‖2 ≤ ‖sm− r‖2−µ ‖sm− tm‖2−µ ‖vm+1− tm‖2− (1−µ)‖vm+1− sm‖2

+2µρm (B(sm,vm+1)−B(sm, tm)−B(tm,vm+1)) .
(8)

From the definition of ρm, we have

2µρm (B(sm,vm+1)−B(sm, tm)−B(tm,vm+1))≤
µζ ρm

ρm+1

(
‖sm− tm‖2 +‖vm+1− tm‖2

)
. (9)

Substituting (9) into (8), we obtain

‖vm+1− r‖2 ≤ ‖sm− r‖2−µ ‖sm− tm‖2−µ ‖vm+1− tm‖2− (1−µ)‖vm+1− sm‖2

+
µζ ρm

ρm+1

(
‖sm− tm‖2 +‖vm+1− tm‖2

)
≤ ‖sm− r‖2− (1−µ)‖vm+1− sm‖2

−µ

(
1− ζ ρm

ρm+1

)(
‖sm− tm‖2 +‖vm+1− tm‖2

)
. (10)

If µ ∈ (0,1), then

‖vm+1− r‖2 ≤ ‖sm− r‖2−µ

(
1− ζ ρm

ρm+1

)(
‖vm+1− tm‖2 +‖sm− tm‖2

)
.

Note that

‖vm+1− sm‖2 ≤ (‖vm+1− tm‖+‖sm− tm‖)2 ≤ 2
(
‖vm+1− tm‖2 +‖sm− tm‖2

)
,

which yields that

−(1−µ)‖vm+1− sm‖2 ≤−2(1−µ)
(
‖vm+1− tm‖2 +‖sm− tm‖2

)
, ∀µ ≥ 1.

From expression (10), we get

‖vm+1− r‖2 ≤ ‖sm− r‖2−
(

2−µ− ζ µρm

ρm+1

)(
‖vm+1− tm‖2 +‖sm− tm‖2

)
, ∀µ ≥ 1.

This completes the proof.
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Remark 4. It easy to cheek that lim
m→∞

µ∗m > 0. Using Lemma 4, we have

lim
m→∞

µ
∗
m =

µ (1−ζ ) if µ ∈ (0,1),

2−µ (1+ζ ) if µ ∈ [1,
2

(1+ζ )
).

Moreover, there exists m0 ≥ 0 such that µ∗m > 0 for all m≥ m0.

Lemma 6. The sequence {vm} generated by Algorithm 1 is bounded. Consequently, {sm} and {tm} are
bounded.

Proof. From the definition of sm, we have

‖sm− r‖= ‖(1−δm)(vm + γm(vm− vm−1))− r‖
= ‖(1−δm)(vm− r)+(1−δm)γm(vm− vm−1)− δmr‖
≤ (1−δm)‖vm− r‖+(1−δm)γm ‖vm− vm−1‖+ δm ‖r‖
≤ (1−δm)‖vm− r‖+ δmI1, (11)

where
(1− δm)

γm

δm
‖vm− vm−1‖+‖r‖ ≤ I1.

From (5), we obtain
‖vm+1− r‖2 ≤ ‖sm− r‖2 ,∀m ∈ N (12)

Using (11), then

‖vm+1− r‖ ≤ (1−δm)‖vm− r‖+ δmI1

≤max{‖vm− r‖ , I1} (∀m≥ m0)

...

≤max{‖v0− r‖ , I1} .

Thus, we conclude that {‖vm− r‖} is bounded sequence which implies that {vm} is bounded. Hence
{sm} and {tm} are also bounded.

Theorem 1. Suppose that the the conditions (H1)-(H5) hold and EQ(B, S ) 6= /0. Then the sequence
{vm} generated by Algorithm 1 converges in norm to r, where ‖r‖ = min{‖q‖ : q ∈ EQ(B, S )}, i.e.,
r = PEQ(B, S )(0).

Proof. First, we show that the sequence {vm} and {sm} generated by Algorithm 1 achieves the following:Jm+1 ≤ (1−δm)Jm + δmLm,∀m≥ m0,

limsup
m→∞

Lm ≤ 0,
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where 
Jm = ‖vm− r‖2 ,

Lm = γm ‖vm− vm−1‖ γm
δm
‖vm− vm−1‖+2(1− δm)‖vm− r‖ γm

δm
‖vm− vm−1‖

+2‖r‖‖sm− vm+1‖+2〈r,r− vm+1〉 .

