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ON CLOSEDNESS OF SOME PERMUTATIVE
POSEMIGROUP IDENTITIES

R. ALAM, W. ASHRAF ∗ AND N. MOHAMMAD KHAN

Abstract. As we know that all non-trivial permutation identities
are not preserved under epimorphisms of partially ordered semi-
groups. In this paper towards this open problem, first we show
that certain non-trivial identities in conjunction with the permuta-
tion identity z1z2 · · · zn = zi1zi2 · · · zin (n ≥ 2) with in 6= n [i1 6= 1]
are preserved under epimorphisms of partially ordered semigroups.
Further, we extend a result of Ahanger and Shah which showed
that the center of a partially ordered semigroup S is closed in S
and show that the normalizer of any element of a partially ordered
semigroup S is closed in S.

1. Introduction and Preliminaries

A partially ordered semigroup, briefly a posemigroup is a pair (S,≤)
comprising a semigroup S and a partial order ≤ on S that is compat-
ible with its binary operation, i.e. for all s1, s2, t1, t2 ∈ S, s1 ≤ t1 and
s2 ≤ t2 implies that s1s2 ≤ t1t2. If S is a monoid, we call (S,≤) a par-
tially ordered monoid, shortly a pomonoid. Further, we call (U,≤U) a
subposemigroup of a posemigroup (S,≤S) if U is subsemigroup of the
semigroup S and ≤U=≤S ∩(U × U). The corresponding notion of a
subpomonoid is defined analogously.

A posemigroup morphism f : (S,≤S)→ (T,≤T ) is a monotone map
i.e. (x ≤S y =⇒ f(x) ≤T f(y)) which is also a semigroup morphism
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of underlying semigroups.

We shall denote, in the sequel, posemigroups (pomonoids) by S, T
etc. whenever no explicit mention of the order relation is required.

A class of posemigroups is called a variety of posemigroups if it is
closed under taking the products (endowed with componentwise op-
eration and order), morphic images and subposemigroups. A variety
of pomonoids may be defined similarly. It is also possible to describe
posemigroup (pomonoid) varieties alternatively with the help of in-
equalities using a Birkhoff type characterization; we refer to [2] for
details. Because every term equality in an algebraic variety can be
replaced by two (term) inequalities, see [2], in a usual way, a class of
posemigroups (pomonoids) is a variety if the class of underlying semi-
groups (monoids) is a variety of semigroups (monoids). Also, every
variety (whether algebraic or order theoretic) naturally gives rise to a
category.

Let S and T be posemigroups and f : S → T be a posemigroup
morphism. Then f is said to be an epimorphism (epi for short) if for
any posemigroup W and any posemigroup morphisms α, β : T → W ,
α ◦ f = β ◦ f implies α = β. We observe that f : S → T is necessarily
a posemigroup epimorphism if f : S → T is a semigroup epimor-
phism, where in the latter case we disregard the orders (and hence the
monotonocity) and treat S and T as semigroups.

Let U be a subposemigroup of a posemigroup S and d ∈ S. We
say that U dominates d if for all α, β : S → T posemigroup mor-
phisms, such that α(u) = β(u) for all u ∈ U , one has α(d) = β(d).
The set of all elements of S that are dominated by U is called the

posemigroup dominion of U in S and is denoted by D̂om(U, S). One

can easily verify that D̂om(U, S) is a subposemigroup of S containing

U . A posemigroup U is said to be saturated if D̂om(U, S) 6= S for
every posemigroup S containing U properly as a subposemigroup. A
variety of posemigroups is saturated if each member of the variety is
saturated. Also, it can be easily verified that a posemigroup morphism
f : S → T is an epi if and only if the inclusion i : f(S)→ T is epi and

the inclusion i : U → S is epi if and only if D̂om(U, S) = S.

An identity u = v is said to be preserved under posemigroup epis if
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for all posemigroups U and S with U as a subposemigroup of S and

such that D̂om(U, S) = S, U satisfies u = v implies, S also satisfies
u = v. A variety U of posemigroups is said to be epimorphically closed
if for all U ∈ U and for any posemigroup S containing U properly as a

subposemigroup such that D̂om(U, S) = S implies, S ∈ U .

