تعداد نشریات | 31 |
تعداد شمارهها | 748 |
تعداد مقالات | 7,112 |
تعداد مشاهده مقاله | 10,246,183 |
تعداد دریافت فایل اصل مقاله | 6,899,895 |
سمیت تدخینی و خواص ضد تغذیهای اسانس رزماری روی شپشه آرد، Tribolium confusum | ||
تحقیقات آفات گیاهی | ||
دوره 14، شماره 1، خرداد 1403، صفحه 19-33 اصل مقاله (1.32 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22124/iprj.2024.26813.1561 | ||
نویسنده | ||
عسگر عباداللهی* | ||
گروه علوم گیاهی، دانشکده کشاورزی و منابع طبیعی مغان، دانشگاه محقق اردبیلی، اردبیل، ایران | ||
چکیده | ||
شپشه آرد (Tribolium confusum du Val) یکی از مهم ترین سخت بالپوشان آفات محصولات انباری به خصوص دانه های غلات و آرد است. استفاده مکرر از آفت کش های شیمیایی در مدیریت حشرات آفت آثار ثانویه بی شماری مانند آلودگی محیط زیست، تهدید سلامتی انسان و موجودات غیرهدف و توسعه مقاومت آفات را در پی داشته است. در پژوهش حاضر، سمیت تدخینی و تاثیر ضد تغذیه ای اسانس رزماری روی حشرات کامل شپشه آرد بررسی شد. به دلیل ارتباط اجزای شیمیایی اسانس های گیاهی با خواص زیستی آنها، ترکیبات اسانس رزماری با استفاده از گاز کروماتوگرافی-طیف سنج جرمی بررسی شد. اسانس رزماری سرشار از ترکیبات ترپنی شامل مونوترپن های هیدروکربنه (72/28 درصد)، مونوترپنوئیدها (03/57 درصد)، سسکوئیترپن های هیدروکربنه (09/3 درصد) و سسکوئیترپنوئیدها (25/3 درصد) بود. غلظت 5/73 میکرولیتر بر لیتر هوا از اسانس موجب تلفات 0/90 درصدی آفت بعد از 24 ساعت شد که طی 48 ساعت تا 100 درصد نیز افزایش پیدا کرد. استفاده از مقادیر LC40 و LC50 24 ساعته اسانس رزماری (به ترتیب برابر با 7/26 و 5/35 میکرولیتر بر لیتر هوا) باعث کاهش شاخص های تغذیه ای آفت شامل شاخص مصرف، نرخ مصرف نسبی و نرخ رشد نسبی بعد از 5 و 10 روز شد. همچنین، شاخص بازدارندگی تغذیه ای مقادیر بیان شده به ترتیب 7/40 و 9/45 درصد بعد از پنج روز و 4/53 و 5/59 درصد بعد از 10 روز برآورد شد. بنابراین، اسانس رزماری می تواند به عنوان یکی از عوامل در دسترس و کارآمد در مدیریت شپشه آرد برای انجام پژوهش های تکمیلی معرفی شود. | ||
کلیدواژهها | ||
اسانس رزماری؛ ترکیبات ترپنی؛ سمیت؛ شپشه آرد؛ فعالیت ضد تغذیه ای | ||
مراجع | ||
Abada, M. B., Soltani, A., Tahri, M., Hamdi, S. H., Boushih, E., Fourmentin, S., Greige-Gerges, H., & Ben Jemâa, J. M. (2023). Encapsulation of Rosmarinus officinalis essential oil and of its main components in cyclodextrin: Application to the control of the date moth Ectomyelois ceratoniae (Pyralidae). Pest Management Science, 79(7), 2433-2442. DOI:https://doi.org/10.1002/ps.7418
Ahmad, R., Hassan, S., Ahmad, S., Nighat, S., Devi, Y. K., Javeed, K., Usmani, S., Ansari, M. J., Erturk, S., Alkan, M., & Hussain, B. (2021). Stored Grain Pests and Current Advances for Their Management. In Ahiduzzaman, M. (Ed.). Postharvest technology-recent advances, new perspectives and applications. IntechOpen, London, United Kingdom. pp. 1-37. DOI:https://doi.org/ 10.5772/ intechopen.95208
Ahsaei, S. M., Rodríguez-Rojo, S., Salgado, M., Cocero, M. J., Talebi-Jahromi, K., & Amoabediny, G. (2020). Insecticidal activity of spray dried microencapsulated essential oils of Rosmarinus officinalis and Zataria multiflora against Tribolium confusum. Crop Protection, 128, 104996. DOI: https://doi.org/10.1016/j.cropro.2019.104996
Baghouz, A., Bouchelta, Y., Es-safi, I., Bourhia, M., Abdelfattah, E. M., Alarfaj, A. A., Hirad, A. H., Nafidi, H. A., & Guemmou, R. (2022). Identification of volatile compounds and insecticidal activity of essential oils from Origanum compactum Benth. and Rosmarinus officinalis L. against Callosobruchus maculatus (Fab.). Journal of Chemistry, 7840409. DOI:https://doi.org/10.1155/ 2022/7840409
Bakkali, F., Averbeck, S., Averbeck, D., & Idaomar, M. (2008). Biological effects of essential oils–a review. Food and Chemical Toxicology, 46(2), 446-475. DOI:https://doi.org/10.1016/j.fct. 2007.09.106
