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Abstract. The evolution of the waves on shallow water surfaces is described by a mathematical model
given by nonlinear KdV and KdV-Burgers equations. These equations have many other applications
and have been simulated by classical numerical methods in recent decades. In this paper, we develop a
machine learning algorithm for the time-fractional KdV-Burgers equations. The proposed method imple-
ments a linearization of the problem and a time reduction by a Crank-Nicolson scheme. The least squares
support vector regression (LS-SVR) is proposed to seek the approximate solution in a finite-dimensional
polynomial kernel space. The Bernstein polynomials are used as the kernel of the proposed algorithm
to handle the homogeneous boundary conditions easily in the framework of the Petrov-Galerkin spectral
method. The proposed LS-SVR implements the orthogonal system of Bernstein-dual polynomials in the
learning process, which gives quadratic programming in the primal form and provides a linear system of
equations in dual variables with sparse positive definite matrices. It is shown that the involving mass and
stiffness matrices are sparse. Some new theorems for the introduced basis are provided. Also, numerical
results are presented to support the spectral convergence and accuracy of the method.

Keywords: Fractional KdV equation, machine learning, support vector machines, Petrov-Galerkin, least squares
support vector regression.
AMS Subject Classification 2010: 35R11, 65M70, 65M22, 76M22.

1 Introduction

Machine learning algorithms are able to learn mathematical models from a set of training data and are
used to predict new events that are not experienced before. As a supervised learning algorithm, support
vector machines (SVM) are used for classification, regression, and function estimation for the analysis
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Table 1: A literature review for the classic numerical methods for the time-fractional differential equa-
tions on shallow waters. NR stands for not reported.

Problem ref method/basis convergence
fractional KdV and KdV-Burgers, 2021 [14] Collocation, Legendre spectral

time-fractional KdV-Burgers, 2021 [29] Petrov-Galerkin, Legendre spectral
fractional combined KdV–mKdV [12] Collocation, RBF NR

time-fractional KdV–Burgers, 2018 [5] Petrov-Galerkin, B-Spline spectral
modified KdV equation, 2022 [16] Neural networks NR

PDEs governing the shallow water waves, 2017 [3] Radial basis functions (RBF) spectral
KdV equations, 2023 [30] Neural networks NR

of big data sets. In recent decades, this technique has been used in various applications including but not
limited to document classification in libraries, detection of hand-written manuscripts and classification
of satellite data. The SVM for regression, which also known as SVR, has been implemented for other
applications like the simulation of the differential equations and optimal control problems. For example,
Mehrkanoon, et al. have developed a machine learning algorithm based on SVR for the numerical
solution of the ordinary and partial differential equations as well as delay differential equations [20–22].
Also, the method and other neural networks have been implemented on some functional equations in
recent works such as the problems on unbounded domains [24], Volterra integral equations and fractional
Volterra’s population models [26, 27], cognitive decision-making [6] and Fredholm integral equations
[25]. In these works, the unknown solution was represented as a weighted summation of some known
basis functions, and a residual function was minimized in some least squares sense. So, we refer to these
works as LS-SVR [7, 28].

In this paper, we propose a new algorithm based on LS-SVR for the time-fractional KdV-Burgers
equations. These equations are used to model the time evolution of the waves in shallow waters on a
given spatial surface. They have important applications in acoustic waves, chaos theory, and Fermi-Ulam
experiments [15]. For the simple models of these equations with integer derivatives, the exact solution
is obtained via some linear transforms as moving solitons in a closed form. For the fractional problem
in which the simultaneous change as a local operator is replaced with a memory-recording non-integer
derivative, however, the exact solution is only derived as a convergent series solution that may suffer
from slow convergence [13]. In order to provide a more general description of the physical problem, the
time derivative in classic mathematical modeling is considered in the fractional sense to take into account
and keep a record of the history of the simultaneous derivative from the very beginning. Due to these
reasons, research on new efficient methods for these problems is still an ongoing effort. For instance, the
time-fractional KdV-Burgers equations have been numerically simulated by the Petrov-Galerkin method
with the B-spline basis functions [5] and the Legendre polynomials [29]. For other recently published
papers implemented on KdV-related problems, see the literature review given in Table 1.

Here, a residual function is associated with the problem by considering a closed-form polynomial
approximation of the unknown solution in terms of the Bernstein kernel, and it is minimized using a
training dataset by implementing a Petrov-Galerkin technique in a support vector regression framework.

The novelty of this paper is the development of a new algorithm with LS-SVR for the dynamics of
the evolution of water waves on shallow surfaces modeled as the time-fractional KdV-Burgers equations.
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The fractional derivatives are discretized on the time steps using an L1 approximation and the nonlinear
part of the problem is replaced with a linear approximation at each time step. The LS-SVR provides the
unknown coefficients by minimizing the residual function with some training data.

The rest of this paper is organized as follows: Some preliminaries concerning the KdV-Burgers
problem, fractional derivatives, and support vector machines are provided in Section 2. In Section 3, we
present an LS-SVR for the time-fractional KdV-Burgers equations. Some numerical results are reported
to support the efficiency of the proposed method in Section 4. Finally, some concluding remarks are
provided at the end.

