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Abstract. Since system identification of a tumor model is a primary need for controlling tumor model
system, accessing suitable and applicable identification methods is a necessary object. In this paper,
firstly, for estimating controlled auto-regressive moving average (CARMA) systems, two identification
methods, namely generalized projection algorithm (GPA) and two-stage GPA (2S-GPA), are introduced
and presented in order to estimate unknown parameters of a specific and vital tumor model. Furthermore,
effectiveness of such methods, like convergence rate and estimation error, are discussed and considered.
The introduced algorithms are simulated to prove these methods effectiveness, and data derived from the
simulations are depicted through tables and figures.
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1 Introduction

In recent years, numerical methods have gained a plethora of attention for solving matrix equations [14,
Page 1] [9, Page 43] [3, Page 1] [6, Page 1] [5, Page 1-2] parameter estimation, and filtering problems [17,
Page 3], [23, Page 3], [8, Page 1]. Parameter estimation methods also use signal modeling [20, Page 1]
and process control [21, Page 1-2]. The iterative identification approaches benefit from making ample
usage of all output input information and enhancing the system identification precision [19, Page 1], [22,
Page 1]. In control engineering, many multi-variable systems having complicated configurations and
disturbances have uncertainty, including multi-input multi-output systems (MIMO), multiple input single
output (MISO) systems and single input multiple output (SIMO) systems.
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Many efforts have been made in the realm of CARMA system identification [15, Page 1]. In the
literature, Raja et al. presented a two stage least mean square fractional identification method for system
idenification of a typical CARMA system [15, Page 3]. In [13, Page 4], nature-inspired heuristic set of
rules for system identification of the CARMA system is introduced by Mehmood et al. For Hammerstein
nonlinear CARMA systems, filtering-based least-squares system identification approaches rendered and
discussed in [12, Page 2] by Mao et al.. In [11, Page 4], Hu et al, introduced two novel GPA for estimating
stochastic systems and auto-regressive moving average (ARMA) systems.

In 2020, new cancer cases rate and cancer death rate was 19.3 million and 10.0 million per yea [18,
Page 1]. So, finding a solution to tackle the problem of curing cancer is an integral issue [16, Page 1], [2,
Page 1] [7, Page 1]. In order to cure cancer, accessing a suitable mathematical model is a priority [1, Page
1],

In [4, Page 3], an appropriate mathematical model is presented, and it was shown that optimal control
therapy is more efficient than traditional pulsed chemotherapy. In order to control the tumor model,
either by optimal control, adaptive control, or other means, having an accurate estimation of the system’s
parameters is a necessity. In this paper, we aim to identify a study case derived at [4, Page 3].

Furthermore, since there has been no research done in estimating CARMA system parameters, by
taking advantage of generalized projection algorithms, in this contribution, our goal is to render two
novel approaches for estimating parameters of a CARMA tumor model by direct use of GPA. At first,
we introduce the mathematical terms of a generic CARMA model system. Afterward, the generalized
projection methods are introduced mathematically, and two algorithms are depicted step-by-step. The
step by step algorithms are represented in a simple frame for the reader to simplify them for further use.
Finally, the effectiveness of presented algorithms for estimation of tumor model system is shown and
brought up. Novelties of this paper are listed as follows:

1. Mathematical proof of generalized projection algorithm (GPA) and two-stage GPAs algorithms
(2S-GPAs) for CARMA systems;

2. Introduction of GPA for CARMA systems;

3. Introduction of 2S-GPA for CARMA systems;

4. Showing effectiveness and convergence of the introduced algorithms for estimating CARMA sys-
tem parameters;

5. Identification of parameters of a particular tumor model system.

The rest of the contribution is shaped as follows: In the following section, a nuance characteristic
of the system configuration regarding with the CARMA configuration is brought up. Also Section 2
includes the mathematics of two novel GPA algorithm. Section 3 describes a specific tumor model. In
Section 4, all the necessary simulations for showing the effectiveness of new algorithms are illustrated
by identifying a tumor model. Eventually, in Section 5, all the conclusions are derived.

