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Abstract. In this article, we consider an elliptic system of partial differential equations in the general
form

∑
i=1,...,n

d
dxi

Ai (x, −→u , ∇
−→u )+B(x, −→u , ∇

−→u ) = 0

under fair general conditions on its structural coefficients. We study the regularity properties of the
solutions to this system, and we establish the existence of a Holder solution by the modified Leray-
Schauder fixed-point method and the application of the apriori estimations obtained with utilization of
form-boundary conditions.
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1 Introduction

In this paper, we consider elliptic systems of partial differential equations presented in the form

∑
i=1,...,n

d
dxi

Ai (x, −→u , ∇
−→u )+B(x, −→u , ∇

−→u ) = 0

for the unknown vector-function −→u : Ω→ RN , where Ω is a bounded, Lipschitz smooth domain in Rn.
We consider the modification of the Leray-Schauder fixed-point method, which provides a possibility

to prove the existence of solutions to elliptic partial differential equations and elliptic systems by means
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of apriori estimates. The developments presented in this paper in quasilinear theory become possible due
to the recent breakthrough in the linear perturbation theory of elliptic and parabolic operators, which is
based on the classical works of DeGiorgi, Moser, and Nash [5, 6, 11, 13], who studied the non-perturbed
cases of elliptic and parabolic equations. Namely, an elliptic equation which is given by

∇iai j∇ ju(x) = 0,

and a parabolic equation
∂tu(x, t)−∇iai j∇ ju(x, t) = 0.

In recent years, the perturbation theory of the classical DeGiorgi-Moser-Nash results was developed
by many authors [1–4, 7–10, 12, 14–28]. There were studied the properties of general linear operators

−∇ ·a ·∇ j +b ·∇+∇ · b̃+V

with measurable uniformly elliptic matrix, the estimations of heat kernel were established under the
rather general assumptions on the structural coefficients. Such conditions on coefficients are formulated
in terms of functional Kato, Gevrey, and Nash classes, and form-boundary conditions, see [11]. Gener-
ally, these kinds of problems are considered with an application of some variants of Duhamels principle
and the Lie product formula for propagators. Let us consider an example of the elliptic equation with the
Gilbarg-Sirrin matrix presented in the form

ζ u(x)−∇i (ai j (x)∇ ju(x))+∇iai j (x)◦∇ ju(x) = 0

where

ai j = δi j +b
∇ix∇ jx

|x|2
, b =−1+

n−1
1−λ

,

λ < 1, n≥ 3, and ζ > 0, f ∈ L1∩Lp, p > 1. The form boundary condition is given in the explicit form∥∥∥∥∥b2 (1+b)−1
(

n−1
|x|

)2

ϕ

∥∥∥∥∥
2

2

≤ β
∥∥∇
−→
ϕ
∥∥2

2 + c(β )
∥∥−→ϕ ∥∥2

2

with form-boundary constant

β = 4
(

b
b+1

· n−1
n−2

)2

= 4
(

1+
λ

n−2

)2

.

Thus, the equation
ai j∇i∇ ju = 0

has always two solutions for all β > 4, and assuming p > q, 2 ≤ q < p then |x|λ /∈ L
pn

n−2
loc (Rn) with

λ = n−2
−q that excludes unbounded solutions. For β > 4 the equation ai j∇i∇ ju = 0 has always two licitus

solutions [13].
The same situation relative to singularities of the structural coefficients appears in the case of systems,

however, there is an additional complication connected with the growth of structural coefficients, which
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can be explained in the following example [13]. The pair of functions u(x)= cos(χx) and v(x)= sin(χx)
satisfies the E. Heinz elliptic system

d2u
dx2 =−

((
du
dx

)2

+

(
dv
dx

)2
)

u,

d2v
dx2 =−

((
du
dx

)2

+

(
dv
dx

)2
)

v.

The E. Heinz example shows the impossibility of obtaining apriori estimates of

max
[0, 2π]

{∣∣∣∣du
dx

∣∣∣∣ , ∣∣∣∣dv
dx

∣∣∣∣} , |u|
α, Ω

, |v|
α, Ω

in terms of max
[0, 2π]

{|u| , |v|}. The E. Heinz accentuates the difference between equations and systems, in

the case of equations such estimates are possible [13].
In this paper, we establish sufficient conditions on the structural coefficients under which generalized

solutions −→u ∈W p
1 (Ω)∩Lq (Ω), M̃1 = essmax

∂Ω

|−→u |< ∞ to the system

d
dxi

Ai (x, −→u , ∇
−→u )+B(x, −→u , ∇

−→u ) = 0

estimated by number depending only on M̃1, ν̃ , β , mes(Ω) , ‖−→u ‖Lq , ε . This solution −→u satis-
fies the Holder continuity condition of order α , where constant α > 0 depends only on M̃1, ν̃ , β ,

mes(Ω) , ‖−→u ‖Lq , ε .

