
Journal of Algebra and Related Topics

Vol. 12, No 1, (2024), pp 79-87

MODULAR REPRESENTATION OF SYMMETRIC
2-DESIGNS

O. SHIMABUKURO∗

Abstract. Complementary pairs of symmetric 2-designs are equiv-
alent to coherent configurations of type (2, 2; 2). D. G. Higman
studied these coherent configurations and adjacency algebras of
coherent configurations over a field of characteristic zero. These
are always semisimple. We investigate these algebras over fields of
any characteristic prime and the structures.

1. Introduction

Many researchers have studied the p-ranks of incidence matrices of
combinatorial designs [1, 3, 8]. The p-ranks of incidence matrices of
some 2-designs have been investigated in the majority of decodable
codes because we can obtain a linear code having a relatively large
number of information symbols from a 2-design whose incidence matrix
having a relatively small p-rank [3]. Furthermore, these results help us
classify 2-designs with the same parameters.

Complementary pairs of symmetric 2-designs are equivalent to co-
herent configurations of type (2, 2; 2). The types of coherent configu-
rations were considered in [5]. An algebra accompanies each coherent
configuration. It is called adjacency algebra. We consider the struc-
tures of adjacency algebras of coherent configurations obtained from
symmetric 2-designs. An adjacency algebra of a coherent configuration
over a field of characteristic zero is always semisimple. This case was
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studied by Higman [6]. The author has considered symmetric 2-design
in [4] and determined the structure of modular adjacency algebras of
coherent configurations obtained from symmetric 2-designs over a field
of characteristic 2.

This paper determined the structure of modular adjacency algebras
of coherent configurations obtained from symmetric 2-designs over a
field of any characteristic prime. We define a coherent configuration
in Section 2 and consider structures of modular adjacency algebras of
coherent configurations obtained from symmetric 2-designs in Section
3.

2. Preliminaries

We give some definitions of coherent configurations. The reader is
referred to [5] for basic notation on coherent configurations. Let X be
a finite nonempty set, C a set of nonempty binary relations on X so
that X2 =

⋃
c∈C c is a disjoint union of X2. The pair (X,C) is called

a coherent configuration if the following three axioms hold.

(C1) There is a subset C0 of C such that
⋃
f∈C0

f = {(x, x) | x ∈ X},
(C2) if c ∈ C, then c∗ = {(y, x) | (x, y) ∈ c} ∈ C,
(C3) for a, b, c ∈ C and (x, y) ∈ c, a non-negative integer pca,b =

]{z ∈ X | (x, z) ∈ a, (z, y) ∈ b} is independent of the choice of
x and y.

We put Xf = {x ∈ X | (x, x) ∈ f} (f ∈ C0) and call Xf a fiber. A
coherent configuration (X,C) is said to be homogeneous if |C0| = 1. It
is also called an association scheme in a sense of [2] and [10].

Let (X,C) be a coherent configuration with fibers {Xf |f ∈ C0}. We
denote by MatX(Z) the ring of matrices over Z whose rows and columns
are indexed by X. For c ∈ C, we denote by Ac the adjacency matrix
of c, namely

(Ac)x,y =

{
1 (x, y) ∈ c,
0 otherwise.

The above three axioms are equivalent to the following condition in
term of adjacency matrices {Ac|c ∈ C} such that

∑
c∈C Ac = J|X|,

where J|X| is the all one matrix of order |X|.
(C1)’ There is the subset C0 of C such that

∑
f∈C0

Ac = I|X|, where

I|X| is the identity matrix of order |X|.
(C2)’ Ac∗ =tAc ∈ {Ac|c ∈ C} for any c ∈ C, where tAc is the transpose

of the matrix Ac.
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(C3)’ For a, b, c ∈ C, there are integers pca,b such that

AaAb =
∑
c∈C

pca,bAc.