2 Preliminaries

In this section, we provide some basic definitions and concepts that are needed in the rest of the paper.

2.1 Time-fractional KdV-Burgers equation

The time-fractional KdV-Burgers equation given by [29]

∂
α
t u+µ∂

3
x u+2u∂xu− γ∂

2
x u = f , (x, t) ∈Ω× I, (1)

equipped with the initial and boundary conditions

u(x,0) = g(x), (2)

u(0, t) = u(1, t) = ∂xu(1, t) = 0, t ∈ I, (3)

provides a mathematical description in terms of the nonlinear dispersive wave equation of the waves
on shallow water surfaces and facilitates the prediction of the underlying dynamics. For the sake of
the simplicity of the presentation, we assumed the homogeneous boundary conditions, otherwise by
introducing a new wave variable the problem is converted to a similar problem with a new right hand
side and homogeneous boundary conditions. Here, u(x, t) is for the amplitude of the wave and illustrates
the evolution of solitary waves on the water surface on the spatial domain Ω ⊂ R and temporal domain
I = (0,T ), µ and γ represent the dispersivity and diffusion coefficients, respectively. It is worth noting
that in real applications Ω⊂R2 and by angular symmetry assumptions, it is restricted to 1D. In (1), ∂ α

t u
stands for the fractional derivative in the Caputo sense with order 0 < α < 1. The Caputo derivative is
defined as

aD(α)
t f (t) =

1
Γ(n−α)

∫ t

a

f (n)(s)
(t− s)α−n+1 ds, (4)

in which n− 1 ≤ α < n and n ∈ N. The fractional derivative in (4) gives a weighted summation of
the simultaneous changes in the function over the time domain from the beginning to the current time
with the weight function w(t,s) = 1

(t−s)α−n+1 . Some researchers have investigated other weights, however
the Caputo definition incorporates the initial conditions of its definition, which means that it takes into
account the initial state of the system, making the modeling and solution process more intuitive [1, 2].
For the singularity issues at the initial time, throughout this work, we assume g to be smooth [10].
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2.2 LS-SVR

As supervised machine learning algorithms, SVM and SVR are used to classify the data and predict the
patterns in a large dataset, respectively, by an optimization problem with some inequality constraints.
The least squares versions of LS-SVM and LS-SVR transform the inequalities to equalities and the
resulting problem is then simply transformed into an equivalent system of linear equations. For more
details, see [20, 24, 25].

Assume that a known data set (xi,yi), i = 1, . . . ,N, xi’s in Rnd are independent variables, and real
numbers yi’s depend on xi’s. Finding regression formulae for this data has great importance in many
applied engineering problems. The LS-SVR provides an approximation in the form of y(x) =wT φ(x)+b
where φi’s are known basis functions, b ∈ R is the bias, and wi’s and b are to be determined by the
following primal problem:

min
1
2

wT w+
γ

2
eT e, (5)

s.t. yi = wT
φ(xi)+b+ ei, i = 1, . . . ,N,

where w = [w1, . . . ,wN ]
T , φ = [φ1, . . . ,φN ]

T and γ ∈ R+ is the tuning parameter. Also, ei as the primal
variable, represents the error of the model at xi (margin error). By using the Lagrangian as the sum of
the objective function and a linear combination of the constraints with the dual variables αi, it is easily
verified that this quadratic programming (5) is converted to a dual problem with an equivalent linear
system as follows [20, 25].

Theorem 1. The primal problem given as a quadratic programming (5) is equivalent to[
Ω+ 1

γ
IN 1N

1T
N 0

][
α
b

]
=

[
y
0

]
,

where Ωi, j = φ T (xi)φ(x j) is a positive definite matrix, IN is the identity matrix, 1T
N = [1, . . . ,1] ∈ RN ,

y = [y1, . . . ,yN ]
T and α= [α1, . . . ,αN ]

T is vector of the Lagrange coefficients. Now, the solution is given
by

y(x) =
N

∑
j=1

α jK(x,x j)+b, (6)

with the kernel function K(x,x j) = φ T (x)φ(x j).

First note that the kernel is symmetric, i.e. K(x,y) = K(y,x). Also,

N

∑
i=1

N

∑
j=1

K(xi,x j)cic j =
N

∑
i=1

N

∑
j=1

φ
T (xi)φ(x j)cic j =

N

∑
i=1

φ
T (xi)ci

N

∑
i=1

φ(xi)ci ≥ 0,

so it is a positive definite kernel.
So, the Mercer theorem guarantees the expansion of the kernel in terms of an orthonormal basis. It

is used as a tool for the categorization of the symmetric positive definite kernels. For Mercer’s theorem
on the orthogonal polynomial kernels, see [23] and the references therein.
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2.3 Kernel mapping and the basis functions

As we have seen in the previous section, the LS-SVR algorithm uses kernel mapping to represent a re-
gression formula (6) for a given data set. For our purposes the dependent values yi’s are not known and
we have only a partial differential equation governing the physical problem, so we use an alternative ap-
proach to provide the training data for the algorithm. This is well described in details in the next section.
Since we use the polynomial kernel, for now, we present the definitions and some basic properties of a
simple basis for the vector space of the finite-dimensional spaces of polynomials.

