تعداد نشریات | 31 |
تعداد شمارهها | 743 |
تعداد مقالات | 7,048 |
تعداد مشاهده مقاله | 10,171,578 |
تعداد دریافت فایل اصل مقاله | 6,844,403 |
بررسی عملکرد مبتنی بر شکست بتن ژئوپلیمری سنگین تقویت شده با الیاف فولادی | ||
تحقیقات بتن | ||
دوره 17، شماره 2 - شماره پیاپی 46، تیر 1403، صفحه 103-113 اصل مقاله (1.3 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22124/jcr.2024.26649.1647 | ||
نویسندگان | ||
سید حسین قاسم زاده موسوی نژاد* 1؛ کامیار فقیهی2 | ||
1دانشیار، گروه مهندسی عمران، دانشگاه گیلان، رشت، ایران. | ||
2دانشجوی دکترای عمران، سازه، دانشگاه گیلان، رشت، ایران | ||
چکیده | ||
در مطالعه حاضر، خواص مکانیکی بتن ژئوپلیمری سنگینوزن تقویتشده با الیاف فولادی شامل مقاومت فشاری، مقاومت کششی مورد بررسی قرار گرفت. علاوه بر این، پارامترهای شکست مطابق روش کار شکست (WFM) روش اثر اندازه (SEM) نیز بررسی شد. در این تحقیق ابتدا نمونهای حاوی سنگدانههای طبیعی فاقد الیاف مورد آزمایش قرار گرفت. سپس یک نمونه که در آن سنگدانههای سنگین مگنتیت که از معدن آهن چاه کوه استان یزد تهیه شده است، بهعنوان جایگزین کامل برای سنگدانههای طبیعی مورد بررسی قرار گرفت. سپس به همین نمونه در کسرهای حجمی 5/0، 75/0، 1، 25/1 و 5/1 درصد حجمی الیاف فولادی اضافه شده و اثرات آن بررسی شد. نتایج بهدستآمده از آزمایشها نشان داد که افزودن الیاف فولادی با هر کسر حجمی منجر به افزایش مقاومتهای فشاری و کششی غیرمستقیم شده است. نتایج نشان داد که انرژی شکست (GF) حاصل از روش مکانیک شکست (WFM) در نمونه با الیاف فولادی با نسبت 5/1 درصد بیشتر از نمونه شاهد است. بااینحال افزایش درصد الیاف فولادی منجر به افزایش انرژی شکست شده است. بررسی مقادیر اندازه مؤثر منطقه فرآیند (Cf) نشان داد که در نمونههای با الیاف فولادی 5/0 و 75/0 درصد، مقدار آن کمتر از نمونه شاهد و در نمونههای دیگر بیشتر از نمونه شاهد به دست آمده است. بااینوجود افزایش درصد الیاف فولادی بهطور پیوسته منجر به افزایش Cf شده است. نسبت انرژی شکست دو روش G_F/G_f برای طرحهای مختلف در این تحقیق بین 81/0 تا 14/1 به دست آمد. | ||
کلیدواژهها | ||
بتن ژئوپلیمری؛ مشخصات شکست؛ الیاف فولادی | ||
مراجع | ||
[1] Davidovits, J. (1984). Pyramids of Egypt Man-Made Stone, Myth or Fact?” symposium on Archaeometry 1984. Smithsonian Institution, Washington DC.
[2] Hardjito, D., Wallah, S. E., Sumajouw, D. M., & Rangan, B. V. (2004). On the development of fly ash-baSEMd geopolymer concrete. Materials Journal, 101(6), 467-472.
[3] Fernandez-Jimenez, A. M., Palomo, A., & Lopez-Hombrados, C. (2006). Engineering properties of alkali-activated fly ash concrete. ACI Materials Journal, 103(2), 106.
[4] Bakharev, T., Sanjayan, J. G., & Cheng, Y.-B. (1999). Alkali activation of Australian slag cements. Cement and Concrete ReSEMarch, 29(1), 113-120.
[5] Nath, P., & Sarker, P. K. (2012). Geopolymer concrete for ambient curing condition. Proceedings of the Australasian structural engineering conference, Perth, Australia,
[6] Wongpa, J., Kiattikomol, K., Jaturapitakkul, C., & Chindaprasirt, P. (2010). Compressive strength, modulus of elasticity, and water permeability of inorganic polymer concrete. Materials & Design, 31(10), 4748-4754.