2 Notations and the Leray-Schauder approach

Let x = (x1, ..., xn) be a n-dimensional real vector, i.e. x ∈ Rn, −→u be a vector-function −→u (x) =(
u1 (x) , ....,uN (x)

)
defined and measurable in a bounded simply connected domain Ω⊂ Rn.

We study the solvability of a quasilinear elliptic system given by

d
dxi

Ai (x, −→u , ∇
−→u )+B(x, −→u , ∇

−→u ) = 0, (1)

where Ai and B is N-dimensional vector-functions for each i = 1 , ..., n. The boundary condition is given
by −→u |

∂Ω
= ψ (x)|

∂Ω
.

We assume that vector-functions Ai and B satisfy the following conditions

Ai

(
x, −→u ,

−→
k
)−→

k i ≥ ν (|−→u |)
∣∣∣−→k ∣∣∣p−µ (|−→u |) , (2)

∑
i=1,...,n

∣∣∣Ai

(
x, −→u ,

−→
k
)∣∣∣(1+

∣∣∣−→k ∣∣∣)+ ∣∣∣B(x, −→u ,
−→
k
)∣∣∣≤ µ (|−→u |)

(
1+
∣∣∣−→k ∣∣∣)p

, (3)

where ν and µ are positive monotone functions, and 1 < p < n.



172 M. Yaremenko

We denote

ai j (x, −→u , ∇
−→u )∇i∇ j

−→u =
(

∇i∇ juk
)

∂Ai (x, −→u , ∇
−→u )

∂∇ juk (4)

and

−→
b
(

x, −→u ,
−→
k
)
=

∂Ai

(
x, −→u ,

−→
k
)

∂uk ∇iuk +
∂Ai

(
x, −→u ,

−→
k
)

∂xi
+B

(
x, −→u ,

−→
k
)
. (5)

Then, we rewrite system (1) in the form

A(−→u ) = ai j (x, −→u )∇i∇ j
−→u +

−→
b (x, −→u , ∇

−→u ) = 0. (6)

We assume −→
b
(

x, −→u ,
−→
k
)−→u ≤−γ̃1 (x) |−→u |2 + γ̃2 (x) (7)

and
ν̃ξ

2 ≤ ai j (x, −→u )ξiξ j ≤ µ̃ξ
2, (8)

where γ̃1 and γ̃2 are positive continuous functions.
In order to apply the Leray-Schauder approach to establish the existence of the solutions to the system

(1), we study a family of differential operators for all τ ∈ (0, 1)

Aτ (−→u ) = τA(−→u )+(1− τ)(θ1∆
−→u −θ2

−→u ) , (9)

where we denote
A(−→u ) = ai j (x, −→u , ∇

−→u )∇i∇ j
−→u +

−→
b (x, −→u , ∇

−→u ) (10)

for arbitrary numbers θ1 and θ2.
We multiply the system Aτ (−→u ) = 0 by the vector 2−→u and obtain the equation

((1− τ)δi jθ1 + τai j)
(

∇i∇ j

(
|−→u |2

)
−2(∇i

−→u , ∇ j
−→u )
)
−2
(
(1− τ)θ2 |−→u |2− τ

−→
b −→u

)
= 0. (11)

If the function |−→u |2 achieves its maximum at point x0 ∈Ω, then[
((1− τ)δi jθ1 + τai j)

(
∇i∇ j

(
|−→u |2

)
−2(∇i

−→u , ∇ j
−→u )
)]

x=x0
≤ 0.

Therefore, we have
(1− τ)θ2 |−→u |2− τ

−→
b −→u ≤ 0

and
(1− τ)θ2 |−→u |2 + τ

(
γ̃1 |−→u |2− γ̃2

)
≤ 0,

so
|−→u |2 ≤ γ̃2

min{θ2, γ̃1}
.

From the last inequality, we have that the inequality

M1 = max
Ω

|−→u | ≤max

{
max
∂Ω

|−→u | ,
(

γ̃2

min{θ2, γ̃1}

) 1
2
}

holds for all classical solutions for system (1).
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3 The estimation of the |vecu|
α, Ω

We assume that the structural coefficients of system (6) satisfy the following conditions

ν̃ (M1)ξ
2 ≤ ai j (x, −→u )ξiξ j ≤ µ̃ (M1)ξ

2, (12)∣∣∣−→b (x, −→u ,
−→
k
)∣∣∣≤ (ε (M1)+ζ

(
M1,
−→
k
))(

1+
∣∣∣−→k ∣∣∣2) , (13)

where the value ε (M1) is a small enough constant and lim∣∣∣−→k ∣∣∣→∞

ζ

(
M1,
−→
k
)
= 0. The derivatives satisfy the

conditions ∣∣∣∣∂ai j (x, −→u )

∂xm

∣∣∣∣≤ µ̃ (M1) ,

∣∣∣∣∂ai j (x, −→u )

∂uk

∣∣∣∣≤ µ̃ (M1) . (14)

Let−→u be a vector-function defined and measurable on the set Ω. Then, a function−→u is said to belong
to the class Bp