The semigroup theoretic notations and conventions of Howie [4] will
be used throughout without explicit mention.

The following result is known as the Zigzag Theorem for posemi-
groups provided by Sohail [6] and will frequently be used in what fol-
lows.

Theorem 1.1. ([6], Theorem 5) Let U be a subposemigroup of a posemi-

group S. Then we have d ∈ D̂om(U, S) if and only if d ∈ U or

d ≤ x1u0, u0 ≤ u1y1,

xiu2i−1 ≤ xi+1u2i, u2iyi ≤ u2i+1yi+1 (1 ≤ i ≤ m− 1), (1.1)

xmu2m−1 ≤ u2m, u2mym ≤ d;

v0 ≤ s1v1, d ≤ v0t1,

sjv2j ≤ sj+1v2j+1, v2j−1tj ≤ v2jtj+1 (1 ≤ j ≤ m′ − 1), (1.2)

sm′v2m′ ≤ d, v2m′−1tm′ ≤ v2m′ ;

where u0, v0, . . . , u2m, v2m′ ∈ U, x1, y1, . . . , xm, ym, s1, t1, . . . , sm′ , tm′ ∈
S.

Let us call the above inequalities posemigroup zigzag inequalities
in S over U with value d and length (m,m′) and we say that it is
of minimal length (m,m′) if m and m′ are the least positive integers.
Also, the first half (1.1) and the second half (1.2) of the above zigzag
inequalities will be called, in whatever follows, as the upper half and
the lower half of the zigag inequalities respectively. The upper half
(1.1) of the zigzag inequalities gives:

d ≤ x1u0 ≤ x1u1y1 ≤ x2u2y1 ≤ · · · ≤ xmu2m−1ym ≤ u2mym ≤ d.

This gives

d = x1u0 = x1u1y1 = x2u2y1 = · · · = xmu2m−1ym = u2mym. (1.3)

Similarly, the lower half (1.2) of the zigzag inequalities gives:

d ≤ v0t1 ≤ s1v1t1 ≤ s1v2t2 ≤ · · · ≤ sm′v2m′−1tm′ ≤ sm′v2m′ ≤ d.
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This gives

d = v0t1 = s1v1t1 = s1v2t2 = · · · = sm′v2m′−1tm′ = sm′v2m′ . (1.4)

The next following theorems are from [1] and are very important for
our investigations.

Theorem 1.2. ([1], Lemma 3.2) Let d ∈ D̂om(U, S)\U and (1.1) and
(1.2) be the zigzag inequalities for d of minimal length (m,m′). Then
xi, yi ∈ S\U for i = 1, 2, . . . ,m and sj, tj ∈ S\U for all j = 1, 2 . . . ,m′.

Theorem 1.3. ([1], Lemma 3.3) If U is a subposemigroup of a posemi-

group S such that D̂om(U, S) = S, then for any d ∈ S \U and for any
positive integers k and k′ there exist u1, u2, . . . , uk, v1, v2. . . . , vk′ ∈ U
and dk, dk′ ∈ S \ U such that d = u1u2 · · ·ukdk = dk′vk′vk′−1 · · · v2v1.

Theorem 1.4. ([7], Lemma 3.10) If U is a subposemigroup of a posemi-

group S such that D̂om(U, S) = S then for x ∈ S \ U and y ∈ U ,
(xy)k = xkyk for all positive integers k.

Bracketed statements whenever used shall mean the dual to the other
statements.

2. Variety of Permutative Posemigroups

A semigroup S is said to be permutative if S satisfies a permutation
identity

z1z2 · · · zn = zi1zi2 · · · zin , (n ≥ 2) (2.1)

where i is a non trivial permutation of the set {1, 2, . . . , n} and i1, i2, . . .
, in are the images of 1, 2, . . . , n under the permutation i respectively.
A posemigroup S is said to be a permutative if it is so as a semigroup.

