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Abstract. This paper presents a numerical method for solving singularly perturbed parabolic convection-
diffusion problems with boundary turning points. As the perturbation parameter ε approaches zero, the
solution shows rapid changes on the left side of the spatial domain, forming a small boundary layer. The
classical finite difference methods on uniform meshes fail to capture these oscillations without using a
large number of mesh points. To solve this, we use the implicit Euler method for time discretization
and a non-standard finite difference method in space. The method satisfies stability, the discrete mini-
mum principle, and ε-uniform convergence. Error estimates show that the proposed method is first-order
convergence in time and space. The order of convergence is improved by applying the Richardson extrap-
olation method. Two model examples are provided to show the scheme’s applicability. It demonstrates
that the numerical results are in agreement with the theoretical findings.

Keywords: Singularly perturbed, boundary turning points, non-standard finite difference scheme, uniform conver-
gence, Richardson extrapolation.
AMS Subject Classification 2010: 65M06, 65M12, 65M15.

1 Introduction

Singularly perturbed parabolic convection-diffusion equations are partial differential equations (PDEs)
that combines elements of the convection and diffusion with a small parameter ε (0 < ε � 1) multi-
plying the highest order derivative term in the PDEs that leads to a stiff behavior in a certain region of
the solution domain. The behavior (location) of such region depends on the sign of the coefficient of the
convection term which is negative, positive or zero. If the coefficient of convective term is zero at one of
the boundary of the domain, then the problem is called singularly perturbed problem (SPP) with bound-
ary turning point. This problem arises in the processes modeling of convective transport of a diffusing
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substance (heat, matter) for the case in which the rate of flow from one of the boundaries is proportional
to the distance from the boundary [20]. The model problems of this paper corresponds to the flow di-
rected outward the left boundary of the domain with a stop of the flow on this boundary. This class of
problems also models the heat flow and mass transport near oceanic rises [3] and appears in the modeling
of thermal boundary layers in laminar flow [23]. The problem in [3] is a single boundary turning point
problem because of the assumption that the velocity distribution is linear. If one allows for higher or-
ders of velocity distribution, then the boundary turning point becomes multiple. Multiple (second-order)
boundary turning point problems are given in ( [23], Chapter 12), and drift-diffusion equation of semi-
conductor device [17]. Finding the solution of these type of problems are more challenging than the non
turning point problems and attracted the attention of various scholars [2, 7, 8, 10–13, 16, 21, 24]. Kumari
et al. [7] have considered SPPs including a boundary turning point of multiplicity greater than or equal
to one. They proposed a numerical scheme comprising of the Crank-Nicolson in temporal direction and
upwind scheme on Shishkin mesh in the spatial direction. Swati et al. [24] proposed a numerical scheme
comprising an implicit finite difference method for time discretization on a uniform mesh and a hybrid
scheme for spatial discretization on a generalized Shishkin mesh. Sahoo and Gupta [10] had developed
a first-order ε uniform convergent scheme using implicit Euler method on uniform mesh in time and a
simple upwind scheme on piece wise uniform mesh in space. One can see [15, 19] for more details of
existing literature on asymptotic analysis and numerical methods for the turning point problems. As we
observed, the developed schemes used the fitted mesh method for solving the problem of type in [7],
which requires prior knowledge about the location and width of the boundary layer. Sometimes, this
requirement is difficult to be satisfied.

Non-standard finite difference methods (NSFDMs), nowadays, are playing a crucial role in the devel-
opment of reliable numerical methods to solve SPPs. These NSFDMs are designed using the exact finite
difference scheme, and the denominator function should be complicated. There are no general guidelines
for doing so, but the advantage of this method is that it is straightforward to implement and extendable
to higher-dimensional problems. However, the following important rules have been discovered by Mick-
ens [14].

• Rule 1: The orders of the discrete derivative should be equal to the orders of the corresponding
derivatives appearing in the differential equations.

• Rule 2: Denominator functions for the discrete derivatives must, in general, be expressed in terms
of more complicated functions of the step-sizes than those conventionally used.

• Rule 3: Nonlinear terms should, in general, be replaced by non local discrete representations.

• Rule 4: Special conditions that hold for the solutions of the differential equations should also hold
for the solutions of the finite difference scheme.

• Rule 5: The discrete schemes should not produce extraneous or spurious solutions.

Important physical features of the solutions to the associated problem can be numerically preserved
through the development and application of NSFD methods using these rules [1, 4, 9, 18, 22, 25, 26].
The purpose of this paper is to construct and analyse a numerical scheme which presents relatively rapid
convergence and accuracy for solving the problem considered in [7]. We proposed a parameter uniformly
convergent numerical scheme using implicit Euler method in time and a non-standard finite difference
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method in space with uniform meshes to solve the problem of concern. Theoretically, we showed that
the proposed scheme has accuracy O(M−2 +N−2), where N and M are the number of mesh intervals in
space and time respectively.

Notation: Throughout this article, C denotes a generic positive constant independent of ε and the
mesh parameters. All the functions defined on the domain W = 	× (0,T ], 	 = (0,1), T > 0 are mea-
sured in maximum norm as,

||g||W̄ = sup
x∈W̄

|g(x)|, where W̄ = [0,1]× [0,T ].

The boundary of the domain is ∂W = W̄\W = Γl ∪Γb∪Γr, where
Γl = {x = 0 | 0≤ t ≤ T},
Γb = {t = 0 | 0≤ x≤ 1},
Γr = {x = 1 | 0≤ t ≤ T}.