N1
if there exist N1 functions ϕ1

(
u1, ..., uN

)
, . . . , ϕN1

(
u1, ..., uN

)
, which are continuously

differentiable on the domain |−→u | ≤M1 and satisfy the following conditions:
1) all functions are essentially bounded, namely essmax

Ω

∣∣ϕ l (x)
∣∣ ≤ M1, ϕ l ∈ W p

1 (Ω) for all l =

1, ..., N1;
2) for all concentric balls B(r) , B(2r)⊂Ω there exists a number s0 such that

osc{ϕs0 (x) , B(2r)} ≥ δ1 max
k=1,...,N

osc
{

uk, B(2r)
}

and

mes
{

ϕ
s0 (x)≤max

B(2r)
ϕ

s0 (x)−δ2osc{ϕs0 (x) , B(2r)}
}
≥ (1−δ3)c(n)rn

for some positive numbers δ1, δ2, δ3 and such that δ2, δ3 ∈ (0, 1), where osc{u(x), Ω} means the
oscillation of the function u in the domain Ω, which is defined by

osc{u(x), Ω}= essmax(u(x))
Ω

− essmin(u(x))
Ω

,

where the Lebesgue measure is denoted by mes;
3) for each function ϕ l ∈W p

1 (Ω), l = 1, ..., N1 and all balls B(r)⊂Ω, the inequality∫
E(L, r(1−σ))

∣∣∇ϕ
l
∣∣p dx≤ϖ

(
1

σ prp(1− n
t )

max
E(L, r)

{(
ϕ l−L

)p}
+1
)
(mes(E (L, r)))(1− p

t )

holds for all numbers L such that
max

E(L, r)

{
ϕ

l
}
−L≤ δ

for σ ∈ (0, 1) and 1 < p≤ n, where we denote

E (L, r) =
{

x ∈ B(r) : ϕ
l (x)> L

}
.

Some of the properties of the functions of Bp
N1

-classes are given in the following theorem.
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Theorem 1. Let the vector-function −→u belongs to BN1
p and let ϕ l , l = 1, ...,N1 on ∂Ω satisfy the Holder

conditions
osc
{

ϕ
l (x) , B(r)∩∂Ω

}
≤Crε l = 1, ...,N1.

Then, the inequality
osc
{

ul (x) , B(r)∩Ω

}
≤ Ĉrα l = 1, ...,N

holds for some constants Ĉ and α is determined by the class BN1
p .

Now, we assume that the function −→u ∈C2 (Ω) , essmax
Ω

|−→u (x)| ≤M1 is a solution of the system (6).

By multiplying system (6) by the vector-function ξ ∈W p
1 (Ω)∩C∞

0 (Ω), we obtain the scalar equality∫
Ω

ai j (x, −→u )∇ j
−→u ∇iξ dx+

∫
Ω

∂ai j (x, −→u )

∂uk ∇ j
−→u ∇iuk

ξ dx

+
∫

Ω

∂ai j (x, −→u )

∂xi
∇ j
−→u ξ dx+

∫
Ω

−→
b ξ dx = 0,

here, we assumed the conditions
∣∣∣ ∂ai j(x,−→u )

∂xm

∣∣∣≤ µ̃ (M1) ,
∣∣∣ ∂ai j(x,−→u )

∂uk

∣∣∣≤ µ̃ (M1) .

We select the function ξ =
(
2−→u + c̆N−→e l

)
η where the vector −→e l is the unit vector in RN the l-

component of which is not zero, and η ∈W p
1

(
Ω̃
)
∩C∞

0
(
Ω̃
)
. So, we have∫

Ω

2ai jη∇ j
−→u ∇i
−→u dx+

∫
Ω

ai jη∇ jϕ
l
+∇iηdx+

∫
Ω

∂ai j

∂uk ∇iuk
∇ jϕ

l
+ηdx

+
∫

Ω

∂ai j

∂xi
η∇ jϕ

l
+dx−

∫
Ω

(
2
−→
b −→u + c̆N

−→
b −→e l

)
ηdx = 0,

where we denote
−→
b −→e l = bl , ϕ l

+ (−→u ) = c̆Nul + |−→u |2 and ϕ l
− (
−→u ) = c̆N

(
1−ul

)
+ |−→u |2. Let ϑ be a

cutoff for the ball B(r). We take η (x) = ϑ 2 (x)max
{

ϕ l
+ (x)−L, 0

}
, and obtain∫

E(L, r)
2ai jϑ

2
(

ϕ
l
+−L

)
∇ j
−→u ∇i
−→u dx+

∫
E(L, r)

ai jϑ
2
∇ jϕ

l
+∇iϕ

l
+dx

+
∫

E(L, r)
2ai j

(
ϕ

l
+−L

)
ϑ∇ jϕ

l
+∇iϑdx+

∫
E(L, r)

∂ai j

∂uk ϑ
2
∇iuk

∇ jϕ
l
+dx

+
∫

E(L, r)

∂ai j

∂xi
ϑ

2
∇ jϕ

l
+dx =

∫
Ω

(
2
−→
b −→u + c̆N

−→
b −→e l

)
ϑ

2dx,

where we denote E (L, r) =
{

x ∈ B(r) : ϕ l
+ (x)> L

}
. Next, we estimate

2ν

∫
E(L, r)