Let PM be the polynomial of degree at most M on the unit interval [0,1]. For this set, we have the
following Bernstein polynomials as a basis set:

Bi,M(x) =
(

M
i

)
xi(1− x)M−i, 0≤ i≤M. (7)

They have many advantages. For example, the easy computation and implementation of differential
and integral functional equations. Also, they facilitate handling the homogeneous boundary conditions.
However, they are not orthogonal and a corresponding set of polynomials is required to provide an
biorthogonal system.

Lemma 1 ( [8, 11]). Consider the functions

B?
i,M(x) =

M

∑
j=0

di, jB j,M(x), 0≤ i≤M, (8)

with

di, j =
(−1)i+ j

(b−a)
(M

i

)(M
j

) min(i, j)

∑
r=0

(2r+1)
(

M+ r+1
M− i

)(
M− r
M− i

)(
M+ r+1

M− j

)(
M− r
M− j

)
.

Then, we have the biorthogonal system

∫ b

a
Bi,M(x)B?

j,M(x)dx = δi j, ∀i, j = 0, . . . ,M. (9)

This makes the computations easier in the inner products arising in the variational formulation of the
problem. As previously mentioned, Bernstein polynomials are easy to compute and have simple relations
in boundaries that facilitate the implementation of boundary conditions in our algorithm by noticing the
behavior at the boundaries

Bi,M(x) =0, i = 1, . . . ,M−1,

B′i,M(x) =0, i = 2, . . . ,M−2, (10)

for x = 0,1. Moreover, for these functions we have [4]

∫ 1

0
Bi,M(x)dx = 1

M+1 , i = 0, . . . ,M. (11)
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3 A LS-SVR algorithm

In this section, we present the function spaces for the trial and test functions, also a variational form of
the problem (1)-(3). We then introduce a supervised machine learning method for the given problem to
train a function in the form of a polynomial kernel at each time step.

3.1 Time discretization

Consider the time-fractional KdV equation with the given initial and boundary conditions (1)-(3), which
can be rewritten as

∂
α
t u+L u+N u = f , (12)

L u = µ∂
3
x u− γ∂

2
x u, N (u) = 2u∂xu,

in which the operator L is responsible for the spatial derivatives and N represents the nonlinear part of
the equation. The initial condition gives u= u0 at t = t0. In the following, we present a quasi-linearization
with a Bernstein Petrov-Galerkin LS-SVR to obtain an approximation for the solution at the next time
steps un+1,n = 0,1, . . .. First, we write (12) at t = tn+1 with the Crank-Nicolson scheme

∂
α
t u|t=tn+1 +θ(L (un+1)+N (un+1)− f n+1)+(1−θ)(L (un)+N (un)− f n) = 0, (13)

with tn = n∆t for a time step ∆t. The time-fractional derivative ∂ α
t u is discretized at the time level t = tn+1

as [17]

∂
α
t u|t=tn+1 =

1
Γ(1−α)

∫ tn+1

0

∂su(x,s)
(tn+1− s)α

ds≈ 1
Γ(1−α)

n

∑
j=0

∫ t j+1

t j

u j+1−u j

∆t j(tn+1− s)α
ds

=
n

∑
j=0

(u j+1−u j)ξ j,n = µn+1un+1 +
n

∑
j=0

µ ju j, (14)

with ξ j,n = 1
Γ(1−α)

∫ t j+1
t j

1
∆t j(tn+1−s)α ds, µn+1 = ξn,n, µ j = ξ j−1,n − ξ j,n, for j = 0, · · · ,n. For the sake

of simplicity in this notation, we set ξ−1,n = 0. Let us denote this approximation as Lα
t u(x, tn+1) =

µn+1un+1 +∑
n
j=0 µ ju j and the error as rn+1

τ = ∂ α
t u|t=tn+1 −Lα

t u(x, tn+1). This is known as L1 approx-
imation and can be further simplified by taking into account a uniform partition. However, to take
advantage of an adaptive method, we use non-uniform meshes. The error of this approximation is given
by |rn+1

τ | ≤ cuτ2−α [17]. Using L1 approximation (14) in the problem (13), we get

µn+1un+1 +
n

∑
j=0

µ ju j +θ(L (un+1)+N (un+1)− f n+1)

+(1−θ)(L (un)+N (un)− f n) = 0, x ∈Ω, (15)

that may be written in a simple form,

µn+1un+1 +θ(L (un+1)+N (un+1)) = F̃n+1, (16)

with F̃n+1 = θ f n+1− (1−θ)(L (un)+N (un)− f n)−∑
n
j=0 µ ju j.