2 Properties of continuous problem

Consider the following singularly perturbed parabolic convection-diffusion initial-boundary value prob-
lem on W =	× (0,T ], 	= (0,1), T > 0 with smooth boundary ∂W = W̄\W = Γl ∪Γb∪Γr:

Lεu(x, t) = f (x, t), (x, t) ∈W,

u(x,0) = u0(x), x ∈ 	̄,
u(0, t) = φ(t), u(1, t) = ψ(t), t ∈ (0,T ],

(1)

where 
Lεu(x, t)≡ εuxx +a(x, t)ux−b(x, t)u(x, t)−ut(x, t),
a(x, t) = a0(x, t)xp, p≥ 1,
a0(x, t)≥ α > 0, b(x, t)≥ β > 0 on W̄ .

(2)

such that a0(x, t),b(x, t),ψ,φ and f (x, t) are smooth and bounded in W̄ . From equation 2 if p 6= 1, then,
problem (1) is called multiple a boundary turning point problem. Otherwise, it is a simple boundary
turning point problem. Setting ε = 0 in the equations (1)-(2) gives the reduced problem

a(x, t)(v0(x, t))x−b(x, t)v0(x, t)− (v0(x, t))t = f (x, t),

which is first order hyperbolic PDE along with initial and boundary conditions{
u(x,0) = u0(x), x ∈ 	̄,
u(0, t) = φ(t), u(1, t) = ψ(t), t ∈ (0,T ].

Since only one boundary condition is needed to solve this reduced problem, one boundary condition
will be underutilized, resulting boundary layer in that neighbourhood. The convective term is positive
over the domain W . The boundary layer will therefore be found close to x = 0. According to Kumari et
al. (2023), the layer’s width is expressed as O(

√
ε).
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Let u0(x) ∈C2[0,1], ψ,φ ∈C1[0,T ]. We impose the compatibility conditions

u0(0) = φ(0), u0(1) = ψ(1), (3)

and {
ε

∂ 2u0(0)
∂x2 +a(0,0) ∂u0(0)

∂x −b(0,0)u0(0)− ∂φ(0)
∂ t = f (0,0),

ε
∂ 2u0(1)

∂x2 +a(1,0) ∂u0(1)
∂x −b(1,0)u0(1)− ∂φ(1)

∂ t = f (1,0),
(4)

so that the data matches at the two corners (0,0) and (1,0). These assumptions ensure that there exists a
constant C such that ∀(x, t) ∈ W̄

u(x,0)−Ct ≤ u(x, t)≤Ct +u(x,0), (5)

u(0, t)−C(1− x)≤ u(x, t)≤C(1− x)+u(0, t). (6)

Lemma 1. The bound on the solution u(x, t) of the continuous problem (1) is given by |u(x, t)| ≤C.

Proof. From the equation (5) we have

|u(x, t)−u(x,0)|= |u(x, t)−u0(x)| ≤Ct.

Now,
|u(x, t)|− |u0(x)| ≤ |u(x, t)−u0(x)| ≤Ct,

which implies that
|u(x, t)| ≤Ct + |u0(x)| , ∀(x, t) ∈ W̄ .

Since t ∈ [0,T ] and u0(x) is bounded, it gives |u(x, t)| ≤C.

Lemma 2. (The Continuous Minimum Principle) Let z(x, t) be a sufficiently smooth function defined
on W which satisfies z(x, t)≥ 0,∀(x, t)∈ ∂W and Lεz(x, t)≤ 0, ∀(x, t)∈W. Then z(x, t)≥ 0, ∀(x, t)∈
W̄ .

Proof. Let the point (y,z) ∈ W̄ and z(y,z) = min
(x,t)∈W̄

z(x, t) < 0. Since z(x, t) ≥ 0, ∀(x, t) ∈ ∂W, we

have (y,z) /∈ ∂W . The inequality z(y,z) = min
(x,t)∈W̄

z(x, t) < 0 implies that ∂z(y,z)
∂ t = 0, ∂z(y,z)

∂x = 0 and

∂z(y,z)
∂x ≥ 0. Giving that

Lεz(y,z) = (ε
∂ 2z
∂x2 +a

∂z
∂x
−bz− ∂z

∂ t
)(y,z)> 0,

which contradict the assumption that Lεz(x, t)≤ 0, ∀(x, t)∈W. Therefore, z(x, t)≥ 0, ∀(x, t)∈ W̄.

Lemma 3 (Stability Estimate). Suppose u(x, t) be the solution of (1), then it satisfies

||u(x, t)||W̄ ≤ ||u(x, t)||∂W +
|| f (x, t)||W̄

β
.
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Proof. Consider the barrier functions

ð±(x, t) =||u(x, t)||∂W +
|| f (x, t)||W̄

β
±u(x, t).

On the boundary points

ð±(0, t) =||u(0, t)||∂W +
|| f (0, t)||W̄

β
±u(0, t)≥ 0,

ð±(1, t) =||u(1, t)||∂W +
|| f (1, t)||W̄

β
±u(1, t)≥ 0,

and in the interior points,

Lεð±(x, t) =−b(x, t)[||u(x, t)||∂W +
|| f (x, t)||W̄

β
]±Lεu(x, t)

≤−β [||u(x, t)||∂W +
|| f (x, t)||W̄

β
]± f (x, t)≤ 0.