ϑ
2
(

ϕ
l
+−L

)
|∇−→u |2 dx+ν

∫
E(L, r)

ϑ
2 ∣∣∇ϕ

l
+

∣∣2 dx

≤ 2µ

∫
E(L, r)

(
ϕ

l
+−L

)
ϑ
∣∣∇ϕ

l
+

∣∣ |∇ϑ |dx+µ

∫
E(L, r)

ϑ
2 ∣∣∇uk

∣∣ ∣∣∇ϕ
l
+

∣∣dx

+µ

∫
E(L, r)

ϑ
2 ∣∣∇ϕ

l
+

∣∣dx+
∫

Ω

(
2
−→
b −→u + c̆N

−→
b −→e l

)
ϑ

2dx.

By applying conditions (13), we have∣∣∣(2
−→
b −→u + c̆N

−→
b −→e l

)
ϑ

2
∣∣∣≤ (2M1 + c̆N)

(
ε (M1)+ζ

(
M1,
−→
k
))(

1+
∣∣∣−→k ∣∣∣2) ,
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we take (2M1 + c̆N)ε (M1)≤ ν .
Therefore, there exists a positive constant ĉ such that the inequality

ν

∫
E(L, r)

ϑ
2 ∣∣∇ϕ

l
+

∣∣2 dx≤ĉ
∫

E(L, r)

(
ϕ

l
+−L

)2
|∇ϑ |2 dx+ ĉ

∫
E(L, r)

(
ϑ

2
(

ϕ
l
+−L

)2 ∣∣∇ϕ
l
+

∣∣2 +1
)

dx

holds for all L, which satisfies the inequality max
B(r)

{
ϕ l
+−L

}
≤ δ for small enough positive numbers δ .

Similarly, we estimate the value
∣∣∇ϕ l

−
∣∣ for all ϕ l, l = 1, ...,N. Thus, we obtain that −→u ∈ B2N

2 .

Theorem 2. Let−→u ∈C2 (Ω) be a solution of system (6) whose coefficients satisfy (13)–(14) for an inter-
nal subset Ω̃⊂Ω, max

Ω

|−→u (x)| ≤M1 and let the boundary ∂Ω be smooth enough. Then, the Holder norm

|−→u |
α, Ω

can be estimated by the constant depending on ν (M1) , µ (M1) , ε (M1) , ζ

(
M1,
−→
k
)
, M1, n, N.

Proof. To obtain an estimation of the Holder norm |−→u |
α, Ω

in Ω, we consider a ball B(r) that intersects
the boundary ∂Ω. In this ball, we obtain∫

E(L, r)
2ai jϑ

2
(

ω
l−L

)
∇ j
−→u ∇i
−→u dx+

∫
E(L, r)

ai jϑ
2
∇ jω

l
∇iω

ldx

+
∫

E(L, r)
2ai j

(
ω

l−L
)

ϑ∇ jω
l
∇iϑdx+

∫
E(L, r)

∂ai j

∂uk ϑ
2
∇iuk

∇ jω
ldx

+
∫

E(L, r)

∂ai j

∂xi
ϑ

2
∇ jω

ldx =
∫

Ω

(
2
−→
b −→u + c̆N

−→
b −→e l

)
ϑ

2dx,

for both ω l = ϕ l
+ and ω l = ϕ l

−. Therefore, the estimation

ν

∫
E(L, r)

ϑ
2 ∣∣∇ω

l
∣∣2 dx≤ĉ

∫
E(L, r)

(
ω

l−L
)2
|∇ϑ |2 dx+ ĉ

∫
E(L, r)

(
ϑ

2
(

ω
l−L

)2 ∣∣∇ω
l
∣∣2 +1

)
dx

holds for E (L, r) =
{

x ∈ B(r) : ω l (x)> L
}

if max
B(r)∩∂Ω

ω l (x)≤ L, max
B(r)∩Ω

ω l (x)≤ L+δ . Thus, we con-

clude that −→u ∈ B2N
2 .

4 The estimation of the generalized solution to (1) under form-boundary
conditions on its coefficients

Let −→u ∈W p
1 (Ω)∩Lq (Ω), np

n−p ≤ q, p≤ n and satisfies the integral equality∫
Ω

Ai (x, −→u , ∇
−→u )∇i

−→
ϕ dx−

∫
Ω

B(x, −→u , ∇
−→u )−→ϕ dx = 0 (15)

for all −→ϕ ∈W p
1,0 (Ω).

We assume that coefficients satisfy the following conditions

Ai

(
x, −→u ,

−→
k
)−→

k i ≥ ν̃ (|−→u |)
∣∣∣−→k ∣∣∣p− (1+ |−→u |χ1

)
γ̃0 (x) , (16)
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∣∣∣B(x, −→u ,
−→
k
)∣∣∣≤ (1+ |−→u |χ2

)
γ̃1 (x)+

(
1+ |−→u |χ3

)
γ̃2 (x)

∣∣∣−→k ∣∣∣p−ε

(17)

for x∈ clos [Ω]⊂ Rn and arbitrary−→u and
−→
k , χ1 ≥ 2, χ2 ≥ 1, χ3 ≥ 2ε

p −1 and γ̃0, γ̃1, γ̃2 ∈ PK (β ); where
ν̃ is a positive bounded continuous function.

