تعداد نشریات | 31 |
تعداد شمارهها | 748 |
تعداد مقالات | 7,112 |
تعداد مشاهده مقاله | 10,246,242 |
تعداد دریافت فایل اصل مقاله | 6,899,907 |
اثر تزریق مواد معدنی کم نیاز در اواخر آبستنی بر کیفیت آغوز و فراسنجههای پلاسمای بزهای لری و بزغالههای آنها | ||
تحقیقات تولیدات دامی | ||
دوره 13، شماره 2، شهریور 1403، صفحه 73-85 اصل مقاله (809.45 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22124/ar.2024.26053.1801 | ||
نویسندگان | ||
کورس کرمی1؛ محمد شمس الهی* 2؛ فرشید فتاح نیا3؛ یحیی محمدی3؛ جبار جمالی2 | ||
1دانشآموخته کارشناسی ارشد، گروه علوم دامی، دانشکده کشاورزی، دانشگاه ایلام | ||
2استادیار، گروه علوم دامی، دانشکده کشاورزی، دانشگاه ایلام | ||
3دانشیار، گروه علوم دامی، دانشکده کشاورزی، دانشگاه ایلام | ||
چکیده | ||
در این آزمایش، اثر تزریق مواد معدنی کم نیاز در اواخر آبستنی بر کیفیت آغوز و ایمنی بزهای لری و بزغالههای آنها بررسی شد. برای این منظور از 30 رأس بز لری بالغ با میانگین وزن 40 کیلوگرم استفاده شد. دامها یک ماه قبل از زمان مورد انتظار زایش بر اساس سن و وزن بدن به دو گروه 15 رأسی تقریباً یکسان تقسیم و بهطور تصادفی به تیمارهای آزمایشی اختصاص داده شدند. تیمارهای آزمایشی شامل: 1- بزهای تیمار شاهد (بدون تزریق مواد معدنی کم نیاز) و 2- بزهای دریافتکننده محلول حاوی مواد معدنی کم نیاز (مس، منگنز، روی و سلنیوم) بودند. محلول مواد معدنی کم نیاز (یک میلیلیتر) در چهار و دو هفته قبل از زمان مورد انتظار زایش بهصورت زیرجلدی تزریق شد. نمونههای خون بزها در شروع آزمایش و هفت روز قبل از زایش و در بزغالهها، هفت روز پس از تولد جمعآوری شد. نتایج نشان داد که تزریق محلول مواد معدنی کم نیاز باعث کاهش غلظت مالوندیآلدئید و افزایش غلظت پروتئینکل، شاخص بریکس، فعالیت سوپراکسید دسموتاز و ظرفیت آنتیاکسیدانی کل پلاسما شد (05/0>P). آغوز بزهای دریافتکننده محلول حاوی مواد معدنی کم نیاز دارای درصد پروتئین، چربی و شاخص بریکس بیشتر و لاکتوز کمتری در مقایسه با آغوز بزهای گروه شاهد بود (05/0>P). بهطور کلی، تزریق مواد معدنی کم نیاز در اواخر آبستنی سبب بهبود وضعیت آنتیاکسیدانی بزهای لری و بزغالههای آنها و کیفیت آغوز شد که میتواند بر سلامت و عملکرد بزغالهها اثر مثبت داشته باشد. | ||
کلیدواژهها | ||
آغوز؛ بزغاله؛ بز لری؛ مواد معدنی کم نیاز؛ فراسنجه پلاسما | ||
مراجع | ||
Ahola, J. K., Engle, T. E., & Burns, P. D. (2005). Effect of copper status, supplementation, and source on pituitary responsiveness to exogenous gonadotropin-releasing hormone in ovariectomized beef cows. Journal of Animal Science, 83(8), 1812-1823. doi: 10.2527/2005.8381812x Andrieu, S. (2008). Is there a role for organic trace element supplements in transition cow health? The Veterinary Journal, 176(1), 77-83. doi: 10.1016/j.tvjl.2007.12.022 Ayala, A., Muñoz, M. F., & Argüelles, S. (2014). Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative Medicine and Cellular Longevity, 2014. doi: 10.1155%2F2014%2F360438 Beytut, E., Yilmaz, S., Aksakal, M., & Polat, S. (2018). The possible protective effects of vitamin E and selenium administration in oxidative stress caused by high doses of glucocorticoid administration in the brain of rats. Journal of Trace Elements in Medicine and Biology, 45, 131-135. doi: 10.1016/j.jtemb.2017.10.005 Boudry, C., Dehoux, J. P., Portetelle, D., & Buldgen, A. (2008). Bovine colostrum as a natural growth promoter for newly weaned piglets: a review. Biotechnologie, Agronomie, Société et Environnement, 12(2). doi: 10.1017%2FS0007114514003201 Cazarotto, C. J., Boito, J. P., Gebert, R. R., Reis, J. H., Machado, G., Bottari, N. B., & Da Silva, A. S. (2018). Metaphylactic effect of minerals on immunological and antioxidant responses, weight gain and minimization of coccidiosis of newborn lambs. Research in Veterinary Science, 121, 46-52. doi: 10.1016/j.rvsc.2018.09.003 Costa, A., Lopez-Villalobos, N., Sneddon, N. W., Shalloo, L., Franzoi, M., De Marchi, M., & Penasa, M. (2019). Invited review: Milk lactose—Current status and