ZC = ⊕c∈CZAc is a subalgebra of MatX(Z) under the usual matrix
multiplication by the above axioms. For a commutative ring R with
the identity element, we can define RC = R ⊗Z ZC and call this R-
algebra the adjacency algebra of (X,C) over R. We use the notation
Ac for the corresponding element in RC. Since RC is defined as a
subalgebra of MatX(R), the inclusion map is a representation and we
call it the standard representation of (X,C) over R. The corresponding
RC-module is called the standard module of (X,C) over R. The stan-
dard module has a natural basis X, so we denote it by RX. A modular
adjacency algebra FC is the adjacency algebra of (X,C) over a field F
of positive characteristic p and a modular standard module FX is the
standard module of (X,C) over F .

For c ∈ C, there is a unique pair (f, g) ∈ C0
2 such that AfAcAg = Ac.

Subsets C(f, g) = {c ∈ C | AfAcAg = Ac} of C give a partition
of C like C =

⋃
f,g∈C0

C(f, g). The sub-configuration (Xf , C(f, f))

is homogeneous and RC(f, f) = ⊕c∈C(f,f)RAc is a subalgebra of RC
(with non-common identity).

3. Types of adjacency algebras of symmetric 2-designs

We construct coherent configurations from symmetric 2-designs. The
author studied the structure of modular adjacency algebras of coherent
configurations obtained from 2-designs over a field of characteristic 2 in
[4]. This paper considers the structure of modular adjacency algebras
of coherent configurations obtained from symmetric 2-designs over a
field of characteristic prime p.

Let D be a symmetric 2-(v, `, λ) design, that is, an incidence struc-
tures (P,B,F) consisting of disjoint sets P and B, whose elements are
called points and blocks respectively, and a subset F of the Cartesian
product P×B, whose elements are called flags. A point ω and a block
B are incident if (ω,B) is a flag. A symmetric 2-design D with param-
eters v, b, r, `, λ is an arrangement of v points P into b blocks B such
that:

(D1) each block is incident with ` points (we assume that with ` < v),
(D2) each point is incident with r blocks,
(D3) any two distinct points are incident with λ blocks, and
(D4) any two distinct blocks are incident with λ points.
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Among parameters v, b, r, `, λ, there are the following relations:

v = b, r = ` and λ(v − 1) = `(`− 1).

The incidence matrix N of D will have rows indexed by the points
and columns by the blocks, namely,

(N)ω,B =

{
1 (ω,B) ∈ F(⊂ P×B),

0 otherwise.

For an incidence matrix N of D, the following equation holds.

N tN = tNN = (`− λ)Iv + λJv.

Associated with a symmetric 2-design (P,B,F) is the configuration
(X,C) defined by X = P ∪B (P ∩B = ∅) and C = {ci : 1 ≤ i ≤ 8},
where

c1 = {(x, x) | x ∈ P}, c2 = {(x, x) | x ∈ B}, c3 = P2 − c1,
c4 = B2 − c2, c5 = F, c6 = P×B− F,

c7 = c5
∗ = {(y, x) | (x, y) ∈ c5},

c8 = c6
∗ = {(y, x) | (x, y) ∈ c6}.

Putting Ai = Aci (1 ≤ i ≤ 8), they can be written as block matrices:

A1 =

[
Iv O
O O

]
, A2 =

[
O O
O Iv

]
, A3 =

[
Jv − Iv O
O O

]
,

A4 =

[
O O
O Jv − Iv

]
, A5 =

[
O N
O O

]
, A6 =

[
O Jv −N
O O

]
,

A7 = tA5 =

[
O O
tN O

]
, A8 = tA6 =

[
O O
tN O

]
.

We provide tables of multiplications of algebras obtained by these
configurations.

A1 A3 A5 A6

A1 A1 A3 A5 A6

A3 A3 (v − 1)A1 + (v − 2)A3 (`− 1)A5 + `A6 (v − `)A5 + (v − `− 1)A6

A7 A7 (`− 1)A7 + `A8 `A2 + λA4 (`− λ)A4

A8 A8 (v − `)A7 + (v − `− 1)A8 (`− λ)A4 (v − `)A2 + (v − 2`+ λ)A4

Table 1. The first multiplication table of (X,C).