A new approach to numerical solution of the TF-KdV-Burgers equations using LS-SVR 589

3.2 Quasi-linearization

Now, we use the following result for the linearization of N (un+1) in the discretized equation (16).
Suppose N (u) = 2uux as a function of u and ux. Then, Taylor expansion about the points (un,un

x) gives

uux = unun
x +

∂N

∂u
(un,un

x)(u−un)+
∂N

∂ux
(un,un

x)(ux−un
x)+ · · · .

This immediately gives us a simple linear relation as

un+1un+1
x ≈ un+1un

x +unun+1
x −unun

x ,

in which, the upper bound of quasi-linearization error is
∥∥un+1−un

∥∥
∞

∥∥un+1
x −un

x

∥∥
∞
, according to Tay-

lor’s reminder theorem. So by (16), we have

µn+1un+1 +θ(L (un+1)+2un+1un
x +2unun+1

x ) = Fn+1, x ∈Ω, (17)

with Fn+1 = F̃n+1 +2θunun
x . The boundary conditions are derived from (3)

un+1(x) = 0, x ∈ ∂Ω,

d
dx

un+1(1) = 0. (18)

The solution process starts with u0 = g(x) given by the initial condition (2).

3.3 Basis functions of the Petrov-Galerkin LS-SVR for (1)

Let M,N ∈ N stand for the number of training points in the spatial and the number of time steps in the
temporal domain, respectively. To select a suitable basis for approximating the unknown functions in
the spatial dimension by (7), set φi(x) = Bi,M(x), i = 0, · · · ,M. These functions form a basis for PM,
the vector space of polynomials with the degree at most M. Removing some elements from a linearly
independent set is again a linearly independent set. So with a simple linear algebra argument, we get the
following result.

Proposition 1. The subset {φi(x), i = 1, . . . ,M−2} forms a basis for the vector space

V 0
M = {p ∈PM : p(0) = 0, p(1) = 0, p′(1) = 0}. (19)

This is the space in which the approximate solution of the problem is sought by an SVR training process.

On the other hand, we define the test space as

W 0
M = {p ∈PM : p(0) = 0, p(1) = 0, p′(0) = 0},

that is used for the least squares projection. To introduce a basis for this space, let ψ̃i(x) = B?
i,M(x) given

in (8) for i = 0,1, . . . ,M, and consider the coefficients in

ψi(x) =
i+3

∑
k=i

ai,kψ̃k(x), (20)

with ai,i = 1 such that ψi(0) = ψi(1) = ψ ′i (0) = 0. Since dimPM = M+1, we have dimW 0
M = M−2. So

we choose ψi(x), i = 0,1, . . . ,M−3 as a basis for W 0
M. This gives a system of linear equations with three

unknowns ai,i+1, ai,i+2, ai,i+3 which are determined by solving the system before any implementation.
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3.4 LS-SVR for the time-fractional KdV-Burgers equation

Before presenting the details of the SVR for the problem (17)-(18), we first provide the main ideas
of the method for a general linear functional equation L u = f with a given source function f and
some homogeneous boundary conditions Bu = 0. Following the works of [24, 25], for the numerical
simulation, we trained a solution in the ansatz form

u =
M

∑
j=0

α jK(x,x j), (21)

with the kernel function K. Then, we use the SVR to find the solution as u = wT φ by solving

min
1
2

wT w+
γ

2
eT e (22)

s.t. (wT L φ(x),ψi) = ( f (x),ψi)+ ei, i = 0, . . . ,M,

in which the functions φi are assumed to satisfy the homogeneous boundary conditions. In the constraints
of (22), we have used the linearity of the operator and an biorthogonal projection. Then, in a similar
argument as in Section 2.2, this problem is converted to a dual form as a linear system of algebraic
equations. The quadratic programming (22) is easily written in terms of an equivalent linear system.

Theorem 2. The dual variables αi’s in (21) satisfy

(W +
1
γ

IM)α= b, (23)

with

bi = ( f ,ψi), i = 0, . . . ,M,

Wk,i =
M

∑
j=0

(L φ j,ψk)(L φ j,ψi), k, i = 0, . . . ,M. (24)

Proof. The Lagrangian of (22) is

L =
1
2

wT w+
γ

2
eT e−

M

∑
i=0

αi((wT L φ ,ψi)− ( f ,ψi)− ei).

By the optimality conditions, we get

∂L
∂wk

= 0⇒ wk =
M

∑
i=0

αi(L φk,ψi), (25)

∂L
∂ek

= 0⇒ γek +αk = 0, (26)

∂L
∂αk

= 0⇒ (wT L φ ,ψk)− ( f ,ψk)− ek = 0, (27)
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for k = 0, . . . ,M. So, by (26) and (27), we have

M

∑
j=0

w j(L φ j,ψk)+
1
γ

αk = ( f ,ψk),

and by (25), we get

M

∑
j=0

M

∑
i=0

αi(L φ j,ψi)(L φ j,ψk)+
1
γ

αk = ( f ,ψk),

Using the Kronecker notation, this is written as

M

∑
i=0

αi(
M

∑
j=0

(L φ j,ψk)(L φ j,ψi)+
1
γ

αkδki) = ( f ,ψk),

which is the desired result.