We call a posemigroup S a permutative posemigroup if it is such
as a semigroup. In [1], the authors have shown that if U is a commuta-

tive posemigroup then for any containing posemigroup S, D̂om(U, S)
is also a commutative posemigroup. In particular, it shows that com-
mutativity is preserved under epimorphism in the category of posemi-
groups. The determination of all identities which are preserved under
epis in conjunction with the general permutation identity (2.1) is an
open problem in the category of all semigroups and therefore in the
category of all posemigroups. However, in ([8], Theorem 4.7), Khan
showed that some identities were preserved under epis in conjunction
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with the general permutation identity (2.1). In the next theorem, we
find certain posemigroup identities which are preserved under epis in
conjunction with the permutation identity (2.1) with in 6= n [i1 6= 1].

Throughout the paper, by a permutative posemigroup, we shall mean
a posemigroup S satisfying any permutation identity of the form (2.1)
and by a permutative variety V , we shall mean a variety of posemi-
groups defined by any permutation identity of the type (2.1).

Theorem 2.1. All non trivial identities of the form zp11 z
p2
2 · · · zprr =

z′q11 z′q22 · · · z
′qr′
r′ , where p1, p2, . . . , pr, q1, q2, . . . , qr′ > 0, are preserved un-

der epis of posemigroups in conjunction with the permutation identity
(2.1) with in 6= n [i1 6= 1].

Proof. Let U be a subposemigroup of a posemigroup S such that D̂om(U, S)
=S and let assume that U satisfies (2.1). Thus

zp11 z
p2
2 · · · zprr = z′q11 z′q22 · · · z

′qr′
r′ (2.2)

holds for all z1, z2, . . . , zr, z
′
1, z
′
2, . . . , z

′
r′ ∈ U .

To prove that S satisfies (2.2), we first show that

zp11 z
p2
2 · · · zprr = w′q11 w′q22 · · ·w

′qr′
r′ (2.3)

for all z1, z2, . . . , zr ∈ S and any w′1, w
′
2, . . . , w

′
r′ ∈ U . So, take any

z1, z2, . . . , zr ∈ S and w′1, w
′
2, . . . , w

′
r′ ∈ U . We prove it by induction on

k (1 ≤ k ≤ r) assuming that z1, z2, . . . , zk ∈ S and zk+1, . . . , zr ∈ U .
For k = 1, we need not consider the case when z1 ∈ U . So assume that
z1 ∈ S \ U and let (1.1) be the upper half of zigzag inequalities for z1
of minimal length. Then

zp11 z
p2
2 . . . zprr

≤ (x1u0)
p1zp22 . . . zprr (by zigzag inequalities (1.1))

= xp11 u
p1
0 z

p2
2 . . . zprr (by Theorem 1.4)

= xp11 u
p1
1 z

p2
2 . . . zprr (as U satisfies (2.2))

= (x1u1)
p1zp22 . . . zprr (by Theorem 1.4)
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≤ (x2u2)
p1zp22 . . . zprr (by zigzag inequalities (1.1))

= xp12 u
p1
2 z

p2
2 . . . zprr (by Theorem 1.4)

= xp12 u
p1
3 z

p2
2 . . . zprr (as U satisfies (2.2))

≤ xp1i u
p1
2i−1z

p2
2 . . . zprr (for 1 ≤ i ≤ m)

= xp1mu
p1
2m−1z

p2
2 . . . zprr (for i = m)

= (xmu2m−1)
p1zp22 . . . zprr (by Theorem 1.4)

≤ up12mz
p2
2 . . . zprr (by zigzag inequalities (1.1))

= w′q11 w′q22 · · ·w
′qr′
r′ (for any w′1, w

′
2, . . . , w

′
r′ ∈ U as U satisfies (2.2)).

This implies

zp11 z
p2
2 · · · zprr ≤ w′q11 w′q22 · · ·w

′qr′
r′ . (2.4)

On the similar lines, by using the lower half (1.2) of zigzag inequalities,
we may show that

zp11 z
p2
2 · · · zprr ≥ w′q11 w′q22 · · ·w

′qr′
r′ (2.5)

for any w′1, w
′
2, . . . , w

′
r′ ∈ U .

By combining equations (2.4) and (2.5), we get

zp11 z
p2
2 · · · zprr = w′q11 w′q22 · · ·w

′qr′
r′ .

