

Computational Sciences and Engineering 3(2) (2023) 177-188

Computational Sciences and Engineering

University of Guilan journal homepage: https://cse.guilan.ac.ir/

An Enhanced Genetic Algorithm for Task Scheduling in Heterogeneous Systems

 Saeed Mirpour Marzuni
 a

, Javad Vahidi
 b,⁎

a
 Department of Electrical & Computer Engineering, University of Science and Technology of Mazandaran, Behshahr, Iran

b
 Department of Computer Science, Iran University of Science and Technology, Tehran, Iran

A R T I C L E I N F O A B S T R A C T

Article history:

Received 17 January 2024
Received in revised form 4 April 2024

Accepted 4 April 2024

Available online 4 April 2024

 Generally, jobs are divided into smaller portions, in parallel and

according to distributed processing, and each portion is called a task.

Each task can execute dependently or independently. When introducing

heterogeneous systems, it is desirable that tasks can run on these

systems. Since it is advantageous that tasks running on heterogeneous

systems are completed faster, the optimization of task scheduling is of

great importance. Actually, task scheduling problems in heterogeneous

systems are NP-hard and it is a crucial issue. In such problems, Directed

Acyclic Graphs (DAGs) can be used as task graphs to be scheduled on

heterogeneous systems. The proposed method presents a genetic

algorithm with new operators and final scheduler to be scheduled on

heterogeneous systems. The practicality and convergence of the

algorithm are proved by Markov’s chain theory. The findings reveal that

the currently proposed algorithm is more efficient in comparison to

previously presented ones and also has a better make span. Moreover, it

is concluded that the Enhanced Genetic Algorithm (EGA) achieves the

solution faster in early generations.

Keywords:

Genetic Algorithm,
Distributed Processing,

Task Scheduling

1. Introduction

Scheduling is an important complex problem in heterogeneous systems. When several tasks are run

on heterogeneous machines, the scheduling problem emerges as an important issue. Several studies

have been conducted on task scheduling in heterogeneous systems which are connected to each

other via a high speed network. In these systems, a job is divided into tasks of which each can be

run in a separate system