Borges, R. S., Ortiz, B. L. S., Pereira, A. C. M., Keita, H., & Carvalho, J. C. T. (2019). Rosmarinus officinalis essential oil: A review of its phytochemistry, anti-inflammatory activity, and mechanisms of action involved. Journal of ethnopharmacology, 229, 29-45. DOI:https://doi.org/10.1016/ j.jep.2018.09.038
De Sousa, D. P., Damasceno, R. O., Amorati, R., Elshabrawy, H. A., De Castro, R. D., Bezerra, D. P., Nunes, V. R., Gomes, R. C., & Lima, T. C. (2023). Essential oils: Chemistry and pharmacological activities. Biomolecules, 13(7), 1144. DOI:https://doi.org/10.3390/biom13071144
Ebadollahi, A., & Jalali Sendi, J. (2015). A review on recent research results on bio-effects of plant essential oils against major Coleopteran insect pests. Toxin Reviews, 34, 76-91. DOI: https:// doi.org/10.3109/15569543.2015.1023956
Ebadollahi, A., Naseri, B., Abedi, Z., Setzer, W. N., & Changbunjong, T. (2022). Promising insecticidal efficiency of essential oils isolated from four cultivated Eucalyptus species in Iran against the lesser grain borer, Rhyzopertha dominica (F.). Insects, 13(6), 517. DOI:https://doi.org/10.3390/ insects13060517
Ebadollahi, A., Ziaee, M., & Palla, F. (2020). Essential oils extracted from deferent species of the Lamiaceae plant family as prospective bioagents against several detrimental pests. Molecule, 25, 1556. DOI:https://doi.org/10.3390/molecules25071556
El-Said, H., Ashgar, S. S., Bader, A., AlQathama, A., Halwani, M., Ascrizzi, R., & Flamini, G. (2021). Essential oil analysis and antimicrobial evaluation of three aromatic plant species growing in Saudi Arabia. Molecules, 26(4), 959. DOI:https://doi.org/10.3390/molecules26040959
Finney, D.J. (1971). Probit Analysis. Cambridge University Press, Cambridge.
Hill, D. S. (2002). Pests: Class insecta, pests of stored foodstuffs and their control. Kluwer Academic Publishers, Springer, Malaysia.
Ikawati, S., Himawan, T., Abadi, A. L., & Tarno, H. (2020). Fumigant and feeding deterrent activity of essential oils against Cryptolestes ferrugineus (Stephens) (Coleoptera: Laemophloeidae). Biodiversitas, 21, 4301-4308. DOI:https://doi.org/10.13057/biodiv/d210948
Isman, M. B. (2020). Commercial development of plant essential oils and their constituents as active ingredients in bioinsecticides. Phytochemistry Reviews, 19(2), 235-241. DOI:https://doi.org/ 10.1007/s11101-019-09653-9
Isman, M. B., & Grieneisen, M. L. (2014). Botanical insecticide research: Many publications, limited useful data. Trends in Plant Science, 19, 140-145. DOI:https://doi.org/10.1016/j.tplants. 2013.11.005
Isman, M. B., Koul, O., Luczynski, A., Kaminski, J. (1990). Insecticidal and antifeedant bioactivities of neem oils and their relationship to azadiractin content. Journal of Agriculture and Food Chemistry, 38, 1406-1411. DOI: https://doi.org/10.1021/jf00096a024
Isman, M. B., Wilson, J. A., & Bradbury, R. (2008). Insecticidal Activities of commercial rosemary oils (Rosmarinus officinalis.) against larvae of Pseudaletia unipuncta. and Trichoplusia ni. in relation to their chemical compositions. Pharmaceutical Biology, 46, 82-87. DOI: https://doi.org/10.1080/13880200701734661
Jaimand, K., & Rezaee, M. B. (2004). Investigation on chemical constituents of essential oils from Achillea millefolium L. subsp. millefolium by distillation methods. Journal of Medicinal and Aromatic Plants, 20, 181-190.
Kordali, Ş., Usanmaz, A., Bayrak, N., & Çakır, A. (2017). Fumigation of volatile monoterpenes and aromatic compounds against adults of Sitophilus granarius (L.) (Coleoptera: Curculionidae). Records of Natural Products, 11, 362-373.