Now, suppose inductively that (2.4) holds for all 1 ≤ k < r; i.e. for all
z1, z2, . . . , zk ∈ S and zk+1, zk+2, . . . , zr ∈ U , we have

zp11 z
p2
2 . . . zpll z

pl+1

l+1 . . . z
pr
r = w′q11 w′q22 · · ·w

′qr′
r′

for any w′1, w
′
2, . . . , w

′
r′ ∈ U .

From this, we need to show that (2.4) holds for all z1, z2, . . . , zk, zk+1 ∈
S, zk+2, zk+3, . . . , zr ∈ U and for any w′1, w

′
2, . . . , w

′
r′ ∈ U . So, take

any z1, z2, . . . , zl, zl+1 ∈ S and zl+2, zl+3, . . . , zr, w
′
1, w

′
2, . . . , w

′
r′ ∈ U . If

zk+1 ∈ U , then (2.4) holds by inductive hypothesis. So, assume that
zk+1 ∈ S \ U and let (1.1) be the upper half of zigzag inequalities of
minimal length.
We shall use phrases, in whatever follows, ‘expanding ’ and ‘collaps-
ing ’ x

pk+1

i (1 ≤ i ≤ m), by Theorems 1.3 and 1.4, to mean x
pk+1

i =

x
(i)pk+1

i b
(i)pk+1

1 b
(i)pk+1

2 · · · b(i)pk+1

k for some b
(i)
1 , b

(i)
2 , . . . , b

(i)
k ∈ U and x

(i)
i ∈

S \ U respectively.
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Now

zp11 z
p2
2 · · · z

pk
k z

pk+1

k+1 · · · z
pr
r

≤ zp11 z
p2
2 · · · z

pk
k (x1u0)

pk+1z
pk+2

k+2 · · · z
pr
r

(by upper part (1.1) of zigzag inequalities)

= zp11 z
p2
2 · · · z

pk
k x

pk+1

1 u
pk+1

0 z
pk+2

k+2 · · · z
pr
r (by Theorem 1.4)

= zp11 z
p2
2 · · · z

pk
k x

(1)pk+1

1 b
(1)pk+1

1 b
(1)pk+1

2 · · · b(1)pk+1

k u
pk+1

0 z
pk+2

k+2 · · · z
pr
r

(by expanding x
pk+1

1 )

= zp11 z
p2
2 · · · z

pk
k x

(1)pk+1

1 b
(1)pk+1

1 b
(1)pk+1

2 · · · b(1)pk+1

k u
pk+1

1 z
pk+2

k+2 · · · z
pr
r

(as U satisfies (2.2))

= zp11 z
p2
2 · · · z

pk
k (x1u1)

pk+1z
pk+2

k+2 · · · z
pr
r

(by collapsing x
pk+1

1 and Theorem 1.4)

≤ zp11 z
p2
2 · · · z

pk
k x

pk+1

2 u
pk+1

2 z
pk+2

k+2 · · · z
pr
r

(by zigzag inequalities (1.1) and Theorem 1.4)

= zp11 z
p2
2 · · · z

pk
k x

(2)pk+1

2 b
(2)pk+1

1 b
(2)pk+1

2 · · · b(2)pk+1

k u
pk+1

2 z
pk+2

k+2 · · · z
pr
r

(by expanding x
pk+1

2 )

= zp11 z
p2
2 · · · z

pk
k x

(2)pk+1

2 b
(2)pk+1

1 b
(2)pk+1

2 · · · b(2)pk+1

k u
pk+1

3 z
pk+2

k+2 · · · z
pr
r

(as U satisfies (2.2))

= zp11 z
p2
2 · · · z

pk
k x

pk+1

2 u
pk+1

3 z
pk+2

k+2 · · · z
pr
r (by collapsing x

pk+1

2 )

...

≤ zp11 z
p2
2 · · · z

pk
k x

pk+1

i u
pk+1

2i−1z
pk+2

k+2 · · · z
pr
r (for 1 ≤ i ≤ m)

...