Using Lemma 2, ð±(x, t)≥ 0, ∀(x, t) ∈ W̄. This implies that ||u(x, t)||W̄ ≤ ||u(x, t)||∂W +
|| f (x,t)||W̄

β
.

Theorem 1. Under the compatibility conditions (3) and (4), problem (1) satisfies the following bounds
for 0≤ i+3 j ≤ 4 ∣∣∣∣ ∂ i+ j

∂xi∂ t j u(x, t)
∣∣∣∣≤C(1+ ε

−i/2exp(−x

√
β

ε
)), (x, t) ∈ W̄ .

Proof. For a fixed i = 0 and on the boundaries x = 0 and x = 1 of 	̄ we have u = 0, therefore ut = 0.
On the boundaries of t = 0, we have u = 0 therefore ux = 0 and uxx = 0. Hence from (1) we have
ut(x,0) = f (x,0). Since f is bounded, we can choose large K1 such that |ut | ≤ K1.
Now, consider the operator Lεu(x, t)≡ εuxx +a(x, t)ux−b(x, t)u(x, t)−ut(x, t) = f , and differentiating
with respect to t we have,

Lεut(x, t)≡ (εuxx +a(x, t)ux−b(x, t)u(x, t)−ut(x, t))t = ft .

This implies Lεut(x, t)≤ K2, since f is smooth. Since the operator Lε satisfies the minimum principle

on 	̄, we can conclude by the above estimate |ut | ≤C on 	̄. Thus, |ut | ≤C exp(−x
√

α

ε
) for 0≤ x≤ 1.

To bound the derivatives of the solution in the spatial domain, consider the cases for a fixed j = 0.
For i = 0, from Lemma 1 we have |u| ≤C. For i = 1, by using arguments in [6], construct the neigh-

bourhood of I = (0,
√

ε), ∀r ∈ I. For some r∗ ∈ I by mean value theorem, we have

ux(r∗) =
u(
√

ε)−u(0)√
ε

.

It implies that
|ux(r∗)|= ε

−1/2 ∣∣u(√ε)−u(0)
∣∣≤Cε

−1/2||u||. (7)

Now, Eq. (1) can be rewritten as

Lεu(x, t)≡ εuxx +(au)x− (ax +b)u−ut = f ,
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which implies
εuxx +(au)x = f +(ax +b)u+ut .

So ∫ r

r∗
(εuxx +(au)x)dx =

∫ r

r∗
( f +(ax +b)u+ut)dx,

which gives

(εux +(au))
∣∣r
r∗ =

∫ r

r∗
( f +(ax +b)u+ut)dx≤C

∫ r

r∗
(|| f ||+ ||u||+ ||ut ||)dx≤Cε

1/2.

Now,
εux(r, t)+a(r, t)u(r, t)≤ εux(r∗, t)+a(r∗, t)u(r∗, t)+Cε

1/2.

Since for r ∈ (0,
√

ε), |a(r, t)| =
∣∣a0(r, t)rk

∣∣ ≤ Cεk/2, k = 1,2,3, . . . and using Eq. (7), we have the
following

|ux(r, t)≤|a(r∗, t)ux(r∗, t)|+ |
a(r, t)u(r, t)

ε
|+ |a(r

∗, t)u(r∗, t)
ε

|+Cε
−1/2

≤c1ε
−1/2 + c2ε

k/2−1 + c3ε
k/2−1 +Cε

−1/2

≤C4ε
−1/2 ≤C(1+ ε

−1/2 exp(−x

√
β

ε
)).

For i = 1, the process is done. In the same manner, bound can be established for the remaining higher
order derivatives using repeated differentiation.

3 Formulation of numerical scheme

To obtain the full discrete scheme, first discretize the time variable using implicit Euler method with
uniform mesh and then apply non-standard finite difference technique [14] in space variable.

3.1 Temporal semi-discretization

We discretize the time domain [0,T] using uniform mesh with length k by

W̄t
M
=

{
t j = jk, j = 0,1, . . . ,M, k =

T
M

}
, (8)

where M is the number of mesh intervals in the temporal discretization. Now, using implicit Euler
method, we have

εu j+1
xx (x)+a j+1(x)u j+1

x (x)−b j+1(x)u j+1(x)−D−t u j+1(x) = f j+1(x),
u(0, t j+1) = φ(t j+1),u(1, t j+1) = ψ(t j+1),u(x,0) = u0(x),
x ∈ 	, 0≤ j ≤M−1,

(9)

where

D−t u j+1(x) =
u j+1(x)−u j(x)

k
.
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The semi-discretized problem (9) can be rewritten as
L̂εu j+1(x) = f j+1(x)− u j(x)

k ,

u(0, t j+1) = φ(t j+1),u(1, t j+1) = ψ(t j+1),u(x,0) = u0(x),
x ∈ 	, 0≤ j ≤M−1,

(10)

where
L̂εu j+1(x) = εu j+1

xx (x)+a j+1(x)u j+1
x (x)− (b j+1(x)+

1
k
)u j+1(x).

Lemma 4 (Minimum principle for time semi-discretization). Suppose z j+1(x) be smooth function
satisfying z j+1(0) ≥ 0,z j+1(1) ≥ 0 and L̂εz j+1(x) ≤ 0, ∀x ∈ 	. Then z j+1(x) ≥ 0, ∀x ∈ 	̄ and
j = 0,1,2, . . . ,M−1.

