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Abstract. Constructing exact solutions for high-dimensional nonlinear evolution equations and ex-
ploring their dynamics are critical challenges with significant practical implications. The extended
Kadomtsev-Petviashvili (eKP) equation, a key example of an integrable two-dimensional equation, high-
lights the importance of these studies. A logical extension is to investigate lump wave solutions in this
context. In this paper, we introduce novel constrained conditions into N−soliton solutions for a (2+1)-
dimensional eKP equation. We present a theorem to analyze the asymptotic behavior of the N-soliton
solution. This analysis leads to the derivation of lump waves, along with the determination of their tra-
jectories and velocities. To investigate the interaction between higher-order lumps and soliton waves,
as well as breather waves, we employ the long wave limit method. We analyze the trajectory equations
governing the motion before and after the collision of lumps and other waves and identify conditions
under which the lump wave avoids collision with other waves. Several figures are included to illustrate
the physical behavior of these solutions.
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1 Introduction

The Hirota bilinear method [6] is a powerful technique for solving nonlinear evolution equations. It has
gained popularity among scholars due to its directness and simplicity in constructing multiple soliton
solutions for nonlinear partial differential equations [9, 16, 19].
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Lump waves, which are rational function waves localized in all directions in space and time, have
attracted significant attention. Various methods such as inverse scattering transformation [11], Grammian
determinant method [14], Darboux transformation [18], and the long wave limit method [1] have been
developed to study lump waves.

One direct method for obtaining soliton, breather, and lump wave solutions is the widely used
”Ansatz” technique [10,17]. An ansatz is essentially an educated guess or assumed form for the solution
of a problem. This form typically involves unknown parameters or functions, which are later determined
by substituting the ansatz into the original equation and solving the resulting conditions. In contrast, the
long wave limit method [12] offers a more systematic approach for deriving lump wave solutions. By
reducing wave numbers to zero, it transforms soliton solutions into lump solutions directly and consis-
tently. This method ensures stability and localization, maintains a clear connection with soliton theory,
and allows for deriving higher-order lump solutions, which the ansatz method cannot achieve.

The interaction between lumps and other nonlinear waves, including soliton and breather [3, 15, 20],
is an active research area, with a particular focus on both elastic and inelastic collisions. However, there
is still much to understand about the movement of lumps before and after collisions, phase shifts in
lumps, and the trajectory equations governing their motion. Additionally, it is worth investigating other
forms of interaction between lump waves and other waves, such as scenarios where they never collide or
always collide and never separate.

In recent years, the study of the KP equation has remained a focal point of research, leading to
its extensive application across various disciplines. In ocean fluid mechanics [8], the KP equation is
employed to model vortical circulation and the propagation of ocean waves in spatial domains. In plasma
physics [13], it is utilized for the generation and detection of plasma acoustic waves, playing a crucial
role in both space exploration and industrial processes.

Based on the KP equation, Fokas [4] constructed the following (4+1)-dimensional equations
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Akinyemi in [2] has reduced these equations to the (2+1)-dimensional form through the application of
transformations

t = t, x = ax1 +bx2, y = cy1 +dy2, (3)

where a,b,c, and d were arbitrary real constants. By combining the resulting equations, the new equation
was formed as

(a+b)Uxt −
1
16

(a4 +4a3b−6a2b2−4ab3 +b4)Uxxxx−
3
4
(b2−2ab−a2)(U2)xx

− 3
4
(c2 +2cd−d2)Uyy = 0. (4)

Thus, the resulting (2+1)-dimensional Eqs. from transformation (3), together with Eq. (4), were gener-
alized in the following manner:

γ1Uxt + γ2(U2)xx + γ3Uxxxx + γ4Uyy = 0. (5)
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The author in [2] has modified the equation by adding the γ5Uxx term, resulting in the following
extended (2+1)-dimensional eKP equation:

γ1Uxt + γ2(U2)xx + γ3Uxxxx + γ4Uyy + γ5Uxx = 0, (6)

where U =U(x,y, t) is an unknown differentiable function, and γi, i = 1, . . . ,5 are real arbitrary parame-
ters. The term γ5Uxx introduces an additional diffusion effect, which alters the rate of spatial spreading of
the wave. This term adjusts the model to better capture physical phenomena such as enhanced dissipation
or dispersion not accounted for in the original equation (5). The eKP Eq. (6) finds applications in nonlin-
ear wave phenomena, plasma physics, optical fiber communications, fluid dynamics, and mathematical
physics. Ref. [2] explores the integrability and soliton solutions for Eq. (6). The Painlev test is utilized
to assess their integrability, and it is found that the equation successfully passes the Painlevé test.