In (15), we put ϕ l (x) = max
{

ul (x)−L, 0
}
, L≥max{M1, 1} and obtain the inequality

ν̃

∫
E(L, r)

|∇−→u |p dx≤c̃
(∫

E(L, r)
|−→u |χ1

γ̃0dx+
∫

E(L, r)
|−→u |χ2

γ̃1 |−→u −L|dx

+
∫

E(L, r)
|−→u |χ3

γ̃2 |−→u −L| |∇−→u |p−ε dx
) (18)

where we assume ε < p.
Next, we estimate each term of (18) individually. By Young inequality, we have

|−→u |χ3
γ̃2 |−→u −L| |∇−→u |p−ε ≤ε p−1δ−

p
ε |−→u |

pχ3
ε |−→u −L|

p
ε γ̃2

p
ε + (p−ε)

p δ p−ε |∇−→u |p

and assuming δ
p

p−ε (p− ε) p−1 = 2−1ν̃ , we have the inequality

∫
E(L, r)

|∇−→u |p dx≤c̃1

(∫
E(L, r)

|−→u |χ1
γ̃0dx+

∫
E(L, r)

|−→u |χ2+1
γ̃1dx+

∫
E(L, r)

|−→u |
p(χ3+1)

ε γ̃2
p
ε dx
)
.

Applying the form-boundary condition, we have

∫
E(L, r)

(
|−→u |

χ1
2 γ̃0

1
2

)2
dx≤

(
χ1

2

)2
β

∫
E(L, r)

|−→u |χ1−2 |∇−→u |2 dx+ c(β )
∫

E(L, r)
|−→u |χ1 dx,

∫
E(L, r)

(
|−→u |

χ2+1
2 γ̃1

1
2

)2

dx≤
(

χ2 +1
2

)2

β

∫
E(L, r)

|−→u |χ2−1 |∇−→u |2 dx+ c(β )
∫

E(L, r)
|−→u |χ2+1 dx

and ∫
E(L, r)

(
|−→u |

p
2ε
(χ3+1)

γ̃2
1
2

)2
dx≤

( p
2ε
(χ3 +1)

)2
β

∫
E(L, r)

|−→u |
p
ε
(χ3+1)−2 |∇−→u |2 dx

+c(β )
∫

E(L, r)
|−→u |

p
ε
(χ3+1) dx.

By the Holder inequality, we obtain∫
E(L, r)

|−→u |χ1−2 |∇−→u |2 dx≤ε
− p−2

p
1

p−2
p

∫
E(L, r)

|−→u |(χ1−2) p
p−2 dx+

p
2

ε

p
2

1

∫
E(L, r)

|∇−→u |p dx,

∫
E(L, r)

|−→u |χ2−1 |∇−→u |2 dx≤ε
− p−2

p
2

p−2
p

∫
E(L, r)

|−→u |(χ2−1) p
p−2 dx+

p
2

ε

p
2

2

∫
E(L, r)

|∇−→u |p dx,

and ∫
E(L, r)

|−→u |
p
ε
(χ3+1)−2 |∇−→u |2 dx≤ε

− p−2
p

3
p−2

p

∫
E(L, r)

|−→u |(
p
ε
(χ3+1)−2) p

p−2 dx+
p
2

ε

p
2

3

∫
E(L, r)

|∇−→u |p dx.
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Next, we apply the inequality of the type∫
E(L, r)

|−→u |(χ1−2) p
p−2 dx≤

∫
E(L, r)

|−→u −L|(χ1−2) p
p−2 dx+Lpmes(E (L, r))

and applying the Holder estimation

‖−→u −L‖χ

Lχ ≤
(∫

E(L, r)
|−→u −L|a dx

) χ

a

(mes(E (L, r)))
a−χ

a ,

we obtain

∫
E(L, r)

|∇−→u |p dx≤ c̃2

((∫
E(L, r)

|−→u −L|a dx
) χ

a

+ ∑
i=1,...,6

Lςi (mes(E (L, r)))

)

where ζi, i = 1 , ..., 6 depend on χi, i = 1, ..,3.
We are going to use the following statement.

Statement 1. Let f ∈W p
1 (Ω)∩Lq (Ω), essmax{ f (x)}< ∞. Also, the estimation

∫
E(L, r)

|∇ f |p dx≤ c

((∫
E(L, r)

( f −L)a dx
) p

a

+ ∑
i=1,...,n1

Lςi (mes(E (L, r)))1− p
m+εi

)

holds for some positive constants c, a, ςi, εi, n1 such that n−p
n < p

a , εi > 0 for all i = 1, ..., n1. Then,
the value essmax

Ω

{ f (x)} can be estimated above by constant depending only on c, a, ςi, εi, n1,p, n, q,

mes(Ω) and ‖ f‖L1(E(L, r)).