future challenges in dairy cattle. Journal of Dairy Science, 102(7), 5883-5898. doi: 10.3168/jds.2018-15955 Daels, P. F. (2006). Induction of lactation and adoption of the orphan foal. In Proc. 8th AAEP Annual Resort Symposium, Rome, Italy. Pp. 19-21. Deelen, S. M., Ollivett, T. L., Haines, D. M., & Leslie, K. E. (2014). Evaluation of a Brix refractometer to estimate serum immunoglobulin G concentration in neonatal dairy calves. Journal of Dairy Science, 97(6), 3838-3844. doi: 10.3168/jds.2014-7939 Fischer-Tlustos, A. J., Hertogs, K., Van Niekerk, J. K., Nagorske, M., Haines, D. M., & Steele, M. A. (2020). Oligosaccharide concentrations in colostrum, transition milk, and mature milk of primi-and multiparous Holstein cows during the first week of lactation. Journal of Dairy Science, 103(4), 3683-3695. doi: 10.3168/jds.2019-17357 Fthenakis, G. C., Arsenos, G., Brozos, C., Fragkou, I. A., Giadinis, N. D., Giannenas, I., & Valasi, I. (2012). Health management of ewes during pregnancy. Animal Reproduction Science, 130(3-4), 198-212. doi: 10.1016/j.anireprosci.2012.01.016 Griffiths, L. M., Loeffler, S. H., Socha, M. T., Tomlinson, D. J., & Johnson, A. B. (2007). Effects of supplementing complexed zinc, manganese, copper and cobalt on lactation and reproductive performance of intensively grazed lactating dairy cattle on the South Island of New Zealand. Animal Feed Science and Technology, 137(1-2), 69-83. doi: 10.1016/j.anifeedsci.2006.10.006 Hashemi, M., Zamiri, M. J., & Safdarian, M. (2008). Effects of nutritional level during late pregnancy on colostral production and blood immunoglobulin levels of Karakul ewes and their lambs. Small Ruminant Research, 75(2-3), 204-209. doi: 10.1016/j.smallrumres.2007.11.002 Hernández-Castellano, L. E., Almeida, A. M., Ventosa, M., Coelho, A. V., Castro, N., & Argüello, A. (2014). The effect of colostrum intake on blood plasma proteome profile in newborn lambs: low abundance proteins. BMC Veterinary Research, 10, 1-9. doi: 10.1186/1746-6148-10-85 Hyrslova, I., Krausova, G., Bartova, J., Kolesar, L., & Curda, L. (2016). Goat and bovine colostrum as a basis for new probiotic functional foods and dietary supplements. Journal of Microbial and Biochemical Technology, 8(2), 56-59. doi: 10.4172/1948-5948.1000262 Kehoe, S. I., Jayarao, B. M., & Heinrichs, A. J. (2007). A survey of bovine colostrum composition and colostrum management practices on Pennsylvania dairy farms. Journal of Dairy Science, 90(9), 4108-4116. doi: 10.3168/jds.2007-0040 Kessler, E. C., Bruckmaier, R. M., & Gross, J. J. (2021). Comparative estimation of colostrum quality by Brix refractometry in bovine, caprine, and ovine colostrum. Journal of Dairy Science, 104(2), 2438-2444. doi: 10.3168/jds.2020-19020 Kuhla, B. (2020). Pro-inflammatory cytokines and hypothalamic inflammation: implications for insufficient feed intake of transition dairy cows. Animal, 14(S1), s65-s77. doi: 10.1017%2FS1751731119003124 Lopez, A. J., Steele, M. A., Nagorske, M., Sargent, R., & Renaud, D. L. (2021). Hot topic: Accuracy of refractometry as an indirect method to measure failed transfer of passive immunity in dairy calves fed colostrum replacer and maternal colostrum. Journal of Dairy Science, 104(2), 2032-2039. doi: 10.3168/jds.2020-18947 Lykkesfeldt, J., & Svendsen, O. (2007). Oxidants and antioxidants in disease: oxidative stress in farm animals. The Veterinary Journal, 173(3), 502-511. doi: 10.1016/j.tvjl.2006.06.005 Machado, V. S., Oikonomou, G., Lima, S. F., Bicalho, M. L. S., Kacar, C., Foditsch, C., & Bicalho, R. C. (2014). The effect of injectable trace minerals (selenium, copper, zinc, and manganese) on peripheral blood leukocyte activity and serum superoxide dismutase activity of lactating Holstein