Our motivation is to deepen the understanding of nonlinear wave solutions to the eKP equation
(6), which could advance theoretical insights and improve practical applications in fields such as fluid
mechanics and plasma physics. The focus of this study is on obtaining exact solutions for Eq. (6) using
the Hirota bilinear technique. This approach provides soliton, lump, and hybrid solutions, including
soliton-lump and breather-lump configurations.

The novelty of our work lies in tracking the trajectory of lump waves before and after collisions with
other wave types. Specifically, we establish and clarify the conditions under which lump waves either
avoid interactions with other waves or, if collisions occur, maintain their original state throughout the
process.

The paper is organized as follows: Section 2 delves into the Hirota bilinear representation and soliton
solution of Eq. (6). In Section 3, the focus shifts to the N-lump solution and its dynamics. Moving on
to Section 4, we examine hybrid solutions of lump waves and soliton and breather waves, along with the
trajectory of the lump wave before and after the interaction. Finally, Section 5 presents the conclusions.

2 N−soliton solution

In this section, we aim to construct an N−soliton solution to Eq. (6). We define the phase Φi in Eq. (6) as
Φi = kix+ piy−wit, where wi is the dispersion coefficient and ki and pi are real parameters. Substituting
U(x,y, t) = eΦi into the linear terms of Eq. (6), we obtain:

wi =
k4

i γ3 + k2
i γ5 + p2

i γ4

kiγ1
. (7)

Based on the leading order behavior and coefficients in Painlevé analysis for the equation in [2], we
consider the transformation U(x,y, t) = ε(ln f )xx, where ε and f are constants and an auxiliary function,
respectively. Applying this transformation to Eq. (6) with f (x,y, t) = 1+ eΦi and using (7), we solve for
ε , resulting in ε = 6γ3

γ2
. Therefore, the transformation can be expressed as:

U =
6γ3

γ2
ln( f )xx. (8)

Substituting (8) into (6) yields a bilinear equation in f (x,y, t) as:(
γ1DxDt + γ3D4

x + γ4D2
y + γ5D2

x
)

f . f = 0. (9)
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where operator Dxi is defined as [7]
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Then, we choose the function f in the form
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µ∈{0,1}N
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)
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where ∑µ∈{0,1}N represents the summation over all possible combinations of µ j,µs = 0,1, j,s= 1,2, . . . ,N,
and the wave variables are

χi = kix+ piy+wit +φi. (12)

As a result, the dispersion relation and the phase shifts are listed below, respectively.
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By incorporating formulas (13) and (14) into the function f and then applying it to the logarithmic
transformation, an N−soliton solution to Eq. (6) can be derived.

3 Lump waves

The objective of this section is to offer a comprehensive explanation of how the asymptotic behavior of
the soliton solution (11) results in the formation of lump waves. By meticulously choosing appropriate
values for these parameters, one can create wave functions that demonstrate the desired lump-like behav-
ior. These parameters significantly influence the characteristics of the resulting lump solution, including
its amplitude, velocity, and position.

To obtain Nth-order lump solutions, we apply the long wave limit while considering the following
conditions in N-soliton solution (11).

N = 2m, ki = Kiε, pi = Piε, eφi =−1, ε → 0,

K1 = K∗2 , . . . ,K2m−1 = K∗2m P1 = P∗2 , . . . ,P2m−1 = P∗2m. (15)

The notation ε → 0 indicates that, after substituting the revised values of the parameters ki and pi into
expression (11), an evaluation is performed to determine the limiting behavior of the resulting function.
All these explanations can be summarized in the following theorem.

Theorem 1. The comprehensive solutions for the N-th order lump can be expressed as the subsequent
form.