Now, we turn to the main problem. The variational formulation of (17)-(18) is as follows

µn+1(un+1,v)+θ(µ(∂ 3
x un+1,v)− γ(∂ 2

x un+1,v)+2(un+1un
x ,v)+2(unun+1

x ,v)) = (Fn+1,v),

for all v ∈ L2(Ω). The initial condition u0 = g in Fn+1 which is assumed as a smooth function, so the
non-homogeneous problem avoids showing singularity at the initial condition [10].

The LS-SVR method in a variational form is to find the approximate solution in the vector space (19)
at time step tn+1 as

un+1
M =

M−2

∑
j=1

wn+1
j φ j(x) =wTφ, (28)

with the objective functions

min
1
2

wT w+
γ

2
eT e

with undetermined weights w j := wn+1
j in V 0

M such that

µn+1(un+1
M ,vM)+θ(µ(∂ 3

x un+1
M ,vM)− γ(∂ 2

x un+1,vM)+2(un+1un
x ,vM)+2(unun+1

x ,vM))

= (Fn+1,vM)+ eM (29)

for all vM ∈W 0
M.

Remark 1. For a basis as vM = φi, i = 1, . . . ,M−2, the linear system (29) is equivalent to the Galerkin
LS-SVR, while for Dirac delta functions vM = δ (x− xi), with a partition of the interval a < xi < b, we
get the collocation LS-SVR. To avoid the ill-conditioning and dense matrices (with high computational
cost), we use an alternative Petrov-Galerkin LS-SVR approach: vM = ψi, i = 0, . . . ,M−2 given by (20)
to make use of the biorthogonality of the Bernstein and the dual Bernstein polynomials.

Substituting vM = ψi in (29), implies

Awn+1 = f n+1, n = 0,1, . . . , (30)
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in which A = [ai, j], i = 0, . . . ,M−3, j = 1, . . . ,M−2 is given by

A = µn+1R+θ(−µQ+ γP+2G).

The method requires to compute of the following mass and stiffness matrices

Ri, j = (φ j,ψi), Si, j = (φ ′j,ψi),

Pi, j =−(φ ′j,ψ ′i ), Qi, j =−(φ ′′j ,ψ ′i ), (31)

Gi, j = (un
xφ j +un

φ
′
j,ψi). (32)

Here, R,S,P, and Q are (2,1),(3,2),(4,3),and(5,4)-band matrices, respectively. An (m,n)-band matrix
is a sparse matrix whose nonzero entries are confined to a diagonal band, comprising the main diagonal
and m lower and n upper diagonals.

Lemma 2. The mass matrix R has a band structure whose nonzero diagonals are given by

Ri, j =


1, i− j =−1,
ai,i+1, i− j = 0,
ai,i+2, i− j = 1,
ai,i+3, i− j = 2,

for i = 0, . . . ,M−3 and j = 1, . . . ,M−2.

Proof. By Definition (7) and relation (20), we have

Ri, j = (φ j,ψi) =
∫ 1

0
B j,M(x)(ψ̃i(x)+ai,i+1ψ̃i+1(x)+ai,i+2ψ̃i+2 +ai,i+3ψ̃i+3)dx

= δi, j +ai,i+1δi+1, j +ai,i+2δi+2, j +ai,i+3δi+3, j,

which gives the desired result noting that i = 0, . . . ,M−3 and j = 1, . . . ,M−2.

To have an explicit representation of the entries of the stiffness matrix, we need the following result
from [8].

Lemma 3. The derivatives for the polynomials (20) are represented as

ψ
′
i (x) = αi,0ψ̃0 (x)+(1−δi,1)iψ̃i−1 (x)+(1−δi,0)(1−δi,M)(M−2i) ψ̃i (x) (33)

− (1−δi,M−1)(M− i) ψ̃i+1 (x)−αM−i,0ψ̃M (x) ,

in which αi,0 :=−(−1)i(M+1)
(M+1

i+1

)
+Mδi,0 +δi,1 for 0≤ i≤M, with the convention ψ̃i ≡ 0 for i < 0

and i > M.

The following lemma presents the structure of the stiffness matrix associated with the selected func-
tions for trial and test spaces.

Lemma 4. The stiffness matrix P = [pi, j, i = 1, . . . ,M−2, j = 0, . . . ,M−3] is a (4,3)-band matrix whose
entries are zero for |i− j|> 4.
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Proof. First, we note that the derivatives of the basis functions are expressed as (see e.g., Theorem 2
in [9])

φ
′
j(x) =

j+1

∑
k= j−1

b j,kφk(x),

with b j, j−1 = N− j+1, b j, j =−(N−2 j), b j, j+1 =−( j+1). Then

Pi, j =− (φ ′j,ψ
′
i ) =−ψi(x)+aiψi+1(x)+biψi+2(x)+ ciψi+3(x).