Indeed, according to the inequality (12) and the definition of sm, we have

‖vm+1− r‖2 ≤ ‖(1−δm)(vm− r)+(1−δm)γm(vm− vm−1)− δmr‖2

= ‖(1−δm)(vm− r)+(1−δm)γm(vm− vm−1)‖2 +‖ δmr‖2

+2 δm 〈−r,sm + r〉+2δm ‖r‖2

≤ (1−δm)
2 ‖vm− r‖2 +(1−δm)

2
γ

2
m ‖vm− vm−1‖2

+2γm(1−δm)
2 ‖vm− r‖‖vm− vm−1‖

+2 δm 〈−r,sm− vm+1〉+2 δm 〈−r,vm+1 + r〉 .

Since δm ⊂ (0,1), for all m≥ m0, the above expression yields that

‖vm+1− r‖2 ≤(1− δm)‖vm− r‖2 + δm[γm ‖vm− vm−1‖
γm

δm
‖vm− vm−1‖

+2(1− δm)‖vm− r‖ γm

δm
‖vm− vm−1‖+2‖r‖‖sm− vm+1‖

+2〈r,r− vm+1〉].

(13)

The last inequality can be written as

Jm+1 ≤ (1− δm)Jm + δmLm,∀m≥ m0.

Due to Lemma 3, suppose that {Jmk} is a subsequence of {Jm} satisfies

liminf
k→∞

(
Jmk+1− Jmk

)
> 0.

Now, we demonstrate that limsup
m→∞

Lm ≤ 0. From (11), we have

‖sm− r‖2 ≤ ‖(1− δm)‖vm− r‖+ δmI1‖2

≤ (1− δm)
2 ‖vm− r‖2 + δ

2
mI2

1 +2I1(1− δm) δm ‖vm− r‖
≤ ‖vm− r‖2 + δm

(
δmI2

1 +2I1(1− δm)‖vm− r‖
)

≤ ‖vm− r‖2 +δmI2, for all m≥ 1 (14)

where I2 = sup
m∈

{(
δmI2

1 +2I1(1− δm)‖vm− r‖
)}

.

It follows from (5) and (14) that

µ
∗
m

(
‖vm+1− tm‖2 +‖sm− tm‖2

)
≤ ‖vm− r‖2−‖vm+1− r‖2 + δmI2,∀m≥ m0. (15)
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From (15), lim
m→∞

δm = 0 and Remark 4, we get

µ
∗
mk

(
‖vmk+1− tmk‖

2 +‖smk − tmk‖
2
)
≤ limsup

k→∞

(
Jmk − Jmk+1

)
+ limsup

k→∞

δmk I2,

≤−liminf
k→∞

(
Jmk+1− Jmk

)
≤ 0.

Then
lim
k→∞

‖vmk+1− tmk‖= 0 and ‖smk − tmk‖= 0. (16)

Consequently,
lim
k→∞

‖vmk+1− smk‖= 0 and lim
k→∞

‖vmk+1− smk‖‖r‖= 0. (17)

Furthermore,

‖vmk − smk‖= ‖(1− δmk)γmk(vmk − vmk−1)− δmvmk‖
≤ ‖(1− δmk)γmk(vmk − vmk−1)‖+‖ δmvmk‖

= δmk

[
(1− δmk)

γmk

δmk

‖vmk − vmk−1‖+‖vmk‖
]
,

then, we deduce that
lim
k→∞

‖vmk − smk‖= 0. (18)

Consequently
lim
k→∞

‖vmk+1− vmk‖= 0. (19)

Next we show that limsup
k→∞

〈r,r− vmk+1〉 = 0. Due to the reflexive property of the Hilbert space H , the

boundedness of {vmk} guarantee the existence of a subsequence
{

vmk j

}
of {vmk} converges weakly to q

as j→ ∞. Moreover
limsup

k→∞

〈r,r− vmk〉= lim
j→∞

〈
r,r− vmk j

〉
= 〈r,r−q〉 . (20)

It follows from (16) and (18) that tmk ⇀ q and smk ⇀ q. By means of tmk = Jρmk B(smk ,·)
(smk), we have

µρmk B(tmk ,vmk+1)+< smk − vmk+1, t− vmk+1 >≤ µρmk B(tmk , t), for t ∈Tm. (21)

From (4), we get

2µρmk B(tmk ,vmk+1)≥ 2µρmk (B(smk ,vmk+1)−B(smk , tmk))

− µζ ρmk

ρmk+1

(
‖smk − tmk‖

2 +‖vmk+1− tmk‖
2
)
, (22)

Substituting (22) into (21), we obtain

µρmk B(tmk , t)≥ µρmk (B(smk ,vmk+1)−B(smk , tmk))−
µζ ρmk

2ρmk+1

(
‖smk − tmk‖

2 +‖vmk+1− tmk‖
2
)

+< smk − vmk+1, t− vmk+1 >, for t ∈Tm.
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Due to µ , ρmk > 0, condition (H4) vmk ⇀ q and (16), we have

0≤ limsup
k→∞

B(tmk , t)≤ B(q, t), ∀t ∈Tm.