U (N)
L =

6γ3

γ2
ln( fN)xx, (16)
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where the function fN is represented by the following expression.
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and

θi =−
(
K2

i γ5 +P2
i γ4
)

t
Kiγ1

+ xKi + yPi, Bi j =
12K3

i K3
j γ3

γ4 (KiPj−K jPi)
2 . (18)

Proof. The first two solutions of the N-soliton solution (11) are given by the following form:

f1 = 1+ eχ1 , (19)

f2 = 1+ eχ1 + eχ2 +ϒ12eχ1+χ2 . (20)

The method for obtaining rational solutions from these soliton solutions depends on the flexibility of
choosing the phase constant φi. For instance, by setting φ1 = iπ , and adjusting the parameters as k1 =K1ε

and p1 = P1ε , we can rewrite Eq. (19) in the following form:

f1 = 1− eη1 , (21)

which corresponds to a singular soliton solution

U =−6γ3ε2K2
1

γ2

(cosh(η1)− sinh(η1))

(−1+ cosh(η1)− sinh(η1))
2 (22)

with

η1 = εK1x+ εP1y−
(
ε4K4

1 γ3 + ε2K2
1 γ5 + ε2P2

1 γ4
)

εK1γ1
t.

Reaching the “long wave” limit K1→ 0 in Eq. (21) results in

f1 =−εθ1 +O(ε2), (23)

where θ1 is described in (18). We can introduce an arbitrary phase factor to θi. Given that U is defined
by (8), we have derived the following rational solution

U =−6γ3K2
1

γ2θ 2
1
, (24)

which gives a singular solution.
For the two-soliton solution given in Eq. (20), we set φi = iπ , i = 1,2 and ε→ 0, with K1/K2 = O(1)

and εPi = O(1). Then, by observing

ϒ12 = 1+
12K3

1 K3
2 γ3

γ4 (K1P2−K2P1)
2 +O(ε3), (25)
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we find

f2 = ε
2

[(
K2

1 γ5 +P2
1 s4
)(

K2
2 γ5 +P2

2 s4
)

t2

K1s2
1K2

+
[
(−

K1
(
K2

2 γ5 +P2
2 s4
)

K2s1
−
(
K2

1 γ5 +P2
1 s4
)

K2

K1s1
)x

+(−
P1
(
K2

2 γ5 +P2
2 s4
)

K2s1
−
(
K2

1 γ5 +P2
1 s4
)

P2

K1s1
)y
]
t +K2K1x2 +(K1P2 +K2P1)yx+P1P2y2

+
12K3

1 K3
2 γ3

γ4 (K1P2−K2P1)
2 +O(ε)

]

= ε
2[

θ1θ2 +
12K3

1 K3
2 γ3

γ4 (K1P2−K2P1)
2 +O(ε)

]
(26)

Taking into account that the solution (8) remains invariant under the transformation f → ε2 f , we can
rewrite f2 as:

f2 = θ1θ2 +B1,2, (27)

where θi and Bi, j are represented in (18). By applying the logarithmic transformation (8) and setting
K1 = K∗2 and P1 = P∗2 , a real-valued lump solution can be constructed.

This approach to obtaining rational solutions can be generalized to the N-soliton case given in (11).
Initially, we set φi = iπ for each term in (11). As a result, fN transforms into the following expression:

fN = ∑
µ∈{0,1}N

N

∏
i=1

(−1)µi exp(µiχi)×
N

∏
i< j

exp(µiµ j ln(ϒi j)). (28)

For k1 = εK1 and p1 = εP1, it is evident that

fN
∣∣
ε=0 = ∑

µ∈{0,1}N

(−1)µi fN−1 = 0, (29)

where fN−1 is an N−1-soliton solution with parameters, k2, p2,k3, p3, . . . ,kN , pN .
Given the symmetric nature of fN with respect to εki and ε pi, we observe that fN can be factored by

ε i, i = 1,2, . . . ,N. Consequently, when expanding fN in powers of ε , the leading terms in (28) must be
at least of the order εN . Taking the limit as ε → 0 and assuming all ki and pi share the same asymptotic
behavior, we obtain

fN = ∑
µ∈{0,1}N

N

∏
i=1

(−1)µi(1+ εµiθi)×
N

∏
i< j

(1+ ε
2
µiµ jBi j)+O(εN+1). (30)

The dominant terms in (30) are those of order ε i, i = 1,2, . . . ,N in ∏
N
i=1(1+εθi)∏

N
i< j(1+ε2Bi j). Conse-

quently, a rational solution derived from the long-wave limit of the N-soliton solution can be formulated
as (17). To derive a real-valued lump solution, one should set K2m−1 = K∗2m and P2m−1 = P∗2m for m = N

2
within the general solution given by (17).