[7] Saghi, Hassan and Abdolrahim Mehrdadi, 2015, Geopolymer Cement and its Application in Concrete, Fourth National Conference on New Materials and Structures in Civil Engineering, Yasuj, Yasuj University In Persian.
[8] Bahraini, Vahid and Ehsanollah Zeighami, 2012, Geopolymer concretes Properties and Applications, The First National Conference on New Materials and Structures in Civil Engineering, Kerman, Graduate University of Industrial and Advanced Technology, In Persian.
[9] Mousavinejad, S. H. G., & Gashti, M. F. (2021). Effects of alkaline solution/binder and Na2SiO3/NaOH ratios on fracture properties and ductility of ambient-cured GGBFS baSEMd heavyweight geopolymer concrete. Structures,
[10] Mousavinejad, S. H. G., & Sammak, M. (2022). An asSEMssment of the effect of Na2SiO3/NaOH ratio, NaOH solution concentration, and aging on the fracture properties of ultra-high-performance geopolymer concrete: The application of the work of fracture and size effect methods. Structures,
[11] Mousavinejad, S. H. G., & Sammak, M. (2022). An asSEMssment of the fracture parameters of ultra-high-performance fiber-reinforced geopolymer concrete (UHPFRGC): The application of work of fracture and size effect methods. Theoretical and Applied Fracture Mechanics, 117, 103157.
[12] Aisheh, Y. I. A., Atrushi, D. S., Akeed, M. H., Qaidi, S., & Tayeh, B. A. (2022). Influence of polypropylene and steel fibers on the mechanical properties of ultra-high-performance fiber-reinforced geopolymer concrete. CaSEM Studies in Construction Materials, 17, e01234.
[13] Kuranlı, Ö. F., Uysal, M., Abbas, M. T., Cosgun, T., Niş, A., Aygörmez, Y., Canpolat, O., & Al-mashhadani, M. M. (2022). Evaluation of slag/fly ash baSEMd geopolymer concrete with steel, polypropylene and polyamide fibers. Construction and Building Materials, 325, 126747.
[14] Singh, N., Singh, A., Ankur, N., Kumar, P., Kumar, M., & Singh, T. (2022). Reviewing the properties of recycled concrete aggregates and iron slag in concrete. Journal of Building Engineering, 105150.
[15] Singh, N., Singh, T., Kumar, M., Singh, A., & Kumar, P. (2022). Investigating the fresh state performance of concrete containing iron slag and recycled concrete aggregates. Materials Today: Proceedings, 65, 1467-1477.
[16] El Ouni, M. H., Shah, S. H. A., Ali, A., Muhammad, S., Mahmood, M. S., Ali, B., Marzouki, R., & Raza, A. (2022). Mechanical performance, water and chloride permeability of hybrid steel-polypropylene fiber-reinforced recycled aggregate concrete. CaSEM Studies in Construction Materials, 16, e00831.
[18] Recommendation, R. D. (1985). Determination of the fracture energy of mortar and concrete by means of three-point bend tests on notched beames. Materials and structures, 18(106), 285-290.
[19] D'ESSAI, M., MÉ, T., & DE LA RILEM, P. (1990). Size-effect method for determining fracture energy and process zone size of concrete. Materials and structures, 1(1), 7.
[20] Ba, & Kazemi, M. (1990). Determination of fracture energy, process zone longth and brittleness number from size effect, with application to rock and conerete. International Journal of fracture, 44, 111-131.
[21] ASTM C109/C109M-20a, Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. Or [50-mm] Cube Specimens), ASTM International, West Conshohocken, PA, 2020.
[22] Astm C. Standard test method for splitting tensile strength of cylindrical concrete specimens. C496/C496M-11 2011.
[23] Astm C. Standard test method for static modulus of elasticity and Poisson’s ratio of concrete in compression. Annu B ASTM Stand 2002;4:469. [31] C. Astm, 1609, Stand. Test Method Flexural Perform. Fiber | ||
آمار تعداد مشاهده مقاله: 184 تعداد دریافت فایل اصل مقاله: 81 |