Since S ⊂Tm, B(q, t)≥ 0, ∀t ∈S and hence q ∈ EQ(B, S ). By using (20) and the definition of r, we
obtain

lim
k→∞

〈r,r− vmk〉= 〈r,r−q〉 ≤ 0.

This with (19) gives,

limsup
k→∞

〈r,r− vmk+1〉 ≤ limsup
k→∞

〈r,r− vmk〉+ limsup
k→∞

〈r,vmk+1− vmk〉 ≤ 0. (23)

Moreover, from (17), (23) and lim
m→∞

γm
δm
‖vm− vm−1‖= 0, we concludes that

limsup
k→∞

Lmk ≤ 0.

Applying Lemma 3, we obtain lim
m→∞
‖vm− r‖= 0, as desired.

4 Application to variational inequality problem

In this section, we present an application of the strong convergence theorem (Theorem 1) to the varia-
tional inequality problem. Let B(v, t) = 〈Ψ(v), t− v〉 , with Ψ : S →S be an operator. The EPb (1)
turn to variational inequality problem as follows:{

find v ∈S such that
〈Ψ(v), t− v〉 ≥ 0, ∀t ∈S .

(24)

Assume that the solution set of (24) (denoted by V I(Ψ, S )) is nonempty and the operator Ψ satisfies the
following:

(H
′
1) Ψ is pseudomonotone on S , i.e.,

〈Ψ(v), t− v〉 ≥ 0⇒ 〈Ψ(t),v− t〉 ≤ 0, ∀v, t ∈S ,

(H
′
2) Ψ is Lipschitz continuous on H with L > 0, i.e.,

‖Ψ(v)−Ψ(t)‖ ≤ L‖v− t‖ , ∀v, t ∈S ,

(H
′
3) limsup

m→∞

〈Ψ(vm), t− vm〉 ≤ 〈Ψ(v), t− v〉 for every weakly convergent {vm} ⊂ S to v ∈ H and

t ∈S .
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The sequence tm rewritten as

tm = argmin
t∈S

(
ρmB(sm, t)+

1
2
‖t− sm‖2

)
= argmin

t∈S

(
ρm 〈Ψ(sm), t− sm〉+

1
2
‖t− sm‖2

)
= argmin

t∈S

(
1
2
‖t− (sm−ρmΨ(sm))‖2

)
− 1

2
‖ρmΨ(sm)‖2

= PS (sm−ρmΨ(sm)) .

Similarly, vm+1 = PTm (sm−µρmΨ(tm)) .

Corollary 1. Assume that the conditions(H
′
1)− (H

′
3) hold. Let {vm} and {tm} be two sequences created

in the following way:

(i) Given v0,v1 ∈ S , ρ1 > 0, γ > 0 , ζ ∈ (0,1) and µ ∈
(

0,
2

(1+ζ )

)
. Select the sequences { δm} ,

{ωm} and {σm} to satisfy (H5) .

(ii) Compute sm = (1−δm)(vm + γm(vm− vm−1)), where γm is defined in (3).

(iii) Compute {
tm = PS (sm−ρmΨ(sm)) ,

vm+1 = PTm (sm−µρmΨ(sm)) ,

where Tm = {t ∈H : 〈sm−ρmΨ(sm)− tm, t− tm〉 ≤ 0} , and

ρm+1 =

min
{

ζ(‖sm−tm‖2+‖vm+1−tm‖2)
2〈Ψ(sm)−Ψ(tm),vm+1−tm〉 ,ωmρm +σm

}
, if 〈Ψ(sm)−Ψ(tm),vm+1− tm〉> 0,

ωmρm +σm, otherwise.

Then, the sequence {vm} converges in norm to r, for each r ∈V I(Ψ,S ) 6= /0.

5 Numerical illustrations

In this section, we give numerical example to demonstrate the computational efficiency of the proposed
algorithm compared to some related results. All the programs are implemented in MATLAB.

Consider the Nash-Cournot oligopolistic equilibrium model in [23] where the bifunction B is defined
as follows:

B(v, t) = 〈Pv+Qt +q, t− v〉 ,

where q ∈ Rn and P,Q ∈ Rn×n are two matrices of order n such that Q is symmetric positive semidef-
inite and Q−P is negative semidefinite with the Lipschitz-type constants L1 = L2 =

1
2 ‖Q−P‖ . It can

be checked that all the conditions (H1)-(H4) are satisfied (for more details see [23]). Let n = 5 and the
matrices P and Q (randomly generated) be
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Figure 1: Numerical behavior of the proposed algorithm with different δm.