cows. The Veterinary Journal, 200(2), 299-304. doi: 10.1016/j.tvjl.2014.02.026 Mahmood, N., Hameed, A., & Hussain, T. (2020). Vitamin E and selenium treatment alleviates saline environment-induced oxidative stress through enhanced antioxidants and growth performance in suckling kids of beetal goats. Oxidative Medicine and Cellular Longevity, 2020. doi: 10.1155/2020/4960507 Mandal, A., Pant, K. P., Rout, P. K., & Roy, R. (2004). Effects of inbreeding on lamb survival in a flock of Muzaffarnagari sheep. Asian-Australasian Journal of Animal Sciences, 17(5), 594-597. doi: 10.5713/ajas.2004.594 Meglia, G. E., Johannisson, A., Petersson, L., & Waller, K. P. (2001). Changes in some blood micronutrients, leukocytes and neutrophil expression of adhesion molecules in periparturient dairy cows. Acta Veterinaria Scandinavica, 42, 1-12. doi: 10.1186%2F1751-0147-42-139 Mora, A. M., van Wendel de Joode, B., Mergler, D., Córdoba, L., Cano, C., Quesada, R., & Eskenazi, B. (2014). Blood and hair manganese concentrations in pregnant women from the Infants’ Environmental Health Study (ISA) in Costa Rica. Environmental Science & Technology, 48(6), 3467-3476. doi: 10.1021/es404279r National Research Council. (2007). Nutrient requirements of small ruminants: sheep, goats, cervids, and new world camelids. USA. Nawito, M. F., Abd El Hameed, A. R., Sosa, A. S. A., & Mahmoud, K. G. M. (2016). Impact of pregnancy and nutrition on oxidant/antioxidant balance in sheep and goats reared in South Sinai, Egypt. Veterinary World, 9(8), 801. doi: 10.14202%2Fvetworld.2016.801-805 Novoselec, J., Klir Šalavardić, Ž., Đidara, M., Novoselec, M., Vuković, R., Ćavar, S., & Antunović, Z. (2022). The effect of maternal dietary selenium supplementation on blood antioxidant and metabolic status of ewes and their lambs. Antioxidants, 11(9), 1664. doi: 10.3390/antiox11091664 Omur, A., Kirbas, A., Aksu, E., Kandemir, F., Dorman, E., Kaynar, O., & Ucar, O. (2016). Effects of antioxidant vitamins (A, D, E) and trace elements (Cu, Mn, Se, Zn) on some metabolic and reproductive profiles in dairy cows during transition period. Polish Journal of Veterinary Sciences, 19(4). doi: 10.1515/pjvs-2016-0088 Pechova, A., Sevcikova, L., Pavlata, L., & Dvorak, R. (2012). The effect of various forms of selenium supplied to pregnant goats on selected blood parameters and on the concentration of Se in urine and blood of kids at the time of weaning. Veterinární Medicína, 57(8). doi: 10.1007/s12011-010-8884-x Puppel, K., Gołębiewski, M., Grodkowski, G., Slósarz, J., Kunowska-Slósarz, M., Solarczyk, P., & Przysucha, T. (2019). Composition and factors affecting quality of bovine colostrum: A review. Animals, 9(12), 1070. doi: 10.3390%2Fani9121070 Puppel, K., Kuczyńska, B., Nałęcz‐Tarwacka, T., Sakowski, T., Gołębiewski, M., Kunowska‐Slósarz, M., & Grodzki, H. (2014). Effect of fish oil and linseed supplementation on the protein composition of milk from cows with different β‐lactoglobulin phenotypes. Journal of the Science of Food and Agriculture, 94(6), 1253-1257. doi: 10.1002/jsfa.7341 Quigley, J. D., Lago, A., Chapman, C., Erickson, P., & Polo, J. (2013). Evaluation of the Brix refractometer to estimate immunoglobulin G concentration in bovine colostrum. Journal of Dairy Science, 96(2), 1148-1155. doi: 10.3168/jds.2012-5823 Ribeiro, A. C., & Ribeiro, S. D. A. (2010). Specialty products made from goat milk. Small Ruminant Research, 89(2-3), 225-233. doi: 10.1016/j.smallrumres.2009.12.048 Roshanzamir, H., Rezaei, J., & Fazaeli, H. (2020). Colostrum and milk performance, and blood immunity indices and minerals of Holstein cows receiving organic Mn, Zn and Cu sources. Animal Nutrition, 6(1), 61-68. doi: 10.1016%2Fj.aninu.2019.08.003 