= zp11 z
p2
2 · · · z

pk
k x

pk+1
m u

pk+1

2m−1z
pk+2

k+2 · · · z
pr
r (for i = m)

= zp11 z
p2
2 · · · z

pk
k (xmu2m−1)

pk+1z
pk+2

k+2 · · · z
pr
r (by Theorem 1.4)

≤ zp11 z
p2
2 · · · z

pk
k u

pk+1

2m z
pk+2

k+2 · · · z
pr
r (by zigzag inequalities (1.1))

= w′q11 w′q22 · · ·w
′qr′
r′

(by inductive hypothesis as u2m, zl+2, . . . , zr ∈ U).

Therefore,
zp11 z

p2
2 · · · zprr ≤ w′q11 w′q22 · · ·w

′qr′
r′ . (2.6)

Similarly, by using the lower half (1.2) of zigzag inequalities, we may
get

zp11 z
p2
2 · · · zprr ≥ w′q11 w′q22 · · ·w

′qr′
r′ . (2.7)
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By combining equations (2.6) and (2.7), we get

zp11 z
p2
2 · · · zprr = w′q11 w′q22 · · ·w

′qr′
r′ .

Therefore, (2.4) is true for k + 1. Hence, by induction, (2.4) holds.
By the similar token, we may show that

z′q11 z′q22 · · · z
′qr′
r′ = wp1

1 w
p2
2 · · ·wpr

r ,

for any z′1, z
′
2, . . . , z

′
r′ ∈ S and w1, w2, . . . wr ∈ U .

As U satifies (2.3), we have w′q11 w′q22 · · ·w
′qr′
r′ = wp1

1 w
p2
2 · · ·wpr

r and so

zp11 z
p2
2 · · · zprr = z′q11 z′q22 · · · z′qrr

as required. �

Theorem 2.2. Following type of non trivial identities are preserved
under epis of posemigroups in conjunction with any permutation iden-
tity (2.1) with in 6= n [i1 6= 1]

zp11 z
p2
2 · · · zpnn = 0, where p1, p2, . . . , pn > 0 (2.8)

(for any non-empty word u, we regard u = 0 as an identity which is
the conjunction of two identities uy = u = yu, where y is a variable
not occurring in the word u).

Proof. Let U be a subposemigroup of a posemigroup S such that D̂om(U, S)
=S and let U satisfies (2.1) with in 6= n [i1 6= 1]. Therefore

zp11 z
p2
2 · · · zpnn = 0

holds for all z1, z2, . . . , zn ∈ U .
We will prove it by induction on k assumming that z1, z2, . . . , zk ∈ S
and
zk+1, zk+2, . . . , zn ∈ U . For k = 1, z1 ∈ S and z2, z3, . . . , zn ∈ U . We
need not consider the case when z1 ∈ U . So z1 ∈ S \ U and let (1.1)
be the upper half of zigzag inequalities for z1 of minimal length. Now

zp11 z
p2
2 · · · zpnn = (x1u0)

p1zp22 · · · zpnn (by zigzag inequalities (1.1))

= xp11 u
p1
0 z

p2
2 · · · zpnn (by Theorem 1.4)

= xp11 u
p1
1 z

p2
2 · · · zpnn (as U satisfies (2.2))
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= (x1u1)
p1zp22 · · · zpnn (by Theorem 1.4)

≤ xp12 u
p1
2 z

p2
2 · · · zpnn

(by zigzag inequalities (1.1) and Theorem 1.4)

= xp12 u
p1
3 z

p2
2 · · · zpnn (as U satisfies (2.2))

...

≤ xp1i u
p1
2i−1z

p2
2 · · · zpnn (for 1 ≤ i ≤ m)

...

= xp1mu
p1
2m−1z

p2
2 · · · zpnn (for i = m)

= (xmu2m−1)
p1zp22 · · · zpnn (by Theorem 1.4)

≤ up12mz
p2
2 · · · zpnn (by zigzag inequalities (1.1))

= 0 (as U satisfies Theorem 2.2).

This implies

zp11 z
p2
2 · · · zpnn ≤ 0. (2.9)

Similarly, by using the lower half (1.2) of zigzag inequalities, we may
show that

zp11 z
p2
2 . . . zpnn ≥ 0. (2.10)

By equations (2.9) and (2.10), we get

zp11 z
p2
2 . . . zpnn = 0.