Proposition 1. The m-th lump wave in the solution (16) is characterized by the following properties:
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• The trajectory of the m-th lump wave is given by

y =
γ4 (K2m−1P2m +K2mP2m−1)

K2m−1K2mγ5−P2m−1P2mγ4
x, (31)

• The amplitude formula is

A[N]
m =

γ4 (K2m−1P2m−K2mP2m−1)
2

γ2K2
2m−1K2

2m
, (32)

• Velocity of the lump wave are determined by

V [N]
m =

√
(K2m−1K2mγ5−P2m−1P2mγ4)

2

K2
2mγ2

1 K2
2m−1

+
γ2

4 (K2m−1P2m +K2mP2m−1)
2

K2
2mγ2

1 K2
2m−1

. (33)

Proof. To determine the trajectory of each peak in the N-lump solution (16), start by setting the partial
derivatives of the solution with respect to x and y to zero. This yields a system of equations that can be
solved for x and y. Next, compute the value of t from the x-solution, and then substitute this value into
the y-solution. This process will provide the trajectory of each peak, which is described by (31).

Furthermore, by substituting the values of x and y from the previously discussed system of equations
into the N-lump solution (16), we can determine the amplitude of the peak as described in equation
(32). We can easily determine the peak velocity by differentiating the aforementioned temporal-spatial
equation with respect to t, as shown in (33).

To achieve a single lump, one can substitute N = 2 into the formula (17). This substitution results in
the expression of U1 as shown below:

U1 =
6γ3

γ2
ln(θ1θ2 +B1,2)xx, (34)

where, θi and Bi, j are represented in (18). Figure 1 (a) illustrates the dynamics of the one-lump solution
(34). With specific parameter selections, the amplitude and velocity of the wave are A[1]

1 = 3.43.408284
and V [1]

1 = 0.6369421, respectively. Furthermore, Figure 1 (d) displays the trajectory of the wave over
time. For N = 4,6, the two and three-lump solutions are presented in Figure 1 (b,c). As observed in
the figure, the two-lump solution exhibits two separate peaks that move away from each other as time
increases. The amplitude and velocity of the first wave are V [2]

1 = 5.4589 and A[2]
1 = 1.583, respectively,

while for the second wave, these values are V [2]
2 = 1.36 and A[2]

2 = 1.498, respectively. Moreover, in
the three-lump solution, there are three separate peaks with the following amplitudes and velocities:
V [3]

1 = 0.66899, V [3]
2 = 4.60977, V [3]

3 = 3.2811 and A[3]
1 = 3.07, A[3]

2 = 6.25, A[3]
3 = 8.134. Additionally,

the trajectory of each peak in the aforementioned solution is clearly represented in Figure 1 (e,f).

4 Interaction between lump and soliton waves

In this section, we delve into the development of a unique hybrid solution that merges both lump and other
wave forms. This hybrid solution is attained through the utilization of the long wave limit method [1]
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(a) t = 0 (b) t = 15 (c) t = 5

(d) t =−100,0,100 (e) t =−20,20 (f) t =−35,35

Figure 1: Panels (a, d): One-lump soution with, K1 = K∗2 = 2+ 3I,P1 = P∗2 = 4. Trajectory of lump y = − 16
29 x (blue line). Panels (b,

e): Two-lump solution with, K1 = K∗2 = 2+4I,K3 = K∗4 = 1+4I,P1 = P∗2 = 3,P3 = P∗4 = 3. Trajectory of the first lump y = − 24
13 x (orange

line) and the second lump y = 15
8 x (blue line). Panels (c, f): Three-lump solution with, K1 = K∗2 = 1.5+4.0I,K3 = K∗4 =−1+ I,K5 = K∗6 =

2+2I,P1 = P∗2 = 4,P3 = P∗4 = 3,P5 = P∗6 = 5. Trajectory of the first lump y = 6
7 x (blue line), the second lump y =− 20

17 x (red line) and the third

lump y = 19
5 x (black line). For the same selection of γ5 = 1,γ1 = 1,γ2 = 1,γ3 =−1,γ4 = 1.

based on the N-soliton solution (11). Employing this method allows us to derive a range of semi-rational
solutions that incorporate blends of lumps and soliton lines, as well as a combenation of lumps and
breathers.

Proposition 2. To obtain a hybrid solution comprising L lump waves and S soliton waves, we can
take the long wave limit with the following restrictions in Eq. (11).