Proof. let ` ∈ 	 such that z j+1(`) = minz j+1(x)< 0, ∀x ∈ 	, which implies that (z j+1(`))
′
= 0 and

(z j+1(`))
′′ ≥ 0. Then, we have

L̂εz j+1(`) =
ε

2
(z j+1(`))

′′
+

a j+1(x)
2

(z j+1(`))
′− c j+1(x)

2
(z j+1(`))> 0,

since c j+1(`) = b j+1(`)+ 2
k ≥ β + 2

k > 0. This contradict the assumption that L̂εz j+1(x)≤ 0. Therefore,
z j+1(x)≥ 0 on W̄ .

Lemma 5. If u j+1(0)≥ 0 and u j+1(1)≥ 0, then

∣∣u j+1(x)
∣∣≤max{u j+1(0),u j+1(1)}+max

x∈D

|L̂εu j+1(x)|
β

.

Proof. The proof is similar to the proof in [5].

The local error of the time semi-discretization method (9) is given by e j+1 ≡ u(x, t j+1)− û j+1(x),
where û j+1(x) is the solution of{

L̂ε û j+1(x) = f j+1(x)− u j(x)
k ,

û(0, t j+1) = φ(t j+1), û(1, t j+1) = ψ(t j+1), û(x,0) = u0(x),0 < x < 1.
(11)

Theorem 2. Suppose that ∣∣∣∣∂ iu
∂ t i

∣∣∣∣≤C, (x, t) ∈ W̄ f or 0≤ i≤ 2.

The local truncation error at ( j+1)th time step is given by |e j+1| ≤Ck2.

Proof. Using Taylor series expansion, we have

u(x, t j+1) = u(x, t j)+ kut(x, t j)+O(k2). (12)

Then

u(x, t j+1)−u(x, t j)

k
=ut(x, t j)+O(k)

=ε(uxx)
j+1 +(a(x) j+1(ux)

j+1− (b(x)) j+1(u(x)) j+1− f j+1(x)+O(k).
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Now, it can be seen that the local error is the solution of

L̂εe j+1 = O(k2),

e j+1(0) = e j+1(1) = 0.

Then, Lemma 5 gives the required result.

The local error estimate of each time step contributes to the global error in the temporal semi-
discretization which is defined, at t j, as E j = u(x, t j)−u j(x).

Theorem 3. The global truncation error for temporal discretization up to jth time level is given by

||E j|| ≤Ck, ∀ j ≤ T
k
.

Proof. Using the local error estimate up to jth time step, we obtain the global error estimate at jth time
step as follows:

||E j||= ||
j

∑
i=1

ei|| ( j ≤ T
k
)

≤ ||e1||+ ||e2||+ ||e3||+ · · ·+ ||e j||
≤C1( jk).k

≤C1T (k) (Since jk ≤ T )

≤Ck, C =C1T.

3.2 Spatial semi-discretization

For the spatial derivative approximations, the procedures of non-standard finite difference approxima-
tions stated in [14] are used. The spatial domain 	̄ = [0,1] is discretized using uniform space length h
as

	̄N =

{
xi = ih, i = 1, . . . ,N−1,x0 = 0,xN = 1, h =

1
N

}
, (13)

where N is the number of mesh intervals in the spatial discretization. Now, consider (10) using the lower
bounds of the coefficients and the homogeneous part

εuxx +αux−βu = 0. (14)

εuxx +αux = 0. (15)

According to [1], the layer behavior of (14) and (15) are the same. The finite difference scheme that
replaced h2 by a non-negative denominator function ξ 2 is

ε
Ui+1−2Ui +Ui−1

ξ 2
i

+a
Ui+1−Ui

h
= 0. (16)
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We can find ξ 2
i using the following procedures. First, we rewrite equation (15) equivalently as a first-

order coupled system of differential equations

du
dx

= y, (17)

dy
dx

=
−α

ε
y. (18)

From (18) we have y(x) = exp(−α

ε
x). By applying the first order difference scheme for (17) as

yi =
Ui+1−Ui

h
= exp(−α

ε
xi), (19)

and then substituting (19) into (16), we obtain the denominator function ξ 2
i = hε

α
(exp(hα

ε
)−1) ≡ h2 +

O(h3

ε
). So (16) becomes

ε
(Ui+1−2Ui +Ui−1)

hε

α
(exp(hα

ε
)−1)

+α
(Ui+1−Ui)

h
= 0.

Therefore, h2 can be replaced by the denominator function ξ 2 = hε

α
(exp(hα

ε
)−1).

Adopt this denominator function to the variable coefficient problem written as

ξ
2
i, j+1 =

hε

a j+1
i

(exp(
ha j+1

i
ε

)−1), (20)

where ξ 2
i, j+1 is a function of ε,h and a j+1

i = a(xi, t j+1). Using (10) and (20), the full discrete scheme is

K̂ε

N
U j+1(xi)≡ ε

(U j+1
i+1 −2U j+1

i +U j+1
i−1 )

ξ 2
i, j+1

+a j+1
i

(U j+1
i+1 −U j+1

i )

h
− (b j+1

i +
1
k
)U j+1

i

= f j+1
i −

U j
i

k
,

u j+1
0 = φ(t j+1), u j+1

N = ψ(t j+1), u0
i = u0(xi), i = 1,2,3, . . . ,N−1, j = 0,1,2, . . . ,M−1,

(21)

After rearranging the terms in (21), we arrive at the following recurrence relation

r−i U j+1
i−1 + rc

i U
j+1

i + r+i U j+1
i+1 = H j

i , (22)

where the coefficients are given by

r−i =
ε

ξ 2
i, j+1

,

rc
i =−(

2ε

ξ 2
i, j+1

+
a j+1

i
h

+b j+1
i + 1

k ),

r+i =
ε

ξ 2
i, j+1

+
a j+1

i
h

,

H j
i = f j+1

i −
U j

i
k
.