From (20), we have

ψ
′
i =

i+3

∑
r=i

ai,rψ̃
′
r =

i+3

∑
r=i

ai,r(αr,0ψ̃0 +
r+1

∑
k=r−1

cr,kψ̃k−αM−i,0ψ̃M).

And the biorthogonality (9), yields

Pi, j =
i+3

∑
r=i

ai,r(αr,0 < φ
′
j, ψ̃0 >+

r+1

∑
k=r−1

cr,k < φ
′
j, ψ̃k >−αM−i,0 < φ

′
j, ψ̃M >)

=
i+3

∑
r=i

ai,r(αr,0

j+1

∑
s= j−1

b j,s < φ j, ψ̃0 >+
r+1

∑
k=r−1

cr,k

j+1

∑
s= j−1

b j,s < φ j, ψ̃k >−αM−i,0

j+1

∑
s= j−1

b j,s < φ j, ψ̃M >)

=
i+3

∑
r=i

ai,r(αr,0

j+1

∑
s= j−1

b j,sδ j,0 +
r+1

∑
k=r−1

cr,k

j+1

∑
s= j−1

b j,sδ j,k−αM−i,0

j+1

∑
s= j−1

b j,sδ j,M),

in which δ denotes the Kronecker delta function. It is easy to see that this expression vanishes when
|i− j|> 4.

Other matrices in the formulation of the Petrov-Galerkin LS-SVR are obtained with a similar argu-
ment as in the proof of Lemmas 2 and 4.

It is seen that the proposed algorithm for the fractional nonlinear KdV-Burgers equation leads to the
linear system (29) and its dual form is written in a matrix form as (30) at any time step to obtain the
weights w’s for the unknown solution un+1 starting with u0 = g, which is given by the initial condition.

Now, we discuss the error analysis of the proposed algorithm for the time-fractional KdV-Burgers
equation in the weighted L2-norm. Let un+1

M be the approximate solution (28) of the problem (1))-(3), in
which the exact solution is denoted by u(x, t). Let Ã = [wn+1

1 , . . . ,wn+1
M−2] and un+1

M = φ T Ã be the weights
and the ansatz which are updated in the training process given in Section 3.

Let us denote the best approximation of u at t = tn+1 by ū(x, tn+1) in V 0
M (19). Then,

‖u−un+1
M ‖2 ≤‖u− ū‖2 +‖ū−un+1

M ‖2. (34)

Let u have a continuous kth derivative, and let wp be the modulus of continuity. An error bound for
the first term is given by ‖u− ū‖2 ≤Ckwk(M−1)M−k [18]. For the second term in (34), we proceed as
follows

‖ū−un+1
M ‖2 =‖φ T Ā−φ

T Ã‖2 ≤ ‖φ‖2‖Ā− Ã‖2.
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On the other hand,

‖φ‖2
2 =

M−2

∑
i=1

∫ 1

0
φ

2
i (x)dx =

M−2

∑
i=1

(M
i

)2(2M
2i

) ∫ 1

0

(
2M
2i

)
x2i(1− x)2M−2idx

=
M−2

∑
i=1

(M
i

)2(2M
2i

) ∫ 1

0
B2i,2M(x)dx =

1
2M+1

M−2

∑
i=1

(M
i

)2(2M
2i

) ,
in which we have used the definition of the Bernstein polynomials (7) and the integral property (11). So,
we get

‖ū−un+1
M ‖2 ≤(

1
2M+1

M−2

∑
i=1

(M
i

)2(2M
2i

) ) 1
2 ‖Ā− Ã‖2. (35)

Now, from (34) and (35), we have

‖u−un+1
M ‖2 ≤Ckwk(M−1)M−k +CM‖Ā− Ã‖2,

with CM = ( 1
2M+1 ∑

M−2
i=1

(M
i )

2

(2M
2i )

)
1
2 .

In the next section, some examples are considered to show the efficiency of the proposed machine
learning algorithm, and the results are compared to some other methods in the literature. As we will see,
it is verified that the order of convergence in time is O(τ2−α) and the convergence in space exhibits a
spectral behavior.

4 Numerical experiments

Here, we consider some test problems to illustrate the convergence of the proposed algorithm in time and
space, discuss the structure of the involved matrices and make some comparisons with existing numerical
results in the literature.

We first note that the matrices R,S,P, and Q in (31) have sparse and banded structures as proved in
Lemma 2, 4. In Figure 1, the sparsity of the involving matrices (31) in our proposed method is illustrated.
These matrices are visualized by matrixplot in Maple with M = 20 as 18×18 matrices.

