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1. Introduction

Let R be a ring. For A.B € R, the Jordan product of the two elements A and B is defined
explicitly by A o B = AB + BA and their Lie product is described by [A.B] = AB — BA. Let A be
a * —algebra over complex field C. For A.B € A, A«B = AB + BA" and [A.B], = AB — BA®
characterize the * —Jordan product and the skew Lie product of A and B respectively. These
products are fairly meaningful and important in some research topics. Recall that an additive map
®: A - A is said to be an additive derivation if ®(AB) = ®(A)B + A®(B) for all A.B € A.
Furthermore, @ is said to be an additive x —derivation if it is an additive derivation and satisfied
®(A") = ®(A)* for all A € A. Studying the features of these multiplications and derivations has
recently attracted the attention of many authors [1,2,3,4,5,6,7,8,9,10]. For example, Yaoxian et al.
[11] studied the possible structure of nonlinear mixed Lie triple derivation on factor von Neumann
algebras. Indeed, they have shown that every nonlinear mixed Lie triple derivation on factor von
Neumann algebra is an additive = —derivation. Changjin Li, Dongfon Zhang [12] proved that @ is
a nonlinear mixed Jordan triple derivation on factor von Neumann algebras if and only if & is an
additive = —derivation. Thagavi et al. [13] and Zhang [14] independently investigated nonlinear
Jordan * —derivations on factor von Neumann algebras. In general case, in [15], it has shown such
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facts hold for n-tuple preserving maps over factor von Neumann algebras. The other types of the
- additive derivations with respect to the different kind of multiplication have been considered in
[16] and [11] for algebras which are factors. As a motivation for conducting this study, we need to
mention that, recently many mathematicians have devoted their studies to analyze the new kind of
triple products, ABA and AB*A, which are called Jordan triple product and * —Jordan triple
product, respectively, over different algebraic structures. The main reason for studying such maps
is their close relationship with operator theoretical approach of Quantum physics. Actually, these
kind of derivatives may provide the tools that we need to compute some properties.

A map ®: A — A is said to be a nonlinear Jordan triple * —derivation triple derivation if
®((AeB)eC) = (P(A)eB)eC+ (As®(B))eC+(AeB) e ®(C). (2)

for all A.B.C € A, where A « B = AB + BA". Zhao and Li, [9], have proven that every nonlinear
Jordan triple = —derivation between von Neumann algebras with no central summands of type I;
IS an additive = —derivation. In [17], Taghavi showed that the map ®: A — A satisfies (2) for

every A.B € A and C € A, if and only if & is an additive = —derivation, whenever C € A, =
I i

{P.1-P.1-2p.0 2}

In this study, we apply triple product ABP; for i = 1.2, and then we check the mentioned result
for our interesting case over algebras which have fewer features. Consequently, it is possible to
say that this work results in the previous works.

2. Main Results

Our main theorem is characterized as following:

Theorem 2.1. Let R be a unital prime ring with [ and a nontrivial idempotent P,. Then the map
®: R — R satisfies the following condition:

®(ABP)) = ®(A)BP; + A®(B)P; + AB®(P). i=1.2 (3)
forall A.B € R, where P, =1 — P, is additive derivation.

Proof. Let P; be a nontrivial idempotent in R and P, =1 — P;. Denote R;; = P,RP;, i.j=
1.2,then R = Ziz_j:ljeij. For every A€ R we can write A = Ay; + A1, + 4,1 + A5, In all that

follow, when we write 4;;, it indicates that 4;; € R;;.

For showing additivity of & on R, we use above partition of R and give some claims that prove
® is additive on each R;;. i.j = 1.2.

Claim 1. ®(0) = 0.
Proof. It is easily proved.
Claim 2. Forevery A;; € R;;.B;; € Rj;, for1 <i # j < 2, we have