2 System configuration and novel identification algorithms

Take the following controlled auto-regressive moving average (CARMA) system into consideration

A(q)y(t) = B(q)u(t)+D(q)ν(t). (1)
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Here u(t) and y(t) are the sequence of input and output of the system respectively and ν(t) is a sequence
of white noise with variance σ2 and zero mean. Also A(q), B(q), and D(q) are the polynomials in the
shift operator of unit backward , i.e., q−1u(t) = u(t−1). For simplicity in the rest of the paper, we have
the following notations: A := X , indicates A is determined as X ; I (In), is identity matrix of suitable size
(n× n); 1n, is a vector of n-dimensional with all elements equal to 1. The superscript T represents the
transpose of matrix and the norm of matrix X is determined by ‖X‖2 = tr(XXT ).

D

Figure 1: A system explained by configuration of CARMA.

According to the CARMA system illustrated in Figure 1, we define A(q), B(q), and D(q) as polyno-
mials of specific orders which are na, nb, nd , respectively. On the other hand, we have

A(q) := 1+
na

∑
i=1

aiq−i, (2)

B(q) :=
nb

∑
i=1

biq−i, (3)

D(q) := 1+
nd

∑
i=1

diq−i. (4)

Let n := na +nb +nd , the following parameters are defined:

Θ :=
[

θ

ϑ

]
∈ Rn, (5)

θ := [a1,a2, . . . ,ana ,b1,b2, . . . ,bnb ]
T ∈ Rna+nb , (6)

ϑ := [d1,d2, . . . ,dnd ]
T ∈ Rnc . (7)

Without loss of generality with the assumption y(t)= 0, u(t)= 0 and ν(t)= 0 for t ≤ 0, the corresponding
vectors of information are considered:

ϕ(t) :=
[

φ(t)
ψ(t)

]
∈ Rn, (8)

φ(t) :=
[
−y(t−1), −y(t−2), . . . , −y(t−na), u(t−1), u(t−2), . . . , u(t−nb)

]T ∈ Rna+nb ,
(9)

ψ(t) :=
[
ν(t−1), ν(t−2), . . . , ν(t−nd)

]T ∈ Rnd . (10)
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According to the equation (1), the following identification model is considered

y(t) =[1−A(q)]y(t)+B(q)u(t)+D(q)ν(t)

=(−a1q−1−a2q−2−·· ·−anaq−na)y(t)+(b1q−1 +b2q−2 + · · ·+bnbq−nb)u(t)

+(1+d1q−1 +d2q−2 + · · ·+dnd q−nd )ν(t)

=−a1y(t−1)−a2y(t−2)−·· ·−anay(t−na)

+b1u(t−1)+b2u(t−2+ · · ·+bnbu(t−nb)

+ν(t)+d1ν(t−1)+d2ν(t−2)+ · · ·+dnd ν(t−nd)

=[−y(t−1),−y(t−2), . . . ,−y(t−na),+u(t−1),+u(t−2), . . . ,+u(t−nb)]θ

+[ν(t−1),+ν(t−2), . . . ,+ν(t−nd)]ϑ +ν(t).

In summary we have

y(t) = φ
T (t)θ +ψ

T (t)ϑ +ν(t), (11)

= ϕ
T

Θ+ν(t). (12)

Now based on CARMA system configuration we present two novel parameter estimation method.

2.1 Generalized projection algorithm

Acoording to the system model presented in equation (12), a gradient criterion function is determined as

J1(Θ) =
1
2
[y(t)−ϕ

T
Θ]2.

Now we define µ(t) ≥ 0 which is the scale of step or the factor of convergence . Utilizing the negative
gradient quest method to make J1(Θ) minimum, the following gradient identification approach is defined

Θ̂(t) = Θ̂(t−1)−µ(t)∇[J1(Θ̂)(t−1)],

= Θ̂(t−1)+µ(t)ϕ(t)[y(t)−ϕ
T (t)Θ̂(t−1)],

= Θ̂(t−1)+µ(t)ϕ(t)e(t).