Since |rc
i | ≥

∣∣r−i ∣∣+ ∣∣r+i ∣∣ , the tri-diagonal system (22) is diagonally dominant system of equations. So
it has a unique solution. Thus, we can use any tri-diagonal solver, such as Thomas algorithm, to solve
this system of equations.
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4 Stability and convergence analysis

In this section, we study the discrete minimum principle, stability and ε−uniform convergence for the
scheme (21).

Lemma 6 (The discrete minimum principle). Assume that U j+1
0 ≥ 0,U j+1

N ≥ 0 and L̂ N
ε U j+1

i ≤ 0
f or 0 < i < N,0≤ j < M. Then, U j+1

i ≥ 0 f or 0 < i < N,0≤ j < M.

Proof. Suppose there exists s ∈ {0,1,2, . . . ,N} such that U j+1
s = min

0≤i≤N
U j+1

i < 0 which implies k 6= 0

and k 6= N. Also we have (U j+1
s+1 −U j+1

s )> 0 and (U j+1
s−1 −U j+1

s )> 0. Then

ˆK N
ε u j+1

s = ε
(U j+1

s+1 −2U j+1
s +U j+1

s−1 )

ξ 2 +a j+1
s

(U j+1
s+1 −U j+1

s )

h
− (b j+1

s +
1
k
)U j+1

s

= ε
(U j+1

s+1 −U j+1
s )+(U j+1

s−1 −U j+1
s )

ξ 2 +a j+1
s

(U j+1
s+1 −U j+1

s )

h
− (b j+1

s +
1
k
)U j+1

s > 0,

since (b j+1
s + 1

k )> β > 0 . It contradict the assumption that ˆK N
ε U j+1

i ≤ 0 f or 0 < i < N,0≤ j < M.
Therefore, the operator ˆK N

ε satisfies the discrete minimum principle.

Lemma 7. The solution of the discrete problem (21) satisfies the bound∣∣∣u j+1
i

∣∣∣≤ ∣∣∣∣∣∣L̂ε

N
u j+1

i

∣∣∣∣∣∣+max(|ψ(t j+1)|, |φ(t j+1)|).

Proof. Consider the barrier function

ψ
±(xi, t j+1) =

∣∣∣∣∣∣L̂ε

N
u j+1

i

∣∣∣∣∣∣+max(|ψ(t j+1)|, |φ(t j+1)|)±u j+1
i .

At the boundary points we have

ψ
±(0, t j+1) =

∣∣∣∣∣∣L̂ε

N
u j+1

0

∣∣∣∣∣∣+max(|ψ(t j+1)|, |φ(t j+1)|)±u j+1
0 ≥ 0,

ψ
±(1, t j+1) =

∣∣∣∣∣∣L̂ε

N
u j+1

N

∣∣∣∣∣∣+max(|ψ(t j+1)|, |φ(t j+1)|)±u j+1
N ≥ 0.

For the interior points we have

L̂ε

N
ψ
±
i, j+1 = εδ

2
x ψ
±
i, j+1 +a j+1

i D+
x ψ
±
i, j+1− (b j+1

i +
1
k
)ψ±i, j+1

= εδ
2
x ψ
±
i, j+1 +a j+1

i D+
x ψ
±
i, j+1− (b j+1

i +
1
k
)(
∣∣∣∣∣∣L̂ε

N
u j+1

i

∣∣∣∣∣∣+max(|ψ(t j+1)|, |φ(t j+1)|)±u j+1
i )

= − (b j+1
i +

1
k
)(
∣∣∣∣∣∣L̂ε

N
u j+1

i

∣∣∣∣∣∣+max(|ψ(t j+1)|, |φ(t j+1)|))± L̂ε

N
u j+1

i

≤ 0.

Now, using Lemma 6, we get the desired result.
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Lemma 8. For ε → 0 and fixed mesh, the following holds

lim
ε→0

exp(−xi
√
(β/ε))

(
√

ε)s = 0, s ∈ Z+.

Proof. We have

exp(−xi
√

(β/ε))

(
√

ε)s ≤
exp(−x1

√
(β/ε))

(
√

ε)s =
exp(−h

√
(β/ε))

(
√

ε)s f or i = 1,2, . . . ,N.

Let η = 1/
√

ε, then

lim
ε→0

exp(−h
√
(β/ε))

(
√

ε)s = lim
η→∞

ηs

exp(h
√

βη)
.

Applying L’Hospital’s rule repeatedly, we have

lim
ε→0

exp(−h
√

(β/ε))

(
√

ε)s = lim
η→∞

ηs

exp(h
√

βη)
= lim

η→∞

s!

(h
√

β )s exp(h
√

βη)
= 0.