Proof. Let T = ®(4;; + Bj;) — ®(4;;) — ®(B;;), we should prove that T = 0.
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Using Claim 1 we have
o(P.(Aij + Bji)P) = ®(P(Ai;)P;) + @(Pi(B;;)P).
From this, using the relation (3) we write
®(P)(Aij + Bji)P; + P,®(A;j + Bj;)P; + P;(A;j + B;; )@ (P)
= &(P,(Aij + Bji)P)
= &(P;(4;))P) + P(P,(Bj;)P;)
= ®(P)(A;;)P; + Pid(A;;)P: + P(A;;)P(P)
+®(P)(B;;)P; + P;®(B;;)P; + Pi(Bj))®(P)).
In this case, P; ((D(Aij +B;;) — ®(4;) — d)(Bji)) P, =0.So T; = 0 and it can be shown in the
same way T;; = 0. By using Claim 1 we have
©(P;(4i; + Bji)P) = ®(F;(Ayj)P:) + P (By(B;i)Po).
And by using relation (3) we get
®(P;(Ay; + Bji)P:) + P;®(Aij + Bje)Pr + P (Aij + Bji)O(P)
= ©(P;(Ay + Bji)P:)
= ®(P;(4;)P) + ©(P(B;i)P)
= ©(P;)(4y)P + Bo(Ay) P + Pi(A;) P (P)
+@(P;)(Bji)P: + ®(B;i)P; — P;(B;i) @ (Py).
We get P; (d)(Aij +B;;) — ®(4;) — d>(Bji)) P; = 0,50 Tj; = 0. It can be shown in the same
way T;; =0,s0T = 0.
Claim 3. Forevery A;; € R;;.B;; € R;j.Cj; € Ry, , forevery 1 < i # j < 2, we have
(A + Bij + C;i) = @A) + ®(By;) + @(Cpy).
Proof. Let T = ®(4;; + B;; + Cj;) — (4y) — ®(B;;) — ©(Cyy),
we should prove that T = 0.
Using Claim 1 we have
O(Pi(Aj; + Bij + C;)P;) = ©(Pi(Ai)P) + ©(Pi(B;;)P;) + D(Pi(Cii)Py).
By using relation (3),
®(P)(Ay + Bij + Cji)Pi + P;®(Ay; + Byj + Cji )Pi+Pi(Ay; + Byj + Cji)P(Py)

= CD(Pl(Au + BU + C]l)Pl)
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= ®(P,(A;)P) + ©(Pi(By;)P) + ®(P(Cji)Py)
= ®(P)(A;)P; + P P(A;)P; + P;(A;))P(P;)
+®(P,)(B;;)P; + P,®(B;;)P; + P;(B;))®(P)
+®(P)(C;;)P; + Pid(Cji)P; + Pi(Ci)) P(Py).

We get P;(®(A;; + B;j + Cj;) — P(4y) — P(B;;) — ®(C;p))P; = 0, s0 Ty; = 0. It can be shown in
the same way T;; = 0.

By using Claim 1 we have
O(P;(Ai; + Bij + Cii)P;) = ®(P(4i)P;) + @(F(Byj)P:) + (B (Ci)Py).
By using relation (3),
®(P)(Aj; + Bij + C;;)P; + Pid(Ay; + Byj + C;i)P; + Pi(Ay; + Bij + Cji)(P)

= ®(F(Aq + Bij + Ci)P:)
= ®(F(4:)R) + ®(P;(Bi;)R) + @(P;(C;i)P)
= &(P,)(Ai))P, + PP (4;)P, + P, (A;)P(Py)
+®(P;)(By)P; + P;®(By;)P; + Py (Bij) P (P)
+@(P;)(Gi) P + P@(Cii )P + P (i) @ (Py).

We get Pj(P(4;; + Bij + Cji) — P(4) — P(B;j) — ®(C;;))P = 0, then T;; = 0. It can be shown
in the same way T;; = 0,s0 T = 0.

Claim 4. For every A;; € R;;.B;j € R;;.C;; € Rj; and Dj; € R;;, forevery 1 <i#j <2 we

have
(A + Bij + Cji + Djj) = ®(4) + @(By;) + @(C;;) + (Dy)).
Proof. LetT = ®(4;; + B;j + C;; + Dj;) — ®(4;) — ®(By;) — @(C;;) — @(Dj;)-
By Claim 1 we have
®(P,(A; + Bij + Cji + Dj;)P) = @(P,(4;)P) + ®(P(B;;)P)
+0(Bi(Ci)R) + @(R(D;)R).
By relation (3),
®(P) (A4 + Bij + Cji + Dj;)P + Pd(A;; + By + Cj; + Dj;)P;
+P(4;; + Bij + Cj; + D;; )@ (P)
= &(P;(Ai; + Bi; + C;; + Dj;)P)