The numerical errors at the final time T are computed using

L∞ := max
x∈Ω

|U(x,T )−uN
M(x)| ≈ max

0≤i≤M
|U(xi,T )−uN

M(xi)|, (36)

L2 := (
∫

Ω

|U(x,T )−uN
M(x)|2dx)1/2 ≈ (

1
M

M

∑
i=1
|U(xi,T )−uN

M(xi)|2)1/2, (37)

with xi =
i

M , i = 0, . . . ,M and we set the number of test points, M = 100 points. A numerical approxi-
mation of the order of convergence in time which is reported in numerical tables is obtained as

EOCi =
ln(ei+1/ei)

ln(Ni/Ni+1)
, (38)
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Figure 1: The structure of the matrices (top left R, right S, bottom left P, right Q).

where ei stands for the error with the number of training points, Ni using ∆t = 1/Ni, i = 1,2, . . . and
a fixed number of spatial basis functions M. The experimental order of convergence in space is also
computed similarly. It is worth noting that due to the physical understanding of the problem and the way
the waves are interacting on the surface of water, the function u is assumed as an independent function
of the angle and so a single spatial variable x is used as the distance to the center [29].

Example 1. As the first example, we consider the time-fractional KdV-Burgers equation (1) with the
initial and boundary conditions given by (2) and (3), respectively. For the numerical simulation of the
proposed LS-SVR method, we assume the exact solution as u(x, t) = (1−x)sin(πx)(2t

T )
α/2+θ . Note that

for a simple presentation of the method, we assumed the homogenous boundary conditions, otherwise a
change of variable is required at the beginning. We also set γ = 1,µ = 1, and T = 2.

In Table 2, we report the errors in terms of the L∞ norm as well as the convergence rates for some
values of fractional orders α = 0.3,0.5,0.7 and θ = 10. We set M = 8, for the validation of the temporal
convergence.

It is seen that the order of convergence in time is O(τ2−α) supporting the theoretical results. In Figure
2, the convergence of the method is illustrated for three cases of fractional orders.

Example 2. Now, we consider the problem (1)-(3) with the exact solution

u(x, t) = (1− x)2 sin(2πx)exp(−t).
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Table 2: The numerical errors as L∞ norm and the experimental order of convergence in time at t = 1 for
some fractional orders.

α = 0.3 α = 0.5 α = 0.7
N Error EOC Error EOC Error EOC
10 5.17E-03 6.29E-03 5.60E-03
20 2.52E-03 1.0367 3.58E-03 0.8131 3.85E-03 0.5406
30 1.44E-03 1.3802 2.29E-03 1.1020 2.69E-03 0.8842
40 9.02E-04 1.6260 1.57E-03 1.3121 1.98E-03 1.0652
50 5.87E-04 1.9252 1.12E-03 1.5136 1.50E-03 1.2442

Figure 2: The temporal convergence of the LS-SVR method for the fractional KdV-Burgers equation
with M = 8 and some fractional orders.

Figure 3: The temporal convergence of the LS-SVR method for the fractional KdV-Burgers equation
with M = 12 and α = 0.5.

For the proposed PGLS-SVR Galerkin approach, the numerical results are provided in Table 3. In this
Table, the convergence both in space and time are reported as M and N increase, respectively.

Figures 3 and 4, illustrate the convergence of the PGLS-SVR for the problem in terms of The L∞
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Table 3: The error with different numbers of training points for the temporal and spatial accuracy at t = 1
for α = 0.5. For the temporal results, we set M = 12 and for the spatial results, we set N = 100.

N Error M Error
10 1.90E-04 4 3.48E-02
20 1.01E-04 6 1.76E-02
40 3.04E-05 8 1.50E-03
60 7.66E-06 10 7.07E-05
80 1.18E-06 12 1.30E-06

Figure 4: The spatial convergence of the LS-SVR method for the fractional KdV-Burgers equation with
N = 100 and α = 0.5.

norm for the various number of training functions in time and space, respectively. For the temporal
results, we set M = 12 and for the spatial results, we set N = 100. It is seen that the spatial order of
convergence is spectral since we set the vertical axis to be in logarithmic scale and the Fig. 4 behaves
almost linearly as M increases.

In the next example, we consider the problem (1)-(3) with an exact solution representing a different
behavior in comparison with the previous examples. It is written in terms of the Mittag-Leffler func-
tion that is usually implemented for the validation of the numerical schemes due to its applications in
modeling relaxation of viscoelastic materials, see e.g., [19, 29].

Example 3. Now, we consider the time-fractional nonlinear KdV-Burgers equation (1) with the homo-
geneous boundary conditions (3) and the initial conditions (2) with the exact solution

u(x, t) = (1− x)2 sin(2πx)(
2t
T
)αE1,α/2+θ+1(

2t
T
),

where Eā,b̄ is the Mittag-Leffler function given by

Eā,b̄(z) =
∞

∑
k̄=0

zk̄

Γ(āk̄+ b̄)
. (39)

The parameters in (1) are chosen as γ = 1,µ = 1,T = 2. In Tables 4 and 5, we report the errors in terms
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Table 4: The temporal convergence of the LS-SVR scheme with the L∞ measure as well as the experi-
mental order of convergence at t = 1 for some fractional orders with M = 12.

