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 Based on conducted research, stress can have a significant impact on 

human relationships and human-related incidents. By identifying stress 

during daily activities such as driving, some incidents and accidents can 

be prevented. In this study, the PhysioNet database pertaining to drivers' 

heart rate during driving was utilized, and their features were extracted. 

Subsequently, the features underwent reduction using PCA and were 

compared using two artificial intelligence methods. The results, 

including accuracy, error, and validation credibility with fold-10 in four 

classes, were obtained for both neural network and deep learning 

approaches. In the feature extraction phase, 7 spatial features, 16 

frequency features, and 64 wavelet features were employed. The 

classification result for the neural network achieved an accuracy of 

90.8%±0.8. In the deep network, comprising one-dimensional CNN and 

Dense layers, with a fusion of raw signals and extracted features, the 

accuracy reached 96.3%±0.6. These findings indicate the superiority of 

deep learning over neural networks in this domain. This diagnostic 

system is suitable for portable and compact applications in individuals' 

daily activities. 
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1. Introduction 

Life is invariably accompanied by numerous stresses that may go unnoticed from individuals' 

perspectives and attention. Stress, when experienced by individuals, can be detrimental to their 

health and may lead to the death of nerve cells [1], Parkinson's disease [2], and weakening of 

physical strength in coping with cancer [3]. With the increase in daily life challenges, individuals 
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are exposed to stress [4]. Daily life challenges are minor upsetting events that may not seem 

significant when considered individually. However, when these challenges occur together or during 

times of high pressure, although not as noticeable as major life crises, they also contribute to a type 

of stress known as minor or micro stress [5]. 

With the rapid advancement of technology, sensors have the capability to accurately capture vital 

signals [6]. These sensors, aided by advanced devices, can analyze individuals' conditions in terms 

of sleep disturbances [5], stress, and diseases. A sensor is a detector, derived from the word "sens" 

meaning to perceive, and it can convert quantities such as pressure, temperature, humidity, and so 

on into continuous (analog) or discrete (digital) electrical quantities. Sensors are used in various 

measurement devices, analog and digital control systems such as PLC [7]. The performance of 

sensors and their ability to connect to various devices, including PLCs, have made sensors an 

integral part of automatic control device components. Depending on the type and function defined 

for them, sensors send information to the control system, which operates according to the defined 

program [8]. The main goal is to improve the accuracy and reliability of stress detection and 

classification using wearable sensors and to reduce simulation time. Wearable sensors can be 

utilized by employing signal processing methods in stress detection clinics and studying their 

changes to improve the disease process and the effects of medications. 

2. Wearable Sensors 

Wearable sensors refer to all types of sensors that can be worn by humans. These sensors should 

have features such as portability and lightness, and on the other hand, consume minimal energy. 

These conditions are not mandatory; rather, most common sensors in this field meet these 

conditions. Some wearable sensors are illustrated in Figure 1. 

 

Figure 1.  Sensors with their respective placements [9] 

3. Classification of Wearable Sensors 

From an operational perspective, sensors can be classified into two distinct categories: active and 

passive. The categorization is contingent upon their capability to function. Pulse oximeter sensors 

are positioned within the active classification owing to their operational capacity, whereas 

thermometers exemplify passive sensors, necessitating no functional power. As diverse 

methodologies for exhibiting energy effects emerge, sensors are systematically classified based on 
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the energy they are subjected to during testing [9]. In a broader classification, temperature sensors 

are subdivided into two primary types: digital and analog. Figure 2 delineates a comprehensive 

classification framework for wearable sensors. It portrays the potential for single-purpose or multi-

purpose functionality. Structurally, sensors may either be active or passive. In terms of deployment, 

sensors can be either invasive or non-invasive [10]. In this particular project, single-purpose, 

passive, non-invasive acquisition sensors, tethered to the body via wires, were employed. 

 

Figure 2. Classification of Wearable Sensors [11] 

Health-related data pertaining to individuals is acquired through wireless sensors and transmitted to 

a caregiver via an information gateway, such as a mobile phone. Numerous studies emphasize the 

utilization of mobile phones as portable processors [12]. Caregivers can leverage this information 

to enact interventions as warranted. Nonetheless, during this process, two distinct cohorts from 

varying societal strata are particularly scrutinized. The first cohort comprises individuals with 

heightened risk profiles (e.g., pregnant women, the elderly), while the second cohort encompasses 

laborers engaged in physically demanding occupations [13]. 

4. Proposed Methodology 

For stress identification based on cardiac signals, a general block diagram is employed, as depicted 

in Figure 3, outlining the overall structure of the processing [14]–[17]. 

 
Figure 3. Block diagram of the proposed system for arrhythmia detection using classical methods. 

4.1. Vital Signal Acquisition 

In the initial block, data is simulated into signals and fed into the program. For this purpose, the 

Physionet database was utilized, based on articles published in this field. This database, curated by 

Jennifer Healey on the PhysioNet website, comprises a collection of multi-recorded signals from 

healthy volunteers driving on specific routes such as streets and highways in Boston, Massachusetts. 