(13)

and e(t) is determined as
e(t) := y(t)−ϕ

T (t)Θ̂(t−1).

By replacing Θ = Θ̂(t), into J1(Θ), we have

J1(Θ̂(t)) =
1
2

(
y(t)−ϕ

T (t)[Θ̂(t−1)+µ(t)ϕ(t)e(t)]
)2

,

=
1
2

(
y(t)−ϕ

T (t)Θ̂(t−1)−µ(t)‖ϕ(t)‖2e(t)
)2

,

=
1
2

(
e(t)−µ(t)‖ϕ(t)‖2e(t)

)2
,

=
1
2

(
1−µ(t)‖ϕ(t)‖2

)2
e2(t).
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Considering e(t) 6= 0, the most relevant choice in order to minimize J1(Θ̂(t)) is

µ(t) =
1

‖ϕ(t)‖2 . (14)

By taking advantage of the above equation, we can gain the projection algorithm for estimation of vector
of parameter Θ of the CARMA configuration in equation (12), as follow.

Θ̂(t) = Θ̂(t−1)+
ϕ(t)
‖ϕ(t)‖2 [y(t)−ϕ

T (t)Θ̂(t−1)]. (15)

In order to avoid singularity in the above equation, following relation will be used

Θ̂(t) = Θ̂(t−1)+
ϕ(t)

1+‖ϕ(t)‖2 [y(t)−ϕ
T (t)Θ̂(t−1)]. (16)

Note that Θ̂(0) = p−1
0 In, in which p0 is a preset and selective value which could be in order of 106. So

as to decrease the sensibility of the projection approach to noise, it is better to alter the vector of gain.
Imagine q is the length of data , and by defining a novel variable r(t), that will be increased by the rise
in the q and is defined as

r(t) := ‖ϕ(t)‖2 +‖ϕ(t−1)‖2 + · · ·+‖ϕ(t−q)‖2.

and could be represented as

r(t) = r(t−1)+‖ϕ(t)‖2 +‖ϕ(t−q)‖2.

By considering µ(t) = 1
r(t) , the vector of gain L(t) := ϕ(t)

‖ϕ(t)‖2 ∈ Rn, or L(t) := ϕ(t)
1+‖ϕ(t)‖2 ∈ Rn, could be

altered as follows

L(t) =
ϕ(t)
r(t)

=
ϕ(t)

r(t−1)+‖ϕ(t)‖2 +‖ϕ(t−q)‖2 .

In brief, considering the above equations, the GPA for identifying Θ has the following set of formulations:

Θ̂(t) = Θ̂(t−1)+
ϕ(t)
r(t)

e(t), where Θ̂(0) = p−1
0 In, p0 ∼ 106, (17)

e(t) = y(t)−ϕ
T (t)Θ̂(t−1), (18)

r(t) = r(t−1)+‖ϕ(t)‖2 +‖ϕ(t−q)‖2, r(0) = 1, (19)

ϕ(t) = [φ T (t),ψT (t)]T , (20)

φ(t) = [−y(t−1),−y(t−2), . . . ,−y(t−na),u(t−1),u(t−2), . . . ,u(t−nb)]
T , (21)

ψ(t) = [ν(t−1),ν(t−2), . . . ,ν(t−nd)]
T , (22)

Θ̂(t) = [θ̂ T (t), ϑ̂ T (t)]T , (23)

θ̂(t) = [â1(t), â2(t), . . . , ân(t), b̂1(t), b̂2(t), . . . , b̂n(t)]T , (24)

ϑ̂(t) = [d̂1(t), d̂2(t), . . . , d̂n(t)]T . (25)

The above equations introduced for the GPA used for the CARMA systems, are presented in Algorithm
1 and the flowchart is provided in Figure 2.
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Figure 2: GPA flowchart