So, we obtained the statement about the boundedness of the generalized solutions.

Theorem 3. Let−→u ∈W p
1 (Ω)∩Lq (Ω), M̃1 = essmax

∂Ω

|−→u |< ∞, np
n−p ≤ q, p≤ n be a generalized solution

of system (1) in the sense of (15). Let functions Ai, B satisfy conditions (16), (17) where γ̃0, γ̃1, γ̃2 ∈
PK (β ). Then, the value M1 = essmax

Ω

|−→u | can be estimated by constant depending only on M̃1, ν̃ , β ,

mes(Ω) , ‖−→u ‖Lq , ε; the function −→u satisfies the Holder condition of the order α > 0 depending on
M̃1, ν̃ , β , mes(Ω) , ‖−→u ‖Lq , ε . For any Ω̃ ⊂ Ω, the value |−→u |

α, Ω
is estimated by M̃1, ν̃ , β , mes(Ω) ,

‖−→u ‖Lq , ε and dist
(
Ω̃, Ω

)
.

5 The existence of the classical solutions

We consider system (6) under the conditions (7), (12) – (14). The estimations obtained above allow us
to investigate the solvability of the first boundary problem for system (6). We assume that coefficients
of system (11) satisfy the conditions ai j (x, −→u )ξiξ j ≥ ν̃ξ 2 and

−→
b
(

x, −→u ,
−→
k
)−→u ≤−γ̃1 (x) |−→u |2+ γ̃2 (x)

for all vectors −→u and
−→
k and all x ∈ clos(Ω). Then, the Leray-Schauder method yields the following

theorem.
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Theorem 4. Let the coefficients of system (6) satisfy conditions (12) –(14) and the system

τA(−→u )+(1− τ)(θ1∆
−→u −θ2

−→u ) = 0 (19)

satisfy conditions (7), (8) and let (2M1 + c̆N)ε (M1) ≤ ν as in Theorem 1. If the function
−→
b belongs to

the Holder class with α̂ , in the domain
{

x ∈ clos(Ω) , |−→u | ≤M1,
∣∣∣−→k ∣∣∣≤M2

}
, and the boundary is

smooth enough (at leastC2,α̂ ), then the boundary problem −→u |
∂Ω

= 0 system (6) has a solution −→u in the
functional class C2,α̂ (Ω).

Proof. We consider the parameterized system

τA(−→u )+(1− τ)(θ1∆
−→u −θ2

−→u ) = 0,

when we put θ1 = θ2 = 1. If the parameter τ = 0, then system (19) breaks into separate equations the
existence and uniqueness of the solution of which, we will study below. Thus, we assume that system
(19) has a solution for τ = 0, then the statement of Theorem 4 immediately follows from Leray-Schauder
theorem.

In order to avoid misunderstanding, we remind our readers formulation of the Leray-Schauder theo-
rem.

Theorem 5. (Lerey-Schauder). Let X be a complete Banach space, and let clos(E) be the closure of
arbitrarily connected open set E ⊂ X. Also, let X ⊗ [0, 1] be topological product of X and [0, 1]. Then,
the equation u = Θ(u, τ) has at least one solution in E for all τ ∈ [0, 1], if:

1) mapping Θ is defined and continuous over clos(E)⊗ [0, 1],
2) mapping Θ is uniformly continuous at τ ∈ [0, 1] on clos(E)⊗ [0, 1],
3) the boundary ∂E does not contain any solution to u = Θ(u, τ),
4) for τ = 0 the equation u = Θ(u, τ) has a finite number of solutions with a summation index larger

than zero.

6 The existence of the solution to the quasilinear equation

We consider the equation

A(u) = ai j (x, u, ∇u)∇i∇ ju+b(x, u, ∇u) = 0, (20)

where the ai j is uniformly elliptic matrix and b satisfies the condition

b(x, u, 0)u≤−γ̃1 (x)u2 + γ̃2 (x) (21)

for x ∈Ω, where functions γ̃1, γ̃2 are positively determined and continuous.
For Eq. (20), the parametric family of differential operators is given by

Aτ (u) = τA(u)+(1− τ)

(
∇i

(
θ̃1

(
1+ |∇u|2

) p−2
2

∇iu
)
− θ̃2u

)
,
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for all τ ∈ [0, 1], where θ1 and θ2 are arbitrary numbers. The corresponding parametric family of equa-
tions is defined by

Aτ (u) = τai j∇i∇ ju+ θ̃1 (1− τ)
(

1+ |∇u|2
) p−2

2
∆u

+θ̃1 (1− τ)(p−2)
(

1+ |∇u|2
) p

2−2
∇iu∇mu∇i∇mu+ τb− (1− τ) θ̃2u = 0,

(22)

and assume that its solution u achieves its maximum at point x0 ∈Ω. Then, we estimate

τai j∇i∇ ju≤ 0,

θ̃1 (1− τ)
(

1+ |∇u|2
) p−2

2
∆u≤ 0

and

θ̃1 (1− τ)(p−2)
(

1+ |∇u|2
) p

2−2
∇iu∇mu∇i∇mu = 0.