Theorem 4. Let U j+1(xi) and U j+1
i be the exact solution of (1) and the numerical solution of (21),

respectively. Then, the proposed scheme satisfies the following error bound at ( j+1)th time level;∣∣∣u j+1(xi)−U j+1
i

∣∣∣≤CN−1.

Proof. The truncation error in the spatial discretization is∣∣∣L̂ε

N
(U j+1(xi)−U j+1

i )
∣∣∣= ∣∣∣(L̂εU j+1(xi)− L̂ε

N
U j+1

i )
∣∣∣

≤
∣∣∣∣ε( d2

dx2 −δ
2
x )U

j+1
i +a j+1

i (
d
dx
−D+)U j+1

i

∣∣∣∣ ,
where

δ
2
x U j+1

i =
U j+1

i+1 −2U j+1
i +U j+1

i−1

ξ 2 and D+
x U j+1

i =
(U j+1

i+1 −U j+1
i )

h
.

Now, using Taylor series expansion of Ui+1, Ui−1, ξ 2 and bounds on the derivatives of U from Theorem
1 we have the following:∣∣∣(L̂εU j+1(xi)− L̂ε

N
U j+1

i )
∣∣∣≤ ∣∣∣∣∣(ε(1− h2

ξ 2 )−
ha j+1

i
2

)
d2U j+1(xi)

dx2

−a j+1
i

h2

6
d3U j+1(xi)

dx3 −a j+1
i

εh4

12ξ 2
d4U j+1(xi)

dx4

∣∣∣∣∣
≤C(

∣∣h(1+ ε
−1e−xi

√
(β/ε))

∣∣+ ∣∣h2(1+ ε
−3/2e−xi

√
(β/ε))

∣∣
+
∣∣εh4

ξ 2 (1+ ε
−2e−xi

√
(β/ε))

∣∣)
≤C(|h(1+ ε

−1e−xi
√

(β/ε))|+ |h2(1+ ε
−3/2e−xi

√
(β/ε))|

+ |h3(1+ ε
−2e−xi

√
(β/ε))|).

Since h3 < h2 < h and using Lemma 7 and 8, we have
∣∣∣(U j+1(xi)−U j+1

i )
∣∣∣≤CN−1.
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Theorem 5. The solution U j+1
i of the fully discrete scheme (21) converges uniformly to the solution

u(x, t) of (1) and the error estimate is given by

sup
0<ε�1

∣∣∣u(xi, t j)−U j+1
i

∣∣∣≤C(N−1 +M−1), i = 0,1,2, . . . ,N, j = 0,1,2, . . . ,M.

Proof. The uniform convergence of the scheme follows from the Theorems 3 and 4. We justify it as
follows:

sup
0<ε�1

∣∣∣u(xi, t j+1)−U j+1
i

∣∣∣≤ sup
0<ε�1

∣∣u(xi, t j+1)−U j+1(xi)
∣∣+ sup

0<ε�1

∣∣∣U j+1(xi)−U j+1
i

∣∣∣≤C(N−1 +M−1),

for i = 0,1,2, . . . ,N, and j = 0,1,2, . . . ,M.

To enhance the order of convergence, we applied the Richardson extrapolation technique as follow.
Let U2N,2M

i, j+1 denote for an approximate solution on 2N and 2M number of mesh intervals by including
the mid point (xi+1/2, t j+1/2) into the mesh points. Then the extrapolation formula becomes Uext

i, j+1 =

2U2N,2M
i, j+1 −UN,M

i, j+1. Thus, the uniform error bound becomes

sup
0<ε�1

∣∣u(xi, t j)−Uext
i, j+1

∣∣≤C(N−2 +M−2), i = 0,1,2, . . . ,N, j = 0,1,2, . . . ,M.

5 Numerical results and discussion

In this section, we conduct the numerical experiments on two test problems to validate the theoretical
results. The numerical results are also compared with the scheme available in the literature for the
considered class of problems to demonstrate the accuracy and acceptance of the proposed scheme.

Example 1. Consider singularly perturbed multiple boundary turning points problem in [7]

εuxx(x, t)+ xpux(x, t)−u(x, t)−ut(x, t) = x2−1, (x, t) ∈W,

u(x,0) = 0, 0≤ x≤ 1, u(0, t) = t, u(1, t) = 0, 0≤ t ≤ 1.

Example 2. Consider singularly perturbed multiple boundary turning points problem in [21]

εuxx(x, t)+ xpux(x, t)−u(x, t)−ut(x, t) = x2−1, (x, t) ∈W,

u(x,0) = (1− x)2, 0≤ x≤ 1, u(0, t) = 1+ t2, u(1, t) = 0, 0≤ t ≤ 1.

In science and modern life, the convection-diffusion-reaction (CDR) differential equations provide a
beneficial, influential, and vital mathematical model. It describes how the concentration of the substance
is distributed. When the CDR model is dominated by convection, then it is called singularly perturbed
CDR equation. Some numerical methods have been activated to solve them during some decades, and
new techniques still draw more attention. In these examples, we assume the diffusion coefficient (viscos-
ity) is small i.e 0 < ε � 1 and the convective coefficient (velocity) is both linear(p = 1) and non-linear
(p > 1) distribution. To propagate the numerical solutions of these initial boundary value problems, we
have used MATLAB programming.
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For each ε , maximum absolute errors are used to measure the accuracy of the method. Since exact
solutions of these two examples are not available, double mesh principle is used to estimate maximum
pointwise error before and after extrapolation

eN,M
ε = max

0≤i, j≤N,M

∣∣UN,M(xi, t j)−U2N,2M(xi, t j)
∣∣ ,

(eN,M
ε )ext = max

0≤i, j≤N,M

∣∣(UN,M(xi, t j))
ext − (U2N,2M(xi, t j))

ext
∣∣ ,

respectively. The rate of convergence is

pN,M
ε = log2(e

N,M
ε /e2N,2M

ε ).