N = 2L +S , m = 1,2, ...,2L , km = Kmε, pm = Pmε, φm = πi, ε → 0, (35)

K1 = K∗2 , K3 = K∗4 , . . . ,K2L−1 = K∗2L , P1 = P∗2 , P3 = P∗4 , . . . ,P2L−1 = P∗2L .

Proof. The proof of this proposition is essentially the same as that of Theorem 1, with the key difference
being that the parameters kS and pS remain unchanged.

Studying the trajectory equations of lump waves and soliton lines before and after collision [20],
enhances our understanding of their complex interaction. In the following, we discuss this issue further.

Theorem 2. For the mixed solution comprising L -lump waves and S -soliton lines, under the condition
λ3,λ4, . . . ,λ2+S 6= 0, and based on conditions (35), the trajectory equations of an arbitrary lump wave
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are as below:

(xb,yb) =

(
X +

N

∑
s=2L+1

hb(λs)κs, Y +
N

∑
s=2L+1

hb(λs)ϑs

)
,

(xa,ya) =

(
X +

N

∑
s=2L+1

ha(λs)κs, Y +
N

∑
s=2L+1

ha(λs)ϑs

)
, (36)

where

(X ,Y ) =
(
(K2m−1K2mγ5−P2m−1P2mγ4)

K2mγ1K2m−1
t,

γ4 (K2m−1P2m +K2mP2m−1)

K2mγ1K2m−1
t
)
, (37)

κs =
−B2m−1,sP2m +B2m,sP2m−1

K2m−1P2m−K2mP2m−1
, ϑs =

B2m−1,sK2m−B2m,sK2m−1

K2m−1P2m−K2mP2m−1
. (38)

λs =
−K2m−1K2mk4

s γ3−P2m−1P2mk2
s γ4 + psγ4 (K2m−1P2m +K2mP2m−1)ks−K2m−1K2m p2

s γ4

K2mγ1K2m−1ks
, (39)

hb(x) =

{
1, x < 0
0, x≥ 0

, ha(x) =

{
0, x≤ 0
1, x > 0

, (40)

For 1≤ i < j ≤ 2L , Bi, j are presented in (18) and for 1≤ i≤ 2L and j > 2L it is as fallows:

Bi, j =
12K3

i k3
j γ3

3K2
i k4

j γ3−K2
i p2

jγ4 +2KiPik j p jγ4−P2
i k2

j γ4
. (41)

The change in the phase of the lump wave before and after the collision can be expressed as

∆b =
N

∑
s=2L+1

sign(λs)∆bs, (42)

where

∆bs =
−B2m,sK2

2m−1K2mγ5 +B2m−1,s
(
K2

2mγ5 +P2
2mγ4

)
K2m−1−B2m,sK2P2

2m−1γ4

(K2m−1P2m−K2mP1)(K2m−1K2mγ5−P2m−1P2mγ4)
. (43)

However, the amplitude and velocity of the peak do not change before and after the collision, and they
are represented by formula (32) and (33), respectively.

Proof. To prove this theorem, we consider solutions that consist of a lump wave and a soliton line. The
proof for the other situations remains the same, and we will omit their proof for brevity.

First, let us consider a mixed solution consisting of a lump wave and a soliton wave based on the
conditions (35) as follows:

U (1)
LS =

6γ3

γ2
ln( f (1)LS )xx, (44)
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with

f (1)LS = θ1θ2 +B1,2 +(B1,3B2,3 +θ2B1,3 +θ1B2,3 +θ1θ2 +B1,2)eχ3 . (45)

Regarding the lump wave’s path in (31), we assume it follows a straight line before and after collision.
Hence, the function f (1)LS is bound by the subsequent conditions

(x,y) =
(
(K1K2γ5−P1P2γ4)

K2γ1K1
t + c1,

γ4 (K1P2 +K2P1)

K2γ1K1
t + c2

)
. (46)

Substituting (46) into (45) yields

f (1)LS = et λ3+β3 (B1,3B2,3 +B1,3ζ2 +B2,3ζ1 +ζ1ζ2 +B1,2)+B1,2 +ζ1ζ2,

where
ζ1 = K1c1 +P1c2, ζ2 = K2c1 +P2c2, β3 = c1k3 + c2 p3 +φ3.