So
τb(x, u, 0)− (1− τ) θ̃2u≥ 0,

therefore, we conclude
−γ̃1u2− (1− τ) θ̃2u+ γ̃2τ ≥ 0

and u(x0, τ)≤
(

γ̃2
γ̃1

) 1
2
.

Thus, for all classical solutions to the problem Aτ (u) = 0, u|
∂Ω

= τψ, τ ∈ [0, 1] the estimation

max
Ω

|u(x, τ)| ≤max

{
max
∂Ω

|ψ| ,
(

γ̃2

γ̃1

) 1
2
}

holds for all τ ∈ [0, 1].
Now, we formulate the theorem of the existence of the classical solutions to the boundary problem

u|
∂Ω

= ψ|
∂Ω

for Eq. (21).

Theorem 6. Let ai j be the element of a uniformly elliptic matrix, ν̃ξ 2 ≤ ai j (x, −→u )ξiξ j ≤ µ̃ξ 2, b be a

measurable and correctly defined function on set
{

x ∈ clos(Ω) , |−→u | ≤M1,
∣∣∣−→k ∣∣∣≤M2

}
satisfies the

estimation b(x, u, 0)u≤−γ̃1 (x)u2 + γ̃2 (x) . Also, let conditions∣∣∣∣ ∂b
∂km

∣∣∣∣≤ µ̃

(
1+ |k|2

) 1
2
,∣∣∣∣∂ai j

∂u

∣∣∣∣(1+ |k|2
)
+ |b|+

∣∣∣∣∂b
∂u

∣∣∣∣≤ µ̃1

(
1+ |k|2

)
and ∣∣∣∣∂ai j

∂x

∣∣∣∣(1+ |k|2
)
+

∣∣∣∣∂b
∂x

∣∣∣∣≤ µ̃1

(
1+ |k|2

) p
2
,

for all x ∈ clos(Ω), |−→u | ≤ M1,
∣∣∣−→k ∣∣∣ ≤ M2 hold, where µ̃1 = ε + ζ (|k|) with continuous ζ that

lim
|k|→∞

ζ (|k|) = 0, and the boundary be smooth enough. Then, the boundary problem u|
∂Ω

= ψ|
∂Ω

for

equation (20) has a solution in C2,α (clos(Ω)).
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Proof. The existence of a solution to the problem u|
∂Ω

= ψ|
∂Ω

for Eq. (20) will follow from the
Leray-Schauder theorem if we show that the summated index of solutions to the problem Aτ (u) = 0,
u|

∂Ω
= τψ, τ = 0 does not equal zero. If τ = 0, then the problem A0 (u) = 0, u|

∂Ω
= 0 has one

solution −→u (x, 0)≡ 0 since
max

Ω

|u(x, 0)| ≤ 0

and equality 0 = Θ(w, 0) = v holds for all w ∈C1,ᾰ (clos(Ω)) since

θ̃1

(
1+ |∇w|2

) p−2
2

∆v+ θ̃2v+θ̃1 (1− τ)(p−2)
(

1+ |∇w|2
) p

2−2
∇iw∇mw∇i∇mv = 0,

v|
∂Ω

= 0.

Thus, its solution v = 0 for all fixed w ∈C1,ᾰ (clos(Ω)) since θ̃1, θ̃2 > 0. Therefore, the mapping w 7→
w−Θ(w, 0) is the identity mapping with an index equal to one, and the boundary problem A0 (u) = 0,
u|

∂Ω
= 0 has a unique solution identical to the zero function.

7 Conclusions

We obtain the conditions under which the boundary problem u|
∂Ω

= ψ|
∂Ω

for partial differential equation
A(u) = 0 with the uniformly elliptic matrix has a smooth solution in C2,α (clos(Ω)). We use the fixed-
point method in the Leray-Schauder form, and to justify the limiting process we employ certain a priori
estimations. Our results can be further generalized to include wide classes of elliptic partial differential
equations.

References

[1] M. Agueh, Gagliardo-Nirenberg inequalities involving the gradient L2-norm, C. R. Acad. Sci.
Paris, Ser. I 346 (2008) 757–762.

[2] H. Amann, Invariant sets and existence theorems for semilinear parabolic and elliptic systems, J.
Math. Anal. Appl. 65 (1978) 432–467.

[3] C. Bao, B. Cui, X. Lou, W. Wu, and B. Zhuang, Fixed-time stabilization of boundary controlled lin-
ear parabolic distributed parameter systems with space-dependent reactivity, IET Control Theory
Appl. 15 (2020) 652–667.

[4] C. Chen, R.M. Strain, H. Yau, T. Tsai, Lower bounds on the blow-up rate of the axisymmetric
Navier-Stokes equations II, Commun. Partial Differ. Equ. 34 (2009) 203–232.