Santiago, M. R., Fagundes, G. B., do Nascimento, D. M., Faustino, L. R., da Silva, C. M. G., Dias, F. E. F., & Cavalcante, T. V. (2020). Use of digital Brix refractometer to estimate total protein levels in Santa Inês ewes’ colostrum and lambs’ blood serum. Small Ruminant Research, 182, 78-80. doi: 10.1016/j.smallrumres.2019.10.014 Shankar, A. H., & Prasad, A. S. (1998). Zinc and immune function: the biological basis of altered resistance to infection. The American Journal of Clinical Nutrition, 68(2), 447S-463S. doi: 10.1093/ajcn/68.2.447S Soldá, N. M., Glombowsky, P., Campigotto, G., Bottari, N. B., Schetinger, M. R. C., Morsch, V. M., & da Silva, A. S. (2017). Injectable mineral supplementation to transition period dairy cows and its effects on animal health. Comparative Clinical Pathology, 26, 335-342. doi: 10.1007/s00580-016-2378-y Spears, J. W., & Weiss, W. P. (2008). Role of antioxidants and trace elements in health and immunity of transition dairy cows. The Veterinary Journal, 176(1), 70-76. doi: 10.1016/j.tvjl.2007.12.015 Stelwagen, K., Carpenter, E., Haigh, B., Hodgkinson, A., & Wheeler, T. T. (2009). Immune components of bovine colostrum and milk. Journal of Animal Science, 87(suppl. 13), 3-9. doi: 10.2527/jas.2008-1377 Suttle, N. F. (2010). Mineral nutrition of livestock. 4th edition. CABI, Cambridge. doi: 10.1079/9781845934729.0000 Thampy, K. G., & Wakil, S. J. (1985). Activation of acetyl-CoA carboxylase. Purification and properties of a Mn2+-dependent phosphatase. Journal of Biological Chemistry, 260(10), 6318-6323. doi: 10.1016/S0021-9258 (18)88973-6 Vedovatto, M., da Silva Pereira, C., Cortada Neto, I. M., Moriel, P., Morais, M. D. G., & Franco, G. L. (2020). Effect of a trace mineral injection at weaning on growth, antioxidant enzymes activity, and immune system in Nellore calves. Tropical Animal Health and Production, 52, 881-886. doi: 10.1007/s11250-019-02056-0 Wankhade, P. R., Manimaran, A., Kumaresan, A., Jeyakumar, S., Ramesha, K. P., Sejian, V., & Varghese, M. R. (2017). Metabolic and immunological changes in transition dairy cows: A review. Veterinary World, 10(11), 1367. doi: 10.14202%2Fvetworld.2017.1367-1377 Warken, A. C., Lopes, L. S., Bottari, N. B., Glombowsky, P., Galli, G. M., Morsch, V. M., Schetinger, M. R. C., & Silva, A. S. D. (2018). Mineral supplementation stimulates the immune system and antioxidant responses of dairy cows and reduces somatic cell counts in milk. Anais da Academia Brasileira de Ciências, 90, 1649-1658. doi: 10.1590/0001-3765201820170524 Wąsowska, E., & Puppel, K. (2018). Changes in the content of immunostimulating components of colostrum obtained from dairy cows at different levels of production. Journal of the Science of Food and Agriculture, 98(13), 5062-5068. doi: 10.1002/jsfa.9043 Yang, F. L., Li, X. S., & He, B. X. (2011). Effects of vitamins and trace-elements supplementation on milk production in dairy cows: A review. African Journal of Biotechnology, 10(14), 2574-2578. doi: 10.5897/AJB10.2025 Yilmaz, Ö., & Kaşikçi, G. (2013). Factors affecting colostrum quality of ewes and immunostimulation. Turkish Journal of Veterinary & Animal Sciences, 37(4), 390-394. doi: 10.3906/vet-1210-33 Zamuner, F., DiGiacomo, K., Cameron, A. W. N., & Leury, B. J. (2020). Endocrine and metabolic status of commercial dairy goats during the transition period. Journal of Dairy Science, 103(6), 5616-5628. doi: 10.3168/jds.2019-18040 Zhou, X., Qu, X., Zhao, S., Wang, J., Li, S., & Zheng, N. (2017). Analysis of 22 elements in milk, feed, and water of dairy cow, goat, and buffalo from different regions of China. Biological Trace Element Research, 176, 120-129. doi: 10.1007/s12011-016-0819-8 | ||
آمار تعداد مشاهده مقاله: 149 تعداد دریافت فایل اصل مقاله: 107 |