= ®(P,(A4;)P,) + ©(Pi(B;;)P;)
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+@(P(Gi)P:) + @(Pi(Dj;)P)
= ®(P)(Ay)P; + P, ®(A;)P; + Pi(Ay)P(P)
+®(P,)(B;;)P; + P,®(B;;)P; + Pi(B; )P (P)
+@(P)(C;i)P; + P;®(Cji)P; + Pi(Cji)P(P)
+®(P,)(D;;)P; + P;®(D;;)P; + Pi(D;; )@ (P).
So we get T; = 0. As the same way T;; = 0. By Claim 1,
®(P;(A4i + Bij + Cji + Dj;)P;) = @(Pi(4)P;) + ©(P;(By;)P,)
+0(P;(Cji)P,) + @ (P (Dj)P:)-
By relation (3),
P;(® (A + B + Cji + Dj;) — ®(Ay) — ©(B;j) — ®(Cji) — ®(D;))P; = 0.
We get Tj; = 0. As the same way T;; = 0,s0 T = 0.
Claim 5. Forevery A;;.B;; € R;j, for1 < i # j <2 we have
®(4;; + Bi;) = ©(4;;) + (By)).
Proof. Since the (I + A;;)(P; + Bij)P; = P; + A + Byj.
By using relation (3) and Claim 3, we write
®(P; + 4 + By) = @ ((1 +Ay) (P + Bij)Pj)
= (I + Ai;)(P + Byj)P;
+(I + Ai;)®(P; + Byj)P,
+(1+ Ai;) (P + Bij)(P)
= ®(1+4;)PF(P;) + @(1+ A;;)By;(P)
+(1+A4;)@(P)F + (1+ 4;)@(By;)(7)
+(1+4;)P@(P) + (1+ 45)(Bi)@(P)
= ((1 + Aij)(Pj)Pj) +@ ((1 + Aij)(Bij)Pj)
= o(P + A;;) + ©(By)).
So ®(P; + A;; + B;;) = ®(P; + A;j) + ®(B;;), by using Claim 3, we get
®(4;; + Bi;) = ©(4;;) + (By)).

Claim 6. Forevery A;;.B;; € Ry;, forl1 <i#j <2, wehave
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P(A;; + By) = P(Ay) + P(By).
Proof. Let T = ®(4;; + B;;) — ®(4;;) — ®(By;), we should prove that T = 0.
By using relation (3) and Claim 1 we have
®(P;)(Aj; + Bi) Py + P;@(Ay; + By) Py + P;(Ay; + Bi)@(P;)
= ®(Pi (A + Biy)P;)
= ®(F(Ai)P;) + @ (P (B)P)
= ®(B)AuF; + AP + FA;:@(F)
+®(P;)BiiP; + F®(Bi)P; + PBy®(P;).
SoT;; = 0.
By using relation (3) and Claim 1 we have
®(P;)(Asi + Bi)P; + P, ®(Ay; + By)P; + Py (A + By) P(P)
= ®(P(Ay + Bi)P)
= ®(PA;P) + ©(PB;Py)
= O(P;)A;;P; + P;®(A;)P; + P A; P(P)
+®(P;)B;;P; + P,®(B;;)P; + P,B;;®(P,).

We get Pj(®(A4; + By) — P(A;) — ®(By))P; = 0, then Tj; = 0. It can be shown in the same
way T;; = 0.

For every X;; € R;;, by relation (3) and Claim 1 we have
O(X;;)(Ai; + Bi)P; + X;; P(A;; + Bip)P; + X;i(Ay; + Bi)) @ (P;)
= O(X;;(A; + By)P;)
= O(X;;A;P;) + ©(X;By:P;)
= O(Xj;) AyP; + X;; P(Ai) Py + XAy @ (Py)
+®(X;) BiiP; + X;;®(By)P; + X B;y @ (Py).
We get X;;(®(A;; + By;) — ®(4;) — ®(By))P; = 0, then X;;T;; = 0.
By primness, we obtain T;; = 0,s0 T = 0.
Claim 7. & is additive.
Proof. Using from Claim 1-6 we conclude that & is additive.

Claim 8. ®(I) = 0.
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Proof. By using relation (3), we write
®(11P,) = d(DIP; 4 ID(D)P; + 1ID(P;)
and
®(117) = (DIP; + 1@(DP; + LD (P).
Adding the two above relation, we get ®(I) = 0.
Claim 9. @ is a derivation.
Proof. By using the relation (3), we write
®(ABP;) = ®(A)BP; + A®(B)P; + ABD®(P;)
and
®(ABP;) = ®(A)BP; + A®(B)P; + ABD(P)).
Adding the two above relation, we get ®(AB) = ®(4A)B + AP (B). So @ is a derivation.