[5] E. DeGiorgi, Sulla differenziabilita e lanaliticita delle estremali degli integrali multipli regolari,
Mem. Accad Sc. Torino, C. Sc. Fis. Mat. Natur. 3 (1957) 25-43.

[6] E. DeGiorgi, Un esempio di estremali discontinue per un problema variazionale di tipo ellitico,
Bull. UMI 4 (1968) 135-137.



Leray-Schauder method 181

[7] H. Dong, S. Kim, S. Lee, Estimates for fundamental solutions of parabolic equations in non-
divergence form, J. Differ. Equ. 340 (2022) 557–591.

[8] J.A. Goldstein, Q.S. Zhang, Linear parabolic equations with strongly singular potentials, Trans.
Amer. Math. Soc. 355 (2002) 197–211.

[9] D. Hongjie, L. Escauriaza, S. Kim, On C1/2,1, C1,2, and C0,0 estimates for linear parabolic
operators, J. Evol. Equ. 21 (2021) 4641–4702.

[10] S. Kim, S. Lee, Estimates for Green’s functions of elliptic equations in non-divergence form with
continuous coefficients, Ann. Appl. Math. 37 (2021) 111–130.

[11] D. Kinzebulatov, Y. A. Semenov, Heat kernel bounds for parabolic equations with singular (form-
bounded) vector fields, Preprint, 2021, arXiv:2103.11482.

[12] M. Kassmann, M. Weidner, The parabolic Harnack inequality for nonlocal equations, 2023,
arXiv:2303.05975.

[13] O.A. Ladyzenskaja, V.A. Solonnikov, N.N. Uralceva, Linear and Quasilinear Equations of
Parabolic Type, Translations of Mathematical Monographs, Amer. Math. Soc. 23 (1968).

[14] M. Li, W. Mao, Finite-time bounded control for coupled parabolic PDE-ODE systems subject to
boundary disturbances, Math. Probl. Eng. 2020 (2020) Article ID 8882382.

[15] Z. Qian, G. Xi, Parabolic equations with singular divergence-free drift vector fields, J. London
Math. Soc. 100 (2019) 17–40.

[16] Y. Tao, M. Winkler, Energy-type estimates and global solvability in a two-dimensional chemotaxis-
haptotaxis model with the remodeling of non-diffusible attractant, J. Differ. Equ. 257 (2014) 784–
815.

[17] Y. Tao, Global existence of classical solutions to a predator-prey model with nonlinear prey-taxis,
Nonl. Aanl. RWA 11 (2010) 2056–2064.

[18] Y. Tao, M. Winkler, Energy-type estimates and global solvability in a two-dimensional chemotaxis-
haptotaxis model with the remodeling of non-diffusible attractant, J. Differ. Equ. 257 (2014) 784–
815.

[19] A. Veretennikov, On weak existence of solutions of degenerate McKean-Vlasov equations, Preprint,
2023, ArXiv 2301.01532.

[20] F.B. Weissler, Single-point blow-up for a semilinear initial value problem, J. Diff. Equ. 5 (1984)
204–224.

[21] S. Wang, Y. Teng, P. Perdikaris, Understanding and mitigating gradient flow pathologies in
physics-informed neural networks, SIAM J. Sci. Comput. 43 (2021) A3055–A3081.

https://arxiv.org/abs/2103.11482
https://arxiv.org/abs/2303.05975
https://arxiv.org/abs/2301.01532


182 M. Yaremenko

[22] W.L.J. Wang, W. Guo, A backstepping approach to adaptive error feedback regulator design for
one-dimensional linear parabolic PIDEs, J. Math. Anal. Appl. 503 (2021) Article ID 125310.

[23] M.I. Yaremenko, The existence of a solution of evolution and elliptic equations with singular
coefficients, Asian Res. J. Math. 15 (2017) 172–204.

[24] M.I. Yaremenko, Quasi-linear evolution, and elliptic equations, J. Progressive Res. Math. 11
(2017) 1645–1669.

[25] M.I. Yaremenko, The sequence of semigroups of nonlinear operators and their applications to study
the Cauchy problem for parabolic equations, Sci. J. Ternopil Nat. Tech. Univ. 4 (2016) 149–160.

[26] D. Zhang, L. Guo, G. E. Karniadakis, Learning in modal space: Solving time-dependent stochastic
PDEs using physics-informed neural networks, SIAM J. Sci. Comput. 42 (2020) A639–A665.

[27] Z.-Q. Chen, T. Kumagai, J. Wang, Stability of heat kernel estimates for symmetric non-local Dirich-
let forms, Mem. Amer. Math. Soc. 271 2021 1–100.

[28] S. Zhang, Z.-Q. Chen, Stochastic maximum principle for fully coupled forward-backward stochastic
differential equations driven by sub-diffusion, Preprint, 2023.


	1  Introduction
	2  Notations and the Leray-Schauder approach
	3  The estimation of the |vecu|,  
	4  The estimation of the generalized solution to (1) under form-boundary conditions on its coefficients
	5  The existence of the classical solutions
	6  The existence of the solution to the quasilinear equation
	7 Conclusions 

