تعداد نشریات | 31 |
تعداد شمارهها | 748 |
تعداد مقالات | 7,112 |
تعداد مشاهده مقاله | 10,247,654 |
تعداد دریافت فایل اصل مقاله | 6,900,780 |
A numerical method based on the radial basis functions for solving nonlinear two-dimensional Volterra integral equations of the second kind on non-rectangular domains | ||
Journal of Mathematical Modeling | ||
مقاله 6، دوره 12، شماره 4، اسفند 2024، صفحه 687-705 اصل مقاله (2.87 M) | ||
نوع مقاله: Research Article | ||
شناسه دیجیتال (DOI): 10.22124/jmm.2024.27157.2395 | ||
نویسندگان | ||
Mohsen Jalalian1؛ Kawa Wali Ali* 2؛ Sarkawt Raouf Qadir3؛ Mohamad Reza Jalalian4 | ||
1Department of Mathematics, Ilam University, P.O. Box 69315516, Ilam, Iran | ||
2Department of Mathematics, College of Education ,University of Garmian, Kurdistan Region-Iraq | ||
3Department of Mathematics, College of Education, University of Garmian, Kurdistan Region-Iraq | ||
4Faculty of Humanities, Islamic Azad University, Ilam Branch, Ilam, Iran | ||
چکیده | ||
In this investigation, a numerical method for solving nonlinear two-dimensional Volterra integral equations is presented. This method uses radial basis functions (RBFs) constructed on scattered points as a basis in the discrete collocation method. Therefore, the method does not need any background mesh or cell structure of the domain. All the integrals that appear in this method are approximated by the composite Gauss-Legendre integration formula. This method transforms the source problem into a system of nonlinear algebraic equations. Error analysis is presented for this method. Finally, numerical examples are included to show the validity and efficiency of this technique. | ||
کلیدواژهها | ||
Radial basis functions؛ nonlinear two-dimensional Volterra integral equations؛ meshless method؛ non-rectangular domains | ||
آمار تعداد مشاهده مقاله: 111 تعداد دریافت فایل اصل مقاله: 123 |