Algorithm 1 GP algorithm.
1: t← 1
2: Θ̂(0)← 1n

p0

3: r(0)← 1
4: p0← 106

5: ε ← small positive value
6: u(t)← collect input data
7: y(t)← collect output data
8: Form φ(t), ψ(t), and ϕ(t) using equations (20-22)
9: while ‖Θ(t)−Θ(t−1)‖> ε do

10: Compute e(t) and r(t) using (18) and (19)
11: Update Θ(t) according to (17)
12: t← t +1
13: end while
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2.2 Two stage generalized projection algorithm

In this part of the paper the 2S-GP algorithm is introduced. In the following, two intermediate output
variables are defined

y1(t) := y(t)−ψ
T (t)ϑ , (26)

y2(t) := y(t)−φ
T (t)θ . (27)

Now the system in equation (11) is separated into two imaginary subsystems

y1(t) = φ
T (t)θ +ν(t), (28)

y2(t) = ψ
T (t)ϑ +ν(t). (29)

In order to tend y(t) to ϕT −Θ, the following cost functions are defined and tried to be minimized.

J2(θ) =
1
2
(
y1(t)−φ

T (t)θ
)2
, (30)

J3(ϑ) =
1
2
(
y2(t)−ψ

T (t)ϑ
)2
. (31)

Similar to GPA, by utilizing the negative gradient quest method the criterion functions J2(θ) and
J3(ϑ) are minimized and following gradient-based recursive relations are obtained

θ̂(t) = θ̂(t−1)+
φ(t)

1+‖φ(t)‖2 [y1(t)−φ
T (t)θ̂(t−1)], where θ̂(0) =

1na+b

p0
, (32)

ϑ̂(t) = ϑ̂(t−1)+
ψ(t)

1+‖ψ(t)‖2 [y2(t)−ψ
T (t)ϑ̂(t−1)], where ϑ̂(0) =

1nd

p0
. (33)

Substituting Eqs. (26)-(27) in the above equations give

θ̂(t) = θ̂(t−1)+
φ(t)

1+‖φ(t)‖2 [y(t)−ψ
T (t)ϑ −φ

T (t)θ̂(t−1)], (34)

ϑ̂(t) = ϑ̂(t−1)+
ψ(t)

1+‖ψ(t)‖2 [y(t)−φ
T (t)θ −ψ

T (t)ϑ̂(t−1)]. (35)

And the following error is defined

e(t) = y(t)−φ
T (t)θ̂(t−1)−ψ

T (t)ϑ̂(t−1). (36)

As to enhance the performance and decrease the algorithm’s sensitivity to noise, the length of data
window q is used. Two step-sizes, µθ (t) and µϑ (t), are used which have the following amounts

µθ (t) =
1

1+‖φ‖2 , µϑ (t) =
1

1+‖ψ‖2 .

and two fictitious variables are defined as

rθ (t) := ‖φ(t)‖2 +‖φ(t−1)‖2 + · · ·+‖φ(t−q)‖2 = rθ (t−1)+‖φ(t)‖2 +‖φ(t−q)‖2 ∈ R.
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rϑ (t) := ‖ψ(t)‖2 +‖ψ(t−1)‖2 + · · ·+‖ψ(t−q)‖2 = rϑ (t−1)+‖ψ(t)‖2 +‖ψ(t−q)‖2 ∈ R.

Using the above definitions, µθ (t) and µϑ (t), can be re-defined as

µθ =
1
rθ

, µϑ =
1
rϑ

.