Furthermore, ε-uniform point-wise error is defined by

eN,M = max
ε

eN,M
ε ,

and its corresponding ε− uniform rate of convergence is

pN,M = log2(e
N,M/e2N,2M).

We computed eN,M, eN,M
ε and pN,M using the developed scheme (21) for each model example. The

results are displayed using tables and figures. The maximum absolute error and their corresponding rate
of convergence for Example 1 before and after extrapolation are listed for different values of ε and N =M
in Table 1. The numerical results in Table 1 show that the proposed method is ε−uniformly convergent.
Moreover, the results confirm that the proposed method has second order convergence after extrapolation.
In Table 2, the maximum ε-uniform absolute error and their corresponding order of convergence obtained
using the proposed method is compared with the method given in [8, 21] for Example 2 at p = 1. From
this Table it can be observed that as the mesh parameter increases the proposed method has relatively
rapid convergence and better accuracy than the compared methods. In Table 4, the maximum absolute
error and their corresponding order of convergence obtained using the proposed method is compared
with the method given in [7] for Example 1 at p = 1 and ε = 2−10. From the comparison it is observed
that the proposed method has better accuracy and order of convergence than the scheme in [7]. The
larger errors in [7, 8] are the price it pays for straggling to resolve the boundary layer due to the meshes’
design, which is condensed in the boundary layer region. Further, in Table 3, we listed ε−uniform
point wise error and their corresponding rate convergence for different values of p for Example 2. From
the results we observed that the error estimate does not depend on the values of p. Some numerical
approximate values are displayed in Table 5. This Table shows that, when ε = 1 the solution changes
smoothly throughout the domain. When ε = 10−4, the solution changes from 1 to 0.5712 for Example 1
and 2 to 0.7303 for Example 2 near the boundary layer x = 0. This difference is large compared with the
remaining corresponding difference. Therefore, as ε → 0, the solution shows an abrupt change near the
boundary layer x = 0. Surface plots for the numerical solution of the proposed method are displayed in
Figure 1 and Figure 3 for Example1 and Example 2 respectively. Each Figure reveal that the boundary
layer is located on the left side of the spatial domain as ε → 0. As one observes in Figure 1 and Figure
3 as ε → 0; the boundary layer formation becomes more visible because of the abrupt change of the
solution near x = 0. Figure 2 and Figure 4 are plotted for Examples 1 and 2 respectively, at different
time levels to show the changes in the boundary layer with respect to the perturbation parameter. As the
perturbation parameter ε decreases to zero, the width of the boundary layer also decreases.
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Table 1: Maximum absolute error and rate of convergence for Example 1 at p = 1.

Before Extrapolation
ε ↓ M = N → 32 64 128 256 512

2−10 5.7174e-03 3.1358e-03 1.5466e-03 7.1861e-04 3.3495e-04
0.8665 1.0197 1.1058 1.1013

2−16 5.7537e-03 3.3039e-03 1.8274e-03 9.8668e-04 5.3477e-04
0.8003 0.8544 0.8891 0.8837

2−20 5.7537e-03 3.3039e-03 1.8274e-03 9.8668e-04 5.3477e-04
0.8003 0.8544 0.8891 0.8837

eN,M 5.7537e-03 3.3039e-03 1.8274e-03 9.8668e-04 5.3477e-04
pN,M 0.8003 0.8544 0.8891 0.8837

After Extrapolation
2−10 5.3740e-04 1.3582e-04 3.3867e-05 8.0738e-06 1.8407e-06

1.9843 2.0037 2.0686 2.1330
2−16 5.3740e-04 1.3584e-04 3.4146e-05 8.5598e-06 2.1429e-06

1.9841 1.9921 1.9961 1.9980
2−20 5.3740e-04 1.3584e-04 3.4146e-05 8.5598e-06 2.1429e-06

1.9841 1.9921 1.9961 1.9980
eN,M 5.3740e-04 1.3584e-04 3.4146e-05 8.5598e-06 2.1429e-06

1.9841 1.9921 1.9961 1.9980

Table 2: Comparison of eN,M and PN,M for Example 2 before extrapolation at p = 1.