When limt→±∞ f (1)LS we can derive the following approximate expressions.
Case I: For λ3 > 0,

fb = B1,2 +ζ1ζ2, fa = B1,3B2,3 +B1,3ζ2 +B2,3ζ1 +ζ1ζ2 +B1,2. (47)

By substituting the values of c1 and c2 from (46) into (47), we obtain the following expressions:

fb = θ1θ2 +B1,2, fa = B1,3B2,3 +B1,3θ2 +B2,3θ1 +θ1θ2 +B1,2. (48)

These expressions feature the functions fb and fa, representing the states of the lump peak and soliton
before and after the collision, respectively. It is crucial to highlight that these functions adhere to the
bilinear Eq. (9).

Substituting (48) into (44) and equating the derivatives of the solutions with respect to x and y to zero
allows us to ascertain the trajectories of the peak before and after the collision:

(xb,yb) =

(
(K1K2γ5−P1P2γ4)

K2γ1K1
t,

γ4 (K1P2 +K2P1)

K2γ1K1
t
)
,

(xa,ya) =

(
(K1K2γ5−P1P2γ4)

K2γ1K1
t +
−B1,3P2 +B2,3P1

K1P2−K2P1
,
γ4 (K1P2 +K2P1)

K2γ1K1
t +

B1,3K2−B2,3K1

K1P2−K2P1

)
, (49)

In this scenario, the validity of expressions (36) is confirmed. Additionally, the phase change (42) can be
easily determined by comparing the peak’s trajectories before and after the collision, without involving
the time parameter.

When substituting the values of xb, yb, xa, and ya into (44), it becomes apparent that the peak’s
amplitude remains unchanged following the collision

Case II: Let us consider the scenario where λ3 < 0. The proof follows a similar approach to the
previous one, but with a notable distinction: limt→±∞ f (1)LS yields the following expressions:

fb = B1,3B2,3 +B1,3ζ2 +B2,3ζ1 +ζ1ζ2 +B1,2, fa = B1,2 +ζ1ζ2. (50)

In this particular case, the trajectory after the collision precisely mirrors the trajectory before the collision
in the previous case. Conversely, the trajectory before the collision in this case aligns with the trajectory
after the collision in Case I.
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Corollary 1. The condition for the avoidance of collision or the preservation of wave states during the
interaction between a lump wave and a soliton wave arises when λs = 0. Simply put, this condition is
met when the velocity of the lump wave matches the velocity of the soliton line, given by: VL = VS ,
where

VS =

[
− wiki

k2
i + p2

i
,− wi pi

k2
i + p2

i

]
,

and wi, VL , and λs are defined in (13), (33), and (39), respectively.

We investigate three scenarios of wave collisions for clearer insight. Firstly, we analyze the collision
between a soliton wave and a lump wave. Secondly, we explore the collision of two soliton waves and a
lump wave. Lastly, we examine the collision between one soliton wave and two lump waves.

Example 1. The interaction between a lump wave and a soliton wave solution (44), is illustrated in
Figure 5. Upon evaluating Eq. (39), we ascertain λ3 = −4.0771635 < 0. Consequently, we deduce
hb(λ3) = 1 and ha(λ3) = 0. Thus, the lump wave initially follows the trajectory y = 0.3741x− 0.7167
before colliding with the soliton wave. However, post-collision, the lump wave alters its course, shifting
to y = 0.3741x. Additionally, the change in phase, denoted by ∆b3 = 0.7167. Notably, the lump wave
maintains consistent velocity and amplitude pre and post collision, with V [1]

1 = 0.5386 and A[1]
1 = 1.964.

Moreover, based on Corollary 1, specific conditions are established to ensure that the interaction between
lump and soliton waves never results in a collision. This phenomenon is illustrated in Figure 3.

(a) t =−10 (b) t = 0 (c) t = 10 (d)

Figure 2: Superposition of a lump and a soliton wave with K1 = K∗2 = 2
7 − 3I,P1 = P∗2 = 3

2 ,γ5 = 1,k3 = 4
5 , p3 = 4

3 ,φ3 = 0,γ1 = 1,γ2 =
−1,γ3 =−1,γ4 = 2. Panel c: Trajectory of lump before the interaction y= 0.3741x−0.7167 (orange line) and after the interaction y= 0.3741x
(blue line) for t =−20 (crimson) and t = 20 (cadet blue).