Finally, the 2S-GPA can be made brief as

θ̂(t) = θ̂(t−1)+
φ(t)
rφ (t)

e(t), (37)

e(t) = y(t)−φ
T (t)θ̂(t−1)−ψ

T (t)ϑ̂(t−1), (38)

rθ (t) = rθ (t−1)+‖φ(t)‖2 +‖φ(t−q)‖2, (39)

ϑ̂(t) = ϑ̂(t−1)+
ψ(t)
rψ(t)

e(t), (40)

rϑ (t) = rϑ (t−1)+‖ψ(t)‖2 +‖ψ(t−q)‖2, (41)

φ(t) = [−y(t−1),−y(t−2), . . . ,−y(t−na),u(t−1),u(t−2), . . . ,u(t−nb)]
T , (42)

ψ(t) = [ν(t−1),ν(t−2), . . . ,ν(t−nd)]
T , (43)

θ̂(t) = [â1(t), â2(t), . . . , ân(t), b̂1(t), b̂2(t), . . . , b̂n(t)]T , (44)

ϑ̂(t) = [d̂1(t), d̂2(t), . . . , d̂n(t)]T . (45)

So, the identification procedure of the proposed algorithm is presented in Algorithm 2 and the
flowchart is provided in Figure 3.

Algorithm 2 2S-GP algorithm.
1: t← 1
2: θ̂(0)← 1n

p0

3: ϑ̂(0)← 1n
p0

4: rθ (0)← 1
5: rϑ (0)← 1
6: p0← 106

7: ε ← small positive value
8: u(t)← collect input data
9: y(t)← collect output data

10: Construct φ(t) and ψ(t) utilizing equations (42-43)
11: while ‖θ(t)−θ(t−1)‖+‖ϑ(t)−ϑ(t−1)‖> ε do
12: Compute e(t), rθ (t) and rϑ (t) using (38-39) and (41)
13: Update θ(t) and ϑ(t) according to (37) and (40)
14: t← t +1
15: end while
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3 Tumor model

A tumor model described in [4] is introduced in this section. I(t) indicates the immune cells number,
T (t) the tumor cells number, and N(t) the normal or host cells number, all at time t. So we have the three
equations of ordinary differential

Ṅ(t) = r2N(1−b2N)− c4T N,

Ṫ (t) = r1T (1−b1T )− c2IT − c3T N,

İ(t) = s+
ρIT

α +T
− c1IT −d1I.

(46)

In principle, the goal is for the tumor-free equilibrium to be stable, so that there is a possibility of
moving the system’s state toward the tumor-free point. Linearizing around this equilibrium point leads
to the following system Ṅ(t)

Ṫ (t)
İ(t)

=

r2−2r2b2 −c4 0
0 r1− c2 f

d1
− c3 0

0 ρ f
d1α
− c1 f

d1
−d1


N(t)

T (t)
I(t)

 . (47)
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Table 1: System values and parameters

parameters values parameters values
b2 1 α 0.3
c1 1 c2 0.5
c3 1 c4 1
d1 0.2 ρ 0.01
r1 1.5 r2 1
f 0.33

As a study case for identification in the next section, the accurate parameters which are used, are
brought up in Table 1 considering the following state-space equations

ẋ(t) = A(t)x(t)+B(t)u(t), (48)

y(t) =C(t)x(t)+D(t)u(t). (49)

here x(t) = [N(t),T (t), I(t)]T ∈ R3, u(t), indicates the amount of drug at the tumor place at time t . The
state matrix, A(s), for equation (47), in continuous time, is modeled as

A(s) =

s+1 1 0
0 s+0.33 0
0 1.595 s+0.2

 .
Therefor, G(s) equals

G(s) =


1

s+1
−100

(100s+33)(s+1) 0
0 100

100s+33 0
0 −1595

2(5s+1)(100s+33)
5

5s+1

 .
Since overcoming the tumor problem is an important matter, having a polynomial form of the transfer
function G(s) plays a vital role in controlling the procedure [10], as polynomial models can estimate all
the variables of the model with great precision.

4 Simulations

In this section, we aim to identify G12(s) = −100
(100s+33)(s+1) and G32(s) = −1595

2(5s+1)(100s+33) . In the simu-
lations, u(t) is assumed as a sequence of signal of uncorrelated persistent excitation with unit variance
and zero mean , also ν(t) is a sequence of white noise with variance σ2 and zero mean. Also, the error
of parameter estimation (δ ) is reported as δ = ‖Θ̂(t)−Θ(t)‖

‖Θ(t)‖ . Note that the lower the delta, the better the
identification performance. Furthermore t = N represents the number of data in the procedure of the
parameter estimation. In the following two sections, two transfer functions are tried to be identified, and
the performances are reported.