The aim of this study in gathering these data was to explore the feasibility of automatic stress 

recognition based on recorded signals, including ECG (Electrocardiogram), EMG 

(Electromyogram), GSR (Galvanic Skin Resistance) measured on the hands and feet, and 
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respiration. For the training and testing of the neural network, a number of ECG signals were 

downloaded from the MIT database. This database includes 48 files, each with a duration of 30 

minutes and containing 15 types of arrhythmias. The sampling frequency of these signals is 360 Hz. 

Out of the available files in the mentioned database, 24 were utilized in this study. The lead 

placement method is triangular on the chest [18], [19]. Table 1 shows the files used and their 

corresponding classification classes. 

 

Table 1. Used Files and Their Corresponding Classification Classes [17] 

Record Numbers Class 

100-101-103-112-115-117-121-123-202-220-222-234 NSB 

200-208-213-233 PVC 

212-118-124-217 PJC 

109-111-104-107 PAC 

 

In the specified database, ECG signals are stored in three files with the formats hea, atr, and dat. 

Figure 4 presents a labeled display of four different types of heartbeats from PhysioNet data. 

 

 
   

 D C B Aا

Figure 4.. Normal Sinus Beat (NSB) (A), Premature Ventricular Contraction (PVC) (B), Premature Atrial 

Contraction (PAC) (C), and Premature Junctional Contraction (PJC) (D). 

4.2. Preprocessing 

Preprocessing of ECG signals aims to eliminate various types of noise. The presence of baseline 

noise can shift the signal downwards up to -0.3. After removing this noise, the resultant signal is 

depicted in part B of the figure below. Magnification of this figure yields part C. As observed, high-

frequency noises still persist. These noises manifest as disturbances and are eliminated using 

wavelet transform. The resulting signal after removing these noises is depicted in part D of the 

figure. (In these figures, the horizontal axis indicates the sample number, and the vertical axis 

indicates the signal amplitude in millivolts). 

These aforementioned steps are performed for all records, both during the neural network training 

and testing stages. By following this process, preprocessed signals are obtained for training and 

testing the neural network. It's worth noting that all displayed signals are utilized during the neural 

network testing phase. For instance, because the first 10 seconds of signal 100 (first 3600 samples) 

are used for neural network training, the next 10 seconds (10-20) of this signal are utilized for neural 

network testing. As shown in the table above, signal number 100 is categorized under the normal 

signal class. The output of both trained networks for this test signal is also normal. Figure 5 displays 

a representation of the initial signal before and after preprocessing. 
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Figure 5: Illustration of the stages of preprocessing for ECG signal number 100. 

4.3. Feature Extraction 

For signal processing, both MATLAB and Python have been utilized as base software and for 

classification. The Wavelet Toolbox I, along with wavelet and time-frequency domains, is used to 

extract signal features. Extracting features from cardiac signals is possible through signal analysis 

in the time, frequency, and time-frequency domains. Seven time-domain features have been 

extracted, including the mean and standard deviation of heart rate (mean time between two beats), 

the number of beats in a specified time interval, the mean and variance of the length of time between 

two consecutive RR intervals, and the mean and variance of the signal amplitude. Sixteen frequency-

domain features are extracted from the mean and variance of the frequency power in 8 equally 

spaced frequency intervals of Fourier transform coefficients. Sixty-four features are extracted from 

the mean and variance of the power in the time-frequency domains of the 16-package wavelets for 

the first Daubechies and Symlet. A total of 87 extracted features are utilized for training the 

proposed networks is shown in Figure 6. 

  

B A 

Figure 6 Fourier transform of the signal in two domains: domain (A) and phase (B). 

4.4. Feature Reduction 

PCA (Principal Component Analysis) is a transformation in vector space mainly used for reducing 

the dimensions of a dataset [20]. PCA was introduced by Karl Pearson in 1901 and involves the 

eigenvalue decomposition of the covariance matrix. PCA is a mathematical definition of an 

orthogonal linear transformation that brings the data into a new coordinate system, preserving the 

largest variance on the first coordinate axis, the second largest variance on the second coordinate 



194 M. Mohamadi et al./ Computational Sciences Engineering 3(2) (2023) 189-199 194 

 

axis, and so forth. PCA can be used to reduce the dimensions of data, preserving the components of 

the dataset that have the most impact on variance. 

4. 5. Classification 

Expert systems are useful for identifying actionable predictions. However, before presenting the 

method discussed in the network, the issue of data classification is raised to ensure that the data 

entered into the expert systems are effectively processed. In mathematics, a classifier is a function 

from X (feature space) to Y (labels). Classifiers can be either static or learner. Learner classifiers 

are those whose correspondence from X to Y improves with increased learning data. Learner 

classifiers are divided into supervised and unsupervised. There are various types of classifiers, some 

of which are used for classifying stress signals, including k-nearest neighbor, neural networks, 

support vector machines, hidden Markov models, and maximum similarity. The processor's goal is 

to extract features and generate a suitable feature vector for use in the classifier system. The 

classifier's goal is to recognize the desired arrhythmias. In this project, neural networks were used 

as the classifier system. Deep learning methods were employed to utilize the extracted data in the 

classical method. The following deep learning method was generated. As shown in Figure 7, 

initially, the signal is acquired, and in the upper path, features are extracted and reduced using the 

classical method. In the lower path, the Cov a, b block is used, where a is equal to the size of the 

CNN1D kernel and b is the amount of pooling in Maxpooling. Finally, classical and deep learning 

features are combined to obtain a feature vector. Utilizing the softmax layer leads to data 

classification into one of the four classes with the highest probability. 