Methods↓ M = N → 32 64 128 256
Proposed Method eN,M 5.0526e-03 2.6737e-03 1.3801e-03 7.0249e-04

pN,M 0.9182 0.9541 0.9742 —
Method in [21] eN,M 8.0607e-03 4.4718e-03 2.4120e-03 1.2744e-03

pN,M 0.8501 0.8906 0.9204 —
Method in [8] eN,M 3.0430e-02 1.1938e-02 6.1610e-03 3.2113e-03

pN,M 1.3499 0.9543 0.9400 —

Table 3: ε−uniform absolute error and rate of convergence for Example 2 before extrapolation for different values
of p.

p ↓ M = N → 32 64 128 256 512
1 5.0526e-03 2.6737e-03 1.3801e-03 7.0249e-04 3.5479e-04

0.9182 0.9541 0.9742 0.9855
2 5.9998e-03 3.2764e-03 1.7260e-03 8.9055e-04 4.5355e-04

0.8728 0.9247 0.9546 0.9734
3 6.5480e-03 3.6504e-03 1.9476e-03 1.0138e-03 5.1897e-04

0.8430 0.9064 0.9419 0.9661
4 6.8857e-03 3.9140e-03 2.1088e-03 1.1045e-03 5.6777e-04

0.8149 0.8923 0.9330 0.9600
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Table 4: Comparison of maximum absolute error and rate of convergence for Example 1 before extrapolation for
ε = 2−10 with different values of p.

p ↓ M = N → 32 64 128 256 512
Proposed method

2 6.5814e-03 2.9461e-03 1.2898e-03 5.8669e-04 2.7855e-04
1.1596 1.1916 1.1365 1.0747

4 7.0197e-03 3.3075e-03 1.3045e-03 4.2805e-04 2.0726e-04
1.0856 1.3423 1.6076 1.0464

6 7.0203e-03 3.3495e-03 1.2431e-03 3.7020e-04 1.7553e-04
1.0676 1.4300 1.7476 1.0766

Method in [7] . . .
2 1.11e-02 5.56e-03 3.07e-03 1.69e-03 8.96e-04

1.00 0.86 0.86 0.92
4 1.11e-02 5.59e-03 3.26e-03 1.81e-03 9.60e-04

0.99 0.78 0.85 0.91
6 1.11e-02 5.86e-03 3.30e-03 1.81e-03 9.53e-04

0.92 0.83 0.87 0.93

Table 5: Numerical solution U j+1
i for M = N = 8 and p = 1 for a fixed t = 1.

Example 1 ε = 1 ε = 10−2 ε = 10−4

x ↓ U →
0 1 1 1

0.125 0.8384 0.5913 0.5712
0.25 0.6898 0.4896 0.4899
0.375 0.5522 0.3840 0.3841

0.5 0.4242 0.2722 0.2722
0.625 0.3049 0.1695 0.1695
0.75 0.1941 0.08658 0.08657
0.875 0.09224 0.02918 0.02918

1 0 0 0

Example 2 ε = 1 ε = 10−2 ε = 10−4

x ↓ U →
0 2 2 2

0.125 1.643 0.8393 0.7803
0.25 1.325 0.5910 0.5891

0.375 1.04 0.4248 0.4246
0.5 0.7852 0.2859 0.2859

0.625 0.5559 0.1731 0.1731
0.75 0.3498 0.08723 0.08723

0.875 0.1649 0.02924 0.02924
1 0 0 0

6 Conclusions

Singularly perturbed convection-diffusion parabolic PDE with boundary turning point problems are
considered. The presence of the parameter ε and boundary turning point make the problem stiff. The
solution of the considered problem exhibits a left boundary layer on the spatial domain. The solution to
this problem at small values of ε has a large oscillatory solution in the boundary layer region. Standard
numerical methods on uniform mesh fail to capture the singularly perturbed oscillatory nature of the
solution as the perturbation parameter ε → 0. To resolve this behaviour of the solution, we developed
a numerical scheme using implicit Euler in time and the non-standard finite difference method in space
with uniform meshes. The analysis justified that, the scheme is stable and parameter-uniform second-
order convergence. The accuracy of the method is not affected by the value of p. The analysis is also
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(a) ε = 1 (b) ε = 2−6

(c) ε = 2−12 (d) ε = 2−20.

Figure 1: Numerical solution profile (N = M = 64) for Example 1 at p = 1.

(a) ε = 1 (b) ε = 10−1

(c) ε = 10−2 (d) ε = 10−3

Figure 2: Numerical solution profile (M = N = 64) for p = 2 at different time levels for Example 1.

valid for p = 0. The solution behaviour on the perturbation parameter is displayed using Figures and Ta-
bles. The surface plot of Example 1 in Figure 1a shows, the solution has uniform behaviour throughout
the domain at ε = 1, and Figures 1b-1d show the boundary layer region becomes more evident around
x = 0 because of the solution’s sudden change around that region as ε → 0. This behaviour is repeated
for Example 2 in Figure 3. From Figures 2 and 4, it has been seen that the numerical solution profile for
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(a) ε = 1 (b) ε = 2−6

(c) ε = 2−12 (d) ε = 2−20

Figure 3: Numerical solution profile (N = M = 64) for Example 2 at p = 2.

(a) ε = 10−1 (b) ε = 10−3

Figure 4: Numerical solution profile (M = N = 64) for p = 2 at different time levels for Example 2.

different time levels is close to each other except in the boundary layer region near x = 0 and the width
of the boundary layer decreases as the singular perturbation parameter ε→ 0. For a fixed singular pertur-
bation parameter ε = 2−10 with different values of p, the maximum absolute error and its corresponding
order of convergence in the comparison Table 4 show the proposed method has been found to produce
more accurate numerical results. The estimated numerical values of U in Table 5 demonstrate an abrupt
change in the solution around x = 0 as ε→ 0. The numerical solution of the considered model examples
agreed with the theoretical findings. These models are significant examples of singularly perturbed CDR
equation that arises in surface mass transport close to the peak of an oceanic rise. The proposed method
can be extended to solve singularly perturbed parabolic turning point problems with an interior layer and
higher dimensions.
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