Estimation of G12(s)

From the perspective of CARMA, G12(s) can be modeled as follows
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Table 2: Estimation results for q = 100 and σ2 = (1.00)2.

Approach t = N a1 a2 b1 b2 d1 d2 δ (%)

GPA 1000 -0.9080 -0.0908 0.2690 -0.0609 -0.2804 0.4681 49.0273
2000 -0.9248 -0.0638 0.4983 0.0696 -0.7048 0.0367 41.4382
3000 -1.1342 0.1362 0.2560 0.0246 -0.3186 0.4073 37.9335

2S-GPA 1000 -1.0500 0.0530 0.6183 -0.1093 -0.2400 -0.5425 47.7595
2000 -1.0360 0.0375 0.5980 -0.0445 -0.1932 0.1980 41.0527
3000 -0.9583 -0.0373 0.5109 -1.1668 -0.2184 0.0702 46.4776

True Value -1.9080 0.9086 0.7296 -0.7296 -1.0600 0.2807

Table 3: Estimation results for q = 100 and σ2 = (2.00)2.

Approach t = N a1 a2 b1 b2 d1 d2 δ (%)

GPA 1000 -0.9442 -0.0550 0.7531 0.4499 -0.6365 0.6253 52.6830
2000 -2.0227 1.0278 -0.5802 0.3416 -0.9448 0.6348 44.9876
3000 -1.1218 0.1244 1.2679 0.2656 -0.5780 0.5487 41.8460

2S-GPA 1000 -1.0778 0.0813 0.4067 -0.1362 0.1653 0.0270 50.4326
2000 -1.2889 0.2911 0.2515 0.2047 0.1217 0.0424 49.3000
3000 -1.0881 0.0940 0.4516 0.0141 -0.5511 -0.6656 46.3470

True Value -1.9080 0.9086 0.7296 -0.7296 -1.0600 0.2807

A(q) = 1+a1q−1 +a2q−2 = 1−1.9080q−1 +0.9086q−2,

B(q) = b1q−1 +b2q−2 = 0.7296q−1−0.7296q−2,

D(q) = 1+d1q−1 +d2q−2 = 1−1.0600q−1 +0.2807q−2.

In the above equations, the true values of parameters can be seen, e.g., the true value of a1 is −1.9080.
The performance of the introduced algorithms are reported through six different cases in Table (2-3),
which covers two different variances, σ , with different number of data, L.

4.1 Estimation of G32(s)

Consider G32(s), which is introduced before. The CARMA system related to this transfer function
contains the following set of modelling equations

A(q) = 1+a1q−1 +a2q−2 = 1−1.8820q−1 +0.8851q−2,

B(q) = b1q−1 +b2q−2 =−7.9590q−1 +7.9590q−2,

D(q) = 1+d1q−1 +d2q−2 = 1−1.1620q−1 +0.3821q−2.
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Figure 4: (a) Estimation of a1 and c1 for CARMA system with variance σ2 = 1.002, number of data L = 3000 and
q = 100 with GP algorithm. (b) Estimation of a1 and c1 for CARMA system with variance σ2 = 1.002, number
of data L = 3000 and q = 100 with 2S-GP algorithm. (c) Estimation of a1 for CARMA system with variance
σ2 = 1.002, number of data L = 3000 and q = 100.

Table 4: Estimation results for q = 100 and σ2 = (1.00)2.