These tables show that the configuration (X,C) is a coherent con-
figuration of type (2, 2; 2). Consequently, we can prove that (X,C) is
a coherent configuration of type (2, 2; 2), where C = {ci}1≤i≤8. On the
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A2 A4 A7 A8

A2 A2 A4 A7 A8

A4 A4 (v − 1)A2 + (v − 2)A4 (`− 1)A7 + `A8 (v − `)A7 + (v − `− 1)A8

A5 A5 (`− 1)A5 + `A6 `A1 + λA3 (`− λ)A3

A6 A6 (v − `)A5 + (v − `− 1)A6 (`− λ)A3 (v − `)A1 + (v − 2`+ λ)A3

Table 2. The second multiplication table of (X,C).

other hand, every coherent configuration of type (2, 2; 2) is equivalent
to complementary pairs of symmetric designs. Higman considered the
types of coherent configurations and gave a method to compute irre-
ducible ordinary characters of a coherent configuration by characters
of its fibers [6]. We generalize them to modular representations [4]. In
the rest of this paper, we assume that F is a field of characteristic a
prime p and (K,R, F ) is a p-modular system [7].

Let (X,C) be a coherent configuration defined by a symmetric 2-
design D. Since (X1, C(c1, c1)) and (X2, C(c2, c2)) are complete graphs,
the character table of (X,C) over a field characteristic zero is as follows:

A1 A3 A2 A4 multiplicity[4]
χ1 1 v − 1 1 v − 1 1
χ2 1 −1 1 −1 v − 1

.

Note that character values of Ai (i = 5, 6, 7, 8) are zero and we omit
them.

Suppose p - v. Consider the central primitive idempotent corre-
sponding to χ1:

eχ1 =
1

v
(A1 + A3 + A2 + A4) .

Then eχ1 is also a central idempotent of FC. We can also quickly check
that

eχ1FCeχ1
∼= M2(F ).

Hence, there are two possibilities.
(A). The modular character table is

A1 A3 A2 A4 multiplicity
1 v − 1 1 v − 1 1
1 −1 1 −1 v − 1

.

The decomposition and the Cartan matrices [4, 7] are

D =

(
1 0
0 1

)
, C =

(
1 0
0 1

)
.
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In this case,

FC ∼= M2(F )⊕M2(F )

and this is semisimple.
(B). The modular character table is

A1 A3 A2 A4 multiplicity
1 v − 1 1 v − 1 1
1 −1 0 0 v − 1
0 0 1 −1 v − 1

.

The decomposition and the Cartan matrices are

D =

(
1 0 0
0 1 1

)
, C =

1 0 0
0 1 1
0 1 1

 .

We can choose primitive idempotents eU = A1 + A2 + A3 + A4,
eV = A3 and eW = A4. Let us put α = A5 and β = A7.

Then we have the following theorem.

Theorem 3.1. The adjacency algebra of Type (B) is isomorphic to

M2(F )⊕ FQ/(αβ, βα)

where FQ is a path algebra, Q is the following quiver:

Suppose p | v. Modular character table of fibers are as follows:

A1 A3 multiplicity
1 −1 v

,
A2 A4 multiplicity
1 −1 v

.

Hence, there are two possibilities.
(C). The modular character table is

A1 A3 A2 A4 multiplicity
1 −1 1 −1 v

.

The decomposition and the Cartan matrices are

D =

(
1
1

)
, C =

(
2
)
.

In this case,

FC ∼= M2(F )⊗F F [x]/(x2).
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(D). The modular character table is

A1 A3 A2 A4 multiplicity
1 −1 0 0 v
0 0 1 −1 v

.

The decomposition and the Cartan matrices are

D =

(
1 1
1 1

)
, C =

(
2 2
2 2

)
.

Only (D) is the non-trivial case. We can choose primitive idempotents
eU = A1 and eV = A2. Put α1 = A1 + A3, α2 = A5, α3 = A5 + A6,
α4 = A7, α5 = A7 + A8 and α6 = A2 + A4. We have the following
theorem.