 

 
B A 

Figure 7: Block diagram of the proposed system for arrhythmia detection. Using neural network method (A), using 

deep learning method (B). 

Figure 7 extracts classical features in the upper part and deep learning features in the lower path. In 

the deep learning path, three 1D CNN structures with dimensions of 3, 7, and 11 were used, and 

sample rate reduction was performed using Maxpooling with a size of 3. The Drop out layer was 

also used to identify and remove dead neurons. Finally, by combining classical and deep learning 

features in the fusion block, a feature vector is obtained. The utilization of the softmax layer leads 

to data classification into one of the four classes with the highest probability. 

4.6. Classification Results Evaluation 

In this project, a range of metrics are employed to assess simulation outcomes. Specifically, the 

system's efficacy in arrhythmia detection, quantified as the performance percentage, is evaluated 
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using eq. (1) based on the network performance or accuracy metric. This metric signifies the 

percentage representing the overall accuracy or performance of the network. 

(1) 100 1
Ne

A
Nt

 
= − 

 
 

where Ne indicates the number of errors, and Nt represents the total number of test data. In the first 

part, a neural network is utilized for classifying extracted features. As observed, the combination of 

temporal and morphological features of ECG signals with features obtained from wavelet transform 

leads to an increase in the efficiency of the trained neural network. Figure 8 displays the 

classification results using seven feature selection methods and neuron counts ranging from 1 to 90. 

 

Figure 8 Accuracy classification results with various kind of features and neurons numbers. 

The different lines represent the final classification accuracy for different datasets. The solid lines 

represent single temporal, frequency, and wavelet features, while the dashed lines represent pairwise 

combinations of them. The red square line represents the result of combining three temporal, 

frequency, and wavelet features, showing superior results. In Figure 9, a confusion matrix is 

displayed for 90 neurons and three types of features. 

 

Figure 9: Confusion matrix for 90 neurons and three types of features. 
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To enhance classical method performance, deep learning is utilized along with extracted features. 

Figure 10 displays a confusion matrix using deep learning classification. Improvement of the 

classical method with the inclusion of deep learning networks along with extracted features has been 

employed. Figure 10 illustrates the confusion matrix using deep learning classification. 

 

 
Figure 10 Confusion matrix using deep learning classification. 

 

Table 2 provides a comparative overview of various simulation results. These results show lower 

accuracy compared to deep learning methods but with significantly less computational complexity. 

Using 10-fold cross-validation, the table is calculated ten times, and based on it, the accuracy and 

precision of each class can be computed. Figure 11 shows an overview of accuracy and precision in 

data classification using deep learning, with the mean and variance calculated for each class. 

 

Figure 11 Mean and variance of 4 groups in the 10-fold method using deep learning classification. 

 

Finally, for comparison, the results are compared with other articles in Table 2. In this table, ECG 

data classification with the aid of deep learning is provided. The classification accuracy in these 

results is very high and suitable, but the number of parameters used in this study is much lower due 

to the incorporation of injected features. 
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Table 2. Overview of Identification Results 

 

The extracted features using MATLAB 2020 were classified in a classical environment. Then, in 

the next stage, the extracted features were utilized in Python environment. This was done due to the 

diverse capabilities of these two environments and the possibility of continuing the process in the 

Python environment. It is worth mentioning that these operations were performed using a system 

with the following hardware specifications: CPU Core i7 processors, GPU GeForce GTX 1080 

graphics card, Windows 8.1 operating system with 32 gigabytes of RAM. The execution time for 

neural network and deep learning tests is approximately 0.5 and 1.2 seconds, respectively. These 

pieces of information demonstrate the execution speed of the model in the specified environment, 

which may vary in other environments with different hardware and settings. 

5. Conclusion 

In this study, in the initial stage, signals were divided into four groups and features were extracted 

from them. In the classical method, an accuracy of 90.8% was achieved. In the next stage, using 

deep learning networks, the simulation accuracy increased to 96.3% with 10-fold cross-validation. 

Although the classical method achieves faster results, the identification accuracy in deep learning is 

significantly higher. The proposed deep learning method, utilizing feature extraction from data, 

provides adequate training, and effectively reduces these features using PCA. The combined use of 

useful features and raw data in the input of the deep learning network complements the features. 

Therefore, in the training process using deep learning, a combination of classical data and deep 

learning is introduced to the network, leading to increased accuracy in classification. Additionally, 

due to the low number of parameters in the network, this product can be executed on embedded 

devices such as Raspberry Pi.  
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