Example 2. The solution represented by U (2)
LS = 6γ3

γ2
ln( f (2)LS )xx, where

f (2)LS = eχ3 (B1,3B2,3 +B1,3θ2 +B2,3θ1 +θ1θ2 +B1,2)

+ eχ4 (B1,4B2,4 +B1,4ϖ2 +B2,4θ1 +θ1θ2 +B1,2)

+ϒ3,4eχ3+χ4(B1,3B2,3 +B1,3B2,4 +B1,3θ2 +B1,4B2,3 +B1,4B2,4

+B1,4θ2 +B2,3θ1 +B2,4θ1 +θ1θ2 +B1,2)

+θ1θ2 +B1,2, (51)
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(a) t =−40 (b) t = 0 (c) t = 40

Figure 3: In the superposition of a lump and a soliton wave these waves nevere colid if: K1 = K∗2 = 2
7 − 3I,P1 = P∗2 = 3

2 ,γ5 = 1,k3 =
4
5 , p3 = 0.5402102468φ3 =−50,γ1 = 1,γ2 =−1,γ3 =−1,γ4 = 1.

combines one lump wave and two solitons. This solution is shown in Figure 4 for various times. After
computation, we confirm that λ3 = −1.834791667 < 0 and λ4 = −1.37944 < 0. Following theorem
2, the trajectories of the lump wave before and after the interaction are visually illustrated in Figure 4
(d), with the phase shift indicated by ∆b3 = 0.3986457101. Notably, the velocity and amplitude of the
lump wave remain constant before and after the collision, with values of V [2]

1 = 1.4422 and A[2]
1 = 6.48,

respectively.

(a) t =−20 (b) t = 0 (c) t = 20 (d)

Figure 4: Superposition of a lump and two soliton waves with K1 = K∗2 = 1
2 −

3I
2 ,P1 = P∗2 = 3

2 ,γ5 = 1,k3 = 3
4 ,k4 = 1

2 , p3 = − 2
5 ,φ3 =

30,φ4 = −20,γ1 = 1,γ2 = −1,γ3 = −1,γ4 = 2. Panel c: Trajectory of the lump before the interaction y = −1.5x+ 0.3986 (orange line) and
after the interaction y =−1.5x (blue line). for t =−10 (crimson) and t = 10 (cadet blue).

Example 3. To achieve a composite solution involving two lump waves and a line soliton we set N = 6,
S = 1, and L = 2 according to conditions (35). This results in the emergence of a novel solution
denoted as U (3)

LS , as depicted in Figure 5. For the first lump wave, we determine λ5 =
−7
10 , while for the

second lump wave, λ5 =
11
2 . As per theorem 2, the trajectories before and after the collision of the first

and second lump waves are delineated in Figure 5 (c). The velocity and amplitude of the first lump wave
are quantified as V [3]

1 = 5.4589 and A[3]
1 = 2.88, respectively. Correspondingly, for the second lump wave,

we compute A[3]
2 = 0.72 and V [3]

2 = 1.36.
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(a) t =−20 (b) t = 0 (c) t = 20 (d)

Figure 5: Superposition of two lumps and a soliton wave with K1 = K∗2 = 2− I,K3 = K∗4 = 1− I,P1 = P∗2 = 3,P3 =
3
5 ,P4 =

3
5 ,γ5 = 1,k5 =

1, p5 =
1
2 ,φ5 =−70,γ1 = 1,γ2 =−1,γ3 =−1,γ4 = 2 . Panel c: Trajectory of the first lump before the interaction y = 1.875x+5.9343 (orange

line) and after the interaction y = 1.875x (blue line). Trajectory of the second lump before the interaction y = −1.8461x− 8.405 (black line)
and after the interaction y =−1.8461x (red line) for t =−15 (crimson) and t = 15 (cadet blue).

In this part, we present a method for examining the interaction between lump waves and breather
waves. To obtain a combined solution comprising L lump waves and B breather waves for Eq. (6),
we start by setting N = 2(B+L ) and then impose specific constraints on the N-soliton solution (11) as
follows:

1≤ m≤ 2L , k2m−1 = k∗2m = K2m−1ε, p2m−1 = p∗2m = P2m−1ε, φ2m−1 = φ2m = πi, ε → 0,

k2L+1 = k∗2L+2, ...,k2L+2B−1 = k∗2L+2B, p2L+1 = p∗2L+2, ..., p2L+2B−1 = q∗2L+2B,

φ2L+1 = φ
∗
2L+2, ...,φ2L+2B−1 = φ

∗
2L+2B. (52)

In a similar manner as previously, we can formulate a theorem delineating the path followed by the lump
wave before and after its interaction with the breather wave.