Theorem 3.2. The adjacency algebra of Type (D) is isomorphic to

FQ/({αiαj | 1 ≤ i, j ≤ 6}),

where FQ is a path algebra, Q is the following quiver:

It is difficult to determine the structure of the standard module and
we could not do that.

3.1. Characterization of types by parameters of designs. Let
(X,C) be a coherent configuration defined by a symmetric 2-(v, `, λ)
design. The Frame number [9] is

F(C) =
v8(v − `)2`2

(v − 1)2
.

We show that the following theorem.

Theorem 3.3. Let (X,C) be a coherent configuration obtained from a
symmetric 2-(v, `, λ) design.

(1) Type (A) if and only if F(C) 6≡ 0 (mod p),
(2) Type (B) if and only if v 6≡ 0 (mod p) and F(C) ≡ 0 (mod p),
(3) Type (C) if and only if v ≡ 0 (mod p) and ` 6≡ λ (mod p),
(4) Type (D) if and only if v ≡ ` ≡ λ ≡ 0 (mod p).
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Proof. Statements (1) and (2) are clear. Suppose v ≡ 0 (mod p). Sup-
pose that ` ≡ λ (mod p). Then by λ(v − 1) = `(` − 1), we have
v ≡ ` ≡ λ ≡ 0 (mod p). In this case, FC(c1, c2) ⊂ Rad(FC) and FC
is of type (D), where Rad(FC) is the Jacobson radical of FC. Suppose
that ` 6≡ λ (mod p). Then A7A5 is not nilpotent, and so is not in
Rad(FC). So FC is of type (C). �

3.2. Structure of FX of type (A). We will determine the struc-
ture of FC of type (A). There are two simple modules U and V with
dimF U = dimF V = 2. The structure of the standard module is deter-
mined. We can write

FX ∼= [U ]⊕ (v − 1)[V ].

3.3. Structure of FX of type (B). We will determine the structure
of FC of type (B). There are three simple modules U , V , and W with
dimF U = 2, dimF V = dimF W = 1, and the Loewy structure of the
projective covers is as follows:

P (U) = [U ], P (V ) =

[
V
W

]
, P (W ) =

[
W
V

]
.

The structure of the standard module is entirely determined. We can
write

FX ∼= [U ]⊕ g1[V ]⊕ g2
[
V
W

]
⊕ h1[W ]⊕ h2

[
W
V

]
for some non-negative g1, g2, h1 and h2.

By multiplicities mV = mW = v − 1, we have

g1 + g2 + h2 = v − 1, (3.1)

g2 + h1 + h2 = v − 1, (3.2)

g2 = rank(α) = rank(A5), h2 = rank(β) = rank(A7). Since tA5 =
A7, g2 = h2. We put w = rank(A5),

FX ∼= [U ]⊕ (v − 2w − 1)[V ]⊕ w
[
V
W

]
⊕ (v − 2w − 1)[W ]⊕ w

[
W
V

]
.

In this case, multiplicities must be a non-negative integer. Conse-
quently, we know the upper ranks of N .

Corollary 3.4. Let N be an incidence matrix of a symmetric 2-(v, `, λ)
design with v 6≡ 0 (mod p) and F(C) ≡ 0 (mod p). Then

rankp(N) ≤ v − 1

2
.
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3.4. Structure of FX of type (C). We determine the structure of
FC of type (C). The module category of FC is Morita equivalent to
the module category of F [x]/(x2). Hence, we know there are two iso-
morphic classes of indecomposable modules and dimF Rad(FC) = 4.
We know the fact that A1 + A3, A2 + A4, A5 + A6 and A7 + A8 are
the basis of Rad(FC) and dimF (FX)Rad(FC) = 2 by computation.
According to these facts, we know the standard module FX structure.
Then

FX ∼= [U ]⊕ (v − 2)[V ],

where dimF U = 4 and dimF V = 2.
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