Q =


1.6 1 0 0 0
1 1.6 0 0 0
0 0 1.5 1 0
0 0 1 1.5 0
0 0 0 0 2

 , P =


3.1 2 0 0 0
2 3.6 0 0 0
0 0 3.5 2 0
0 0 2 3.3 0
0 0 0 0 3

 ,

with q = (1,−2,−1,2,−1)t , and S given by

S := {v ∈ Rn :−5≤ vi ≤ 5, i = 1, ...,5} ,

The initial values v0 and v1 are randomly generated by MATLAB function rand(5,1). We use
the maximum number of iterations 50 as a common stopping criterion for all algorithms and Dm =
‖vm+1− vm‖2 is used to measure the error of the m− th iteration step and CPU to represent the execution
time of all algorithms in seconds. We compare the proposed Algorithms 1 (shortly, Our Alg. 1) with
the Algorithm 3.1 suggested by Tan et al. [22] (shortly, BSJ Alg. 3.1) and the Algorithm 1 introduced
by Panyanak et al. [18] (shortly, BCNN Alg. 1). The control parameters of all algorithms are choose as
follows:

1. (Our Alg. 1): εm = 100
(m+1)2 , δm = 1

20(m+1)2 , σm = 1
(m+100)3 , ωm = 1+ 1

20(m+1)1.1 .

2. (BCNN Alg. 1) in [18]: εm = 100
(m+1)2 , ωm = 1+ 1

20(m+1)1.1 , αm = (1−α)
10 , βm = 1

5m+2 , T (x) = x
5 .

3. (BSJ Alg. 3.1) in [22]: εm = 100
(m+1)2 , αm = 1/(4m+1),βm = 0.5, S(x) = x, ϕ(x) = 0.5x.

We first test the numerical behavior of the proposed algorithm with different parameter δm, as shown
in Fig 1. and Table 1. Finally, the numerical results of all algorithms with different parameters are shown
in Fig. 2-5 and Table 2.
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Table 1: Numerical results of the proposed algorithm with different δm.

Our Algo. 1 Dn CPU

δm =
1

(m+1)2 3.5E−9 1.78

δm =
1

(m+1)1.5 5.91E−8 1.80

δm =
1

(m+1)1.1 6.24E−7 1.59

δm =
1

m+1
1.04E−6 1.62
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Figure 2: Numerical behavior of all algorithms with (γ = 0.4, ζ = 0.5, µ = 1.25, ρ0 = 0.1)
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Figure 3: Numerical behavior of all algorithms with (γ = 0.2, ζ = 0.264, µ = 0.5, ρ0 = 0.36 ).
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Figure 4: Numerical behavior of all algorithms with (γ = 0.2, ζ = 0.5, µ = 0.5, ρ0 = 0.5 ).
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Figure 5: Numerical behavior of all algorithms with (γ = 0.4, ζ = 0.5, µ = 0.5, ρ0 = 0.3 ).

Table 2: Numerical results of all algorithms with different parameters.

Algorithms
Our Alg. 1 BCNN Algo. 1 BSJ Algo 3.1

Dn CPU Dn CPU Dn CPU

γ = 0.4, ζ = 0.5, µ = 1.25, ρ0 = 0.1 2.58E−11 0.35 5.6E−7 0.36 1.37E−7 0.37

γ = 0.2, ζ = 0.264, µ = 0.5, ρ0 = 0.36 2.005E−11 0.34 8.58E−8 0.38 1.05E−7 0.37

γ = 0.2, ζ = 0.5, µ = 0.5, ρ0 = 0.5 1.11E−11 0.34 5.97E−8 0.36 6.94E−8 0.37

γ = 0.4,ζ = 0.5,µ = 0.5, ρ0 = 0.3 2.5E−11 0.35 8.97E−8 0.37 1.26E−7 0.38

Remark 5. Based on our numerical experiments, we have the following observation:

• Algorithm 1 demonstrates clear superiority over the other algorithms in terms of convergence



278 B. Zeghad, N. Daili

speed and accuracy.

• Algorithm 1 converges faster to lower error levels even as the number of iterations increases,
reaching an error tolerance of 10−11 is reached after a few iterations, while the BCNN Alg. 1 and
BSJ Alg. 3.1 require significantly more iterations to achieve comparable results.

• Compared to BCNN Alg. 1 and BSJ Alg. 3.1, Algorithm 1 performs consistently well across with
different parameters. It achieves the highest precision with a reasonable computation time, making
it more efficient for large-scale problems.

6 Conclusions

An algorithm with a simple and uncomplicated structure is presented, which combines the subgradient
extragradient method with inertial terms for pseudomonotone equilibrium problems in real Hilbert space.
It can be interpreted as an extension of the Algorithm 2.1 in ( [21]). The main advantage of this algorithm
is using two non-monotonic step size criterion that can work adaptively without the Lipschitz constants
and line search technique. The strong convergence is established under appropriate conditions of the
equilibrium bifunction B and the control parameters. Application and numerical example are presented
to demonstrate the advantages of the proposed algorithm.
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