Proposition 3. The equations governing the trajectory of a lump wave before and after colliding with
breather waves for λs 6= 0 are listed as follows:

(xb,yb) =

(
X +

N

∑
s=2L+1

hb(Re(λs))κs, Y +
N

∑
s=2L+1

hb(Re(λs))ϑs

)
,

(xa,ya) =

(
X +

N

∑
s=2L+1

ha(Re(λ )s)κs, Y +
N

∑
s=2L+1

ha(Re(λs))ϑs

)
,

where X, Y , κs, ϑs, λs, hb and ha are given by Eqs. (37)-(40) and Re(λs) denotes the real part of λs.

Proof. The proof is essentially the same as that of Theorem 2, with the key difference being that the
constraints in (52) must be applied during the proof process.

Example 4. For N = 4, which corresponds to L = 1 and B = 1 according to conditions (52), a hybrid
solution comprising a breather wave and a lump wave can be derived. To visually illustrate the collision
between these waves, Figure 6 depicts the physical behavior of this interaction.
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(a) t =−10 (b) t = 0 (c) t = 10 (d)

Figure 6: Superposition of a lump and a breather wave with K1 = K∗2 = 3
7 + I

5 ,P1 = P∗2 = 1− 2I,γ5 = 1,k3 = k∗4 = 1
12 −

I
8 , p3 = p∗4 =

− 1
8 −

I
6 ,γ1 = 1,γ2 = 3,γ3 = 1,γ4 = 1,φ3 = φ∗4 = 0. Panel c: Trajectory of the lump before the interaction y =−0.01196x−0.01509 (red line)

and after the interaction y =−0.01196x (blue line). for t =−7 (crimson) and t = 7 (cadet blue),

The collision behavior observed in the superposition of the lump and soliton, as explored in Corollary
1, similarly occurs here. That is, the lump wave and the breather wave either do not collide, or if they do,
they remain in the same state.

Corollary 2. When the condition Re(λs) = 0 is satisfied, lump and breather waves either do not collide
or remain in a collided state. This condition signifies that the velocity of the lump wave equals the
velocity of the breather wave, expressed as VL =VB, where

VB =

[
− Re(wi)Re(ki)

(Re(ki))2 +(Re(pi)2 ,−
Re(wi)Re(pi)

(Re(pi))2 +(Re(pi))2

]
,

and wi and VL are defined in (13) and (33).

The collision between the lump wave and the breather wave, illustrated in Figure 7, occurs in such a
way that the two waves pass through each other without any interference or interaction. This behavior is
achieved through carefully chosen parameters that meet the conditions outlined in Corollary 2.

(a) t =−1 (b) t = 0 (c) t = 1

Figure 7: In the superposition of a lump and a breather wave these waves nevere colid if: K1 = K∗2 = 3
7 +

I
5 ,P1 = P∗2 = 1−2I,γ5 = 1,k3 =

k∗4 = 1
12 −

I
8 , p3 = p∗4 = 0.6014984038+0.3775372501I,φ3 = φ∗4 =−10,γ1 = 1,γ2 = 3,γ3 = 1,γ4 = 1.
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5 Conclusion

In this study, we obtained an N−soliton solution for Eq. (6) to investigate the dynamics of lump waves.
By leveraging the asymptotic behavior of soliton solutions and employing the long wave limit method,
we successfully derived multiple lump solutions. We also examined the interactions between lump waves
and other wave types, including soliton and breather waves. Notably, we calculated the trajectory of the
peak before and after each collision and identified conditions under which the lump wave avoids collision
with other waves. Furthermore, we demonstrated that if a collision occurs, the lump wave remains
unchanged. Our research includes a comprehensive graphical analysis of the solutions, accompanied by
detailed explanations of key parameters such as velocity, amplitude, and peak location for each wave.

In future work, it remains an open problem whether Eq. (6) can be effectively transformed into a
stochastic PDE and solved using the variable coefficient third-degree generalized Abel equation method
[5]. This approach could potentially reveal new insights and solutions, enhancing our understanding of
complex nonlinear equations influenced by stochastic processes.
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