Approach t = N a1 a2 b1 b2 d1 d2 δ (%)

GPA 1000 -0.8823 -0.0317 -6.6629 -0.1044 2.1965 0.0088 60.3393
2000 -0.8996 0.0004 -5.2713 0.1614 -2.2398 0.1304 53.5796
3000 -0.9199 0.0082 -5.4179 0.1293 -2.4079 0.0805 53.6542

2S-GPA 1000 -0.8495 -0.0500 -4.9606 0.1672 -2.9524 2.7582 60.7443
2000 -0.9021 -0.0081 -5.7461 0.1347 0.2839 0.2978 52.8040
3000 -0.8709 -0.0380 -5.8848 0.1548 -0.6321 -0.6473 51.6348

True Value -1.8820 0.8851 -7.9590 7.9590 -1.6120 0.3821

Table 5: Estimation results for q = 100 and σ2 = (2.00)2.

Approach t = N a1 a2 b1 b2 d1 d2 δ (%)

GPA 1000 -1.2686 0.3488 -2.9392 0.2850 -0.4752 -1.0802 65.9273
2000 -0.9256 -0.0118 -4.2711 -0.0020 -2.7460 0.0098 61.3865
3000 -0.9245 -0.0143 -5.7686 -0.0933 0.3549 0.0059 55.6963

2S-GPA 1000 -0.8493 -0.0716 -3.7840 0.0069 -0.0412 -0.0491 63.4575
2000 -1.0680 0.1261 -2.6923 0.9499 -0.3062 -0.3065 59.8514
3000 -0.9859 0.0457 -5.6405 -0.1127 0.3809 0.3699 56.1575

True Value -1.8820 0.8851 -7.9590 7.9590 -1.6120 0.3821

The results of the identification procedure with the introduced methods, which are GPA and 2S-GPA,
are reported in Tables 2-5.

From Tables 2-5 and Figs. 4-5 these deductions are derived

1. The system identification errors of the GPA and 2S-GPA approaches decrease as the data length
increases.

2. 2S-GPA method compared to GPA method, produces less error and therefore is more effective at



Iterative identification algorithm for tumor model using controlled ARMA model 81

0 500 1000 1500 2000 2500 3000

Number of data

-2.5

-2

-1.5

-1

-0.5

0

0.5

E
s
ti

m
a

ti
o

n
 e

rr
o

r

Estimation of a
1

Estimation of c
1

(a)

0 500 1000 1500 2000 2500 3000

-2

-1.5

-1

-0.5

0

0.5

E
s
ti

m
a

ti
o

n
 e

rr
o

r

Number of data

Estimation of c
1

Estimation of a
1

(b)

0 500 1000 1500 2000 2500 3000

-2

-1.5

-0.5

0

0.5

-1

GP method
2SGP method

Number of data

E
s
ti

m
a

ti
o

n
 e

rr
o

r

(c)

Figure 5: (a) Estimation of a1 and c1 for CARMA system with variance σ2 = 1.002, number of data L = 3000 and
q = 100 with GP algorithm. (b) Estimation of a1 and c1 for CARMA system with variance σ2 = 1.002, number
of data L = 3000 and q = 100 with 2S-GP algorithm. (c) Estimation of a1 for CARMA system with variance
σ2 = 1.002, number of data L = 3000 and q = 100.

estimating parameters.

3. As the noise to ratio signal rises, both introduced algorithms produce more considerable amount
of error.

4. From depicted figures, it is perceived that both introduced algorithms converge to the same point
and have competent convergence rate.

In this contribution, all advantages and disadvantages of proposed algorithm were discussed. Clearly
the advantages outweigh the disadvantages, and reader would have all necessary information to compare
given approaches and design a suitable controller for tumor model or any desired system.

5 Conclusion

In this research, two system identification approaches for estimating parameters of a CARMA system
were presented. It is shown that generalized projection algorithm and two-stage generalize projection
algorithm both can converge to the actual values of the system at a fast rate, and both produce an in-
significant amount of error, especially for a large number of data. However, the two-stage method is
depicted to be more efficient at error reduction of tumor model at its tumor-free equilibrium. Further-
more, the work done in this paper could be later used in order to control complicated systems such as the
tumor model with the existence of significant noise in the system.
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