Kiran, S., & Prakash, B. (2015). Toxicity and biochemical efficacy of chemically characterized Rosmarinus officinalis essential oil against Sitophilus oryzae and Oryzaephilus surinamensis. Industrial Crops and Products, 74, 817-823. DOI: https://doi.org/10.1016/j.indcrop.2015.05.073
Krzyżowski, M., Baran, B., Łozowski, B., & Francikowski, J. (2020). The effect of Rosmarinus officinalis essential oil fumigation on biochemical, behavioral, and physiological parameters of Callosobruchus maculatus. Insects, 11(6), 344. DOI: https://doi.org/10.3390/insects11060344
Miresmailli, S., Bradbury, R., & Isman, M. B. (2006). Comparative toxicity of Rosmarinus officinalis L. essential oil and blends of its major constituents against Tetranychus urticae Koch (Acari: Tetranychidae) on two different host plants. Pest Management Science, 62(4), 366-371. DOI: https://doi.org/10.1002/ps.1157
Moghaddam, M., & Mehdizadeh, L. (2017). Chemistry of Essential Oils and Factors Influencing Their Constituents. In Grumezescu, A. M., & Holban, A. M. (Eds.). Handbook of food bioengineering (1st ed.) Academic Press, New York, NY, USA. pp. 379-419. DOI:https://doi.org/10.1016/B978-0-12-811412-4.00013-8
Nasr Isfahani, M., Jalali Sendi, J., Moharramipour, S., & Zibaee, A. (2015). Effect of Thymus and Rosemary essential oil on toxicity and physiological parameters of diamondback moth Plutella xylustella L. Journal of Animal Research (Iranian Journal of Biology), 27(4), 553-567. (in Farsi). DOI:https://doi.org/27412
Nayak, M. K., & Daglish, G. J. (2018). Importance of Stored Product Insects. In Athanassiou, C., & Arthur, F. (Eds). Recent advances in stored product protection. Springer, Berlin, Heidelberg. pp. 1–17. DOI:https://doi.org/10.1007/978-3-662-56125-6_1
Pai, A., & Bucher, G. (2019). Tribolium (second ed.), In Choe, J.C. (Ed.). Encyclopedia of Animal Behavior. Elsevier Science & Technology, San Diego. pp. 231-241. DOI:https://doi.org/ 10.1016/B978-0-12-809633-8.01216-4
Papachristos, D. P., Karamanoli, K., Stamopoulos, D. C., & Menkissoglu-Spiroudi, U. (2003). The relationship between the chemical composition of three essential oils and their insecticidal activity against Acanthoscelides obtectus (Say). Pest Management Science, 60, 514-520. DOI:https:// doi.org/10.1002/ps.798
Rossi, E., Osimi, S. C., & LOni, A. (2010). Insecticide resistance in Italian populations of Tribolium flour beetles. Bulletin of Insectology, 63(2), 251-258.
Scorza, F. A., Beltramim, L., & Bombardi, L. M. (2023). Pesticide exposure and human health: Toxic legacy. Clinics (Sao Paulo, Brazil), 78, 100249. DOI: https://doi.org/10.1016/j.clinsp.2023.100249
Soltani, A., Haouel-Hamdi, S., Ajmi, I., Ben Abada, M., Djebbi, T., Chargui, H., Mathlouthi, I., Laabidi, A., Mahmoudi, H., & Mediouni-Ben Jemâa, J. (2022). Assessing the insecticidal impact of rosemary essential oils on the saw-toothed grain beetle Oryzeaphilus surinamensis. Tunisian Journal of Plant Protection, 17(1), 15-28. DOI:https://doi.org/10.52543/tjpp.17.1.2
SPSS (2007). SPSS for Windows, Version 16.0. Chicago, SPSS Inc.
Tak, H., Jovel, E., & Isman, M. B. (2016). Comparative and synergistic activity of Rosmarinus officinalis L. essential oil constituents against the larvae and an ovarian cell line of the cabbage looper, Trichoplusia ni (Lepidoptera: Noctuidae). Pest Management Science, 72(3), 474-480. DOI: https://doi.org/10.1002/ps.4010
Valcárcel, F., Olmeda, A. S., González, M. G., & Andrés, M. F. (2021). Acaricidal and insect antifeedant effects of essential oils from selected aromatic plants and their main components. Frontiers in Agronomy, 3, 662802. DOI:https://doi.org/10.3389/fagro.2021.662802
Waldbauer, G. P. (1968). The consumption and utilization of food by insects. Advances in Insect Physiology, 5, 229-288. DOI:https://doi.org/10.1016/S0065-2806(08)60230-1
Zettler, L. J. (1991). Pesticide resistance in Tribolium castaneum and T. Confusum (Coleoptera: Tenebrionidae) from flourmills in the United States. Journal of Economic Entomology, 84(3), 763-767. DOI: https://doi.org/10.1093/jee/84.3.763 | ||
آمار تعداد مشاهده مقاله: 304 تعداد دریافت فایل اصل مقاله: 187 |