Let assume next that the result is true for all z1, z2, . . . , zk ∈ S \U and
zk+1, . . . , zn ∈ U ; i.e.

zp11 z
p2
2 · · · z

pk
k z

pk+1

k+1 · · · z
pn
n = 0. (2.11)

Now, we show that the result is true for all z1, z2, . . . , zk, zk+1 ∈ S \ U
and zk+2, . . . , zn ∈ U . So, take any z1, z2, . . . , zk, zk+1 ∈ S \ U and
zk+2, . . . , zn ∈ U . By inductive hypothesis, we need not consider the
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case when zk+1 ∈ U . Then

zp11 z
p2
2 · · · z

pk
k z

pk+1

k+1 z
pk+2

k+2 · · · z
pn
n

≤ zp11 z
p2
2 · · · z

pk
k (x1u0)

pk+1z
pk+2

k+2 · · · z
pn
n

(by upper half (1.1) of zigzag inequalities)

= zp11 z
p2
2 · · · z

pk
k x

pk+1

1 u
pk+1

0 z
pk+2

k+2 · · · z
pn
n (by Theorem 1.4)

= zp11 z
p2
2 · · · z

pk
k x

(1)pk+1

1 b
(1)pk+1

1 b
(1)pk+1

2 · · · b(1)pk+1

k u
pk+1

0 z
pk+2

k+2 · · · z
pn
n

( by expanding x
pk+1

1 and using Theorems 1.3 and 1.4)

= zp11 z
p2
2 · · · z

pk
k x

(1)pk+1

1 b
(1)pk+1

1 b
(1)pk+1

2 · · · b(1)pk+1

k u
pk+1

1 z
pk+2

k+2 · · · z
pn
n

(as U satisfies (2.2))

= zp11 z
p2
2 · · · z

pk
k x

pk+1

1 u
pk+1

1 z
pk+2

k+2 · · · z
pn
n

( by collasping x
pk+1

1 and Theorem 1.3)

= zp11 z
p2
2 · · · z

pk
k (x1u1)

pk+1z
pk+2

k+2 · · · z
pn
n (by Theorem 1.4)

≤ zp11 z
p2
2 · · · z

pk
k x

pk+1

2 u
pk+1

2 z
pk+2

k+2 · · · z
pn
n

( by zigzag inequalities (1.1) and Theorem 1.4)

= zp11 z
p2
2 · · · z

pk
k x

(2)pk+1

2 b
(2)pk+1

1 b
(2)pk+1

2 · · · b(2)pk+1

k u
pk+1

2 z
pk+2

k+2 · · · z
pn
n

( by expanding x
pk+1

2 and using Theorems 1.3 and 1.4)

= zp11 z
p2
2 · · · z

pk
k x

(2)pk+1

2 b
(2)pk+1

1 b
(2)pk+1

2 · · · b(2)pk+1

k

u
pk+1

3 z
pk+2

k+2 · · · z
pn
n (as U satisfies (2.2))

= zp11 z
p2
2 · · · z

pk
k x

pk+1

2 u
pk+1

3 z
pk+2

k+2 · · · z
pn
n (by Theorem 1.3)

...

≤ zp11 z
p2
2 · · · z

pk
k x

pk+1

i u
pk+1

2i−1z
pk+2

k+2 · · · z
pn
n (for 1 ≤ i ≤ m)

...

= zp11 z
p2
2 · · · z

pk
k x

pk+1
m u

pk+1

2m−1z
pk+2

k+2 · · · z
pn
n (for i = m)

= zp11 z
p2
2 · · · z

pk
k (xmu2m−1)

pk+1z
pk+2

k+2 · · · z
pn
n ( by Theorem 1.4)

≤ zp11 z
p2
2 · · · z

pk
k u

pk+1

2m z
pk+2

k+2 · · · z
pn
n (by zigzag inequalities (1.1))

≤ 0 (by inductive hypothesis).