α = 0.3 α = 0.5 α = 0.7
N Error EOC Error EOC Error EOC
50 5.17E-07 5.58E-07 5.16E-07
100 2.42E-07 1.0952 2.73E-07 1.0314 2.65E-07 0.9614
200 1.01E-07 1.2607 1.23E-07 1.1502 1.27E-07 1.0612
300 5.36E-08 1.5626 7.16E-08 1.3345 7.78E-08 1.2086
400 3.30E-08 1.6860 4.55E-08 1.5760 5.25E-08 1.3672

Table 5: The spatial convergence of the LS-SVR scheme with the L∞ measure as well as the experimental
order of convergence at t = 1 for some fractional orders with N = 400.

α = 0.3 α = 0.5 α = 0.7
M Error EOC Error EOC Error EOC
4 7.25E-04 6.07E-04 5.08E-04
6 3.63E-04 1.7061 3.03E-04 1.7136 2.53E-04 1.7192
8 3.12E-05 8.5302 2.61E-05 8.5226 2.18E-05 8.5215
10 1.48E-06 13.6611 1.25E-06 13.6181 1.05E-06 13.5927
12 3.30E-08 20.8603 4.55E-08 18.1722 5.25E-08 16.4310

of L∞ norm as well as the convergence rates for some values of fractional orders α = 0.3,0.5,0.7, and
θ = 5, to show the convergence in time and space, respectively.

To have a visual understanding of the convergence in time and space, we provide Tables 4, 5, and
Figures 5 and 6. They confirm a spectral convergence as is expected in space and a polynomial conver-
gence in time. Test problem 1 (of [29]) considers the problem (1)-(3) by means of the classic spectral
Petrov-Galerkin method in which a Legendre basis has been used with a spectral convergence. The nu-
merical results reported in Table 5 and Figure 6 show that our proposed algorithm also reach a spectral
convergence.

It is seen that the spatial order of convergence for the proposed method is spectral since we set the
vertical axis to be in logarithmic scale and Figure 6 behaves almost linearly as M increases verifying the
spectral convergence. Moreover, the order of convergence in time is O(τ2−α) supporting the theoretical
results.

Table 6 considers the convergence in space and time for some fractional orders with N = 100,M = 12
by discrete L∞ and L2 norm given in (36)-(37).

The numerical results in Table 6 for the time fractional KdV problem (1)-(3) can be compared to the
results given in [5] in which a B-Spline basis was utilized for the approximation of the unknown solution.
The reported errors in Tables 4-6 in [5] for α = 0.5,0.75,1 are between 10−2 to 10−5.

The proposed learning algorithm can be expanded to address higher order nonlinear PDEs by incor-
porating quasi-linearization across all spatial dimensions and applying tensor product kernels, although
additional research is needed in this area.
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Figure 5: The temporal convergence of the LS-SVR method for the fractional KdV-Burgers equation
with M = 12 and some fractional orders.

Table 6: L2 and L∞ norm errors for the fractional KdV-Burgers equation using Petrov-Galerkin LS-SVR
method for some fractional orders.

α = 1 α = 0.75 α = 0.5
t L2 L∞ L2 L∞ L2 L∞

0.1 2.63e-10 5.59e-10 1.55e-11 3.29e-11 1.67e-11 3.55e-11
0.2 6.06e-09 1.29e-08 2.41e-10 5.14e-10 2.54e-10 5.40e-10
0.3 3.83e-08 8.14e-08 1.17e-09 2.48e-09 1.23e-09 2.61e-09
0.4 1.42e-07 3.03e-07 3.54e-09 7.52e-09 3.74e-09 7.96e-09
0.5 3.96e-07 8.43e-07 8.34e-09 1.77e-08 8.88e-09 1.89e-08
0.6 9.18e-07 1.95e-06 1.68e-08 3.57e-08 1.80e-08 3.82e-08
0.7 1.87e-06 3.99e-06 3.03e-08 6.44e-08 3.27e-08 6.93e-08
0.8 3.49e-06 7.42e-06 5.06e-08 1.07e-07 5.48e-08 1.16e-07
0.9 6.05e-06 1.29e-05 7.94e-08 1.68e-07 8.64e-08 1.83e-07
1.0 9.92e-06 2.11e-05 1.19e-07 2.52e-07 1.30e-07 2.75e-07

5 Conclusions

In this work, we presented a machine learning algorithm based on least squares support vector regression
for the numerical simulation of the time-fractional KdV-Burgers equations. The nonlinearity and the
non-local derivatives in the problem make it challenging for the numerical solvers. We first introduced
a quasi-linearization as well as incorporating suitable trial and test spaces along with new polynomial
kernel functions for the variational formulation to handle the challenges in the problem. We also pre-
sented a matrix formulation of the dual problem and investigated the resulting linear systems in a linear
algebra framework. Finally, the numerical method was carried out for some test problems to support the
theoretical results. From the numerical results, it is seen that the proposed method provides a fixed order
convergence in time and a spectral convergence in space meaning the method gives the numerical results
with higher accuracy than any method with polynomial order such as finite element and finite difference
method. The method may be further developed to handle non-smooth data.
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Figure 6: The spatial convergence of the LS-SVR method for the fractional KdV-Burgers equation with
N = 400 and some fractional orders.
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