Theorem 2.2. Let A be a unital prime * —algebra with I and a non-trivial projection P;. Then the
map &: A — A satisfies in the following conditions:

®(AB*P)) = ®(A)B*P; + AD(B)*P; + AB*®(P). i=1.2 (4)
forall A.B € A, where P, = I — P, is additive.
Moreover, if ®(I) is self-adjoint, then @ is a * —derivation.
Proof. The proof of this theorem is the same as theorem 2.1, we only need to add proof
D(A") = P(A)".
By using relation (4), we write
D(IA*P) = d(DA*P; + ID(A)*P; + IA*D(P)
And
O(1A*P) = D(DAP; + [D(A)*P; + [A*D(P).
Adding the two above relations and ®(I) = 0, we get ®(A*) = ®(A)".

The following example shows that the self-adjoint condition of ®(I) in the above theorem is
necessary.

Example 1. Let A be a prime * —algebra with unit I and nontrivial projection. Define a map
®: A - A where ®(A) = iA for all A € A. In this mapping ®(I) is not self-adjoint. It can be
easily shown that the mapping @ in (4) applies, but is not a derivation.

3. CONCLUSION

The current work investigated non-linear maps on rings satisfies in (3) are additive derivation.
Also we studied map @ on prime = —algebrasby applying triple product AB*Pj, i=1.2, provided
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that @ (1) is self-adjoint. We showed by providing an example that the self-adjoint condition of
@(I) in the above theorem is necessary.

Reference

[1] Darvish, V., Nouri, M., Razeghi, M., & Taghavi, A. (2020). Nonlinear *-Jordan triple derivation on
prime *=-algebras. Rocky Mountain J. Math. 50(2), 543-549.

[2] Li, C., Chen, Q., & Wang, T. (2018). Nonlinear maps preserving the Jordan triple*-product on factor
von Neumann algebras. Chinese Annals of Mathematics, Series B, 39(4), 633-642.

[3] Liu, L., Ji, G. X,, (2011). Maps preserving product X*Y 4+ YX™ on factor von Neumann algebra, Linear
and Multilinear Algebra. 59 951-955.

[4] Li, C, Lu, F., & Wang, T. (2016). Nonlinear maps preserving the Jordan triplex-product on von
Neumann algebras. Ann. Funct. Anal. 7, 496-507

[5] Li, C.J., Zhao, F. F., & Chen, Q. Y. (2016). Nonlinear skew Lie triple derivations between factors.
Acta Mathematica Sinica, English Series, 32(7), 821-830.

[6] Semrl, P. (1990). On Jordan*-derivations and an application. In Colloquium Mathematicum, 2(59)
241-251.

[7] Yang, Z., & Zhang, J. (2019). Nonlinear maps preserving mixed Lie triple products on factor von
Neumann algebras. Ann. Funct. Anal. 10(3), 325-336.

[8] Yu, W., & Zhang, J. (2012). Nonlinearx-Lie derivations on factor von Neumann algebras. Linear
algebra and its applications, 437(8), 1979-1991.

[9] Zhao, F., & Li, C. (2018). Nonlinear*-Jordan triple derivations on von Neumann algebras.
Mathematica Slovaca, 68(1), 163-170.

[10] Zhao, F., & Li, C. (2018). Nonlinear maps preserving the Jordan triplex-product between factors.
Indagationes Mathematicae, 29(2), 619-627.

[11] Yaoxian, L., Jianhua, Z., (2019). Nonlinear mixed Lie triple derivation on factor von Neumann
algebras. Acta Math. Sinica (Chin. Ser.) (1)62, 13-24.

[12] Li, C., & Zhang, D. (2022). Nonlinear mixed Jordan triplex-derivations on factor von Neumann
algebras. Filomat, 36(8), 2637-2644.

[13] Taghavi, A., Rohi, H., & Darvish, V. (2016). Non-linear*-Jordan derivations on von Neumann
algebras. Linear and Multilinear Algebra, 64(3), 426-439.

[14] Zhang, F. (2016). Nonlinear skew Jordan derivable maps on factor von Neumann algebras. Linear and
multilinear algebra, 64(10), 2090-2103.

[15] Shavandi, M., & Taghavi, A. (2023). Maps preserving n-tuple A* B— B* A derivations on factor von
Neumann algebras. Publications de I'Institut Mathematique, 113(127), 131-140.

[16] Shavandi, M., & Taghavi, A. (2024). Non-linear triple product A* B-B* A derivations on*-algebras.
Surveys in Mathematics and its Applications, 19, 67-78.

[17] Taghavi, A., (2025). Nonlinear Jordan triple * —derivations on prime * —algebras, Journal of Algebra
and Its Applications, doi.org/10.1142/S0219498825501646.