Thus, we have shown that

zp11 z
p2
2 . . . zpkk z

pk+1

k+1 z
pk+2

k+2 . . . z
pn
n ≤ 0. (2.12)
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Similarly, by using the lower half (1.2) of zigzag inequalities, we may
show that

zp11 z
p2
2 . . . zpkk z

pk+1

k+1 z
pk+2

k+2 . . . z
pn
n ≥ 0. (2.13)

On combining equations (2.12) and (2.13), we get

zp11 z
p2
2 . . . zpkk z

pk+1

k+1 . . . z
pn
n = 0.

This shows that the result is true for k + 1. Therefore, by induction,
the result follows. �

3. closed Varieties of Posemigroup

Let S be a posemigroup. Then an element s ∈ S is said to be
centralizer of a in S if as = sa. For any a ∈ S, the set N(a) of all such
elements of S is called normalizer of a ∈ S. In fact, it is easy to verify
that N(a) (a always belongs to N(a)) is a subposemigroup of S. In [1],
Ahanger and Shah proved that the center of a posemigroup S is closed
in S. Now we extend it to the normalizer N(a) of any element a ∈ S
of a posemigroup S.

Theorem 3.1. Let S be any posemigroup and a ∈ S. Then N(a) is
closed in S.

Proof. To prove the theorem, we have to essentially show, for all

d ∈ D̂om(N(a), S) \N(a), da = ad. So take any d ∈ D̂om(N(a), S) \
N(a) and let (1.1) be the upper half of zigzag inequalities for d of
minimal length. Then, by the definition of N(a) and the upper half of
the zigzag inequalities (1.1), we have

da ≤ x1u0a (by zigzag inequalities (1.1))

= x1au0 (by the definition of N(a))

≤ x1au1y1 (by zigzag inequalities (1.1))

= x1u1ay1 (by the definition of N(a))

≤ x2u2ay1 (by zigzag inequalities (1.1))

= x2au2y1 (by the definition of N(a))

≤ x2au3y2 (by zigzag inequalities (1.1))

= x2u3ay2 (by the definition of N(a))

...

≤ xiu2i−1ayi
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...

= xmu2m−1aym

≤ u2maym (by zigzag inequalities (1.1))

= au2mym (by the definition of N(a))

≤ ad (by zigzag inequalities (1.1)).

By the similar way, using the lower half (1.2) of the zigzag inequalities,
we may show that ad ≤ da.
Thus, ad = da. Hence, N(a) is closed in S, as required. �

References

1. S. A. Ahanger, A. H. Shah, Epimorphisms, Dominions and Varieties of Com-
mutative Posemigroups, Asian European Journal of Mathematics
(D.O.I: 10.1142/S1793557121500480) (2020).

2. S. A. Ahanger, A. H. Shah, N. M. Khan, Permutative Varieties of Posemigroups,
Comm. Algebra, (7) 49 (2021, 2758-2774.

3. L. S. Bloom, Variety of ordered algebras, J. Comput. System Sci. 13 (1976),
200-212.

4. P. M. Higgins, Saturated and Epimorphically Closed Varieties of Semigroups, J.
Austral. Math. soc. (Series A) 36 (1984), 153-175 .

5. J. M. Howie, Fundamentals of Semigroup Theory, Clarendon Press, Oxford
(1995).

6. N. M. Khan, On Saturated Varieties and Consequences of Permutative Identities,
J. Austral. Math. soc. (Series A) 38 (1985), 186-197.

7. N. M. Khan, Epimorphically Closed Permutation Varieties, Trans. Amer. Math.
Soc. (2) 287 (1985), 507-528.

8. N. Sohail and L. Tart, Dominions, Zizags and epimorphisms for partially ordered
semigroup, Acta Et Commentationes Universitatis Tartuensis De Mathematica,
(1) 18 (2014), 81-91.

Rizwan Alam
Department of Mathematics, Aligarh Muslim University, Aligarh, India
Email: rizwanamuba@gmail.com

Wajih Ashraf
Department of Mathematics, Aligarh Muslim University, Aligarh, India
Email: swashraf81@gmail.com

Noor Mohammad Khan
Department of Mathematics, Aligarh Muslim University, Aligarh, India
Email: nm khan123@yahoo.co.in


	1. Introduction and Preliminaries
	2.  Variety of Permutative Posemigroups
	3. closed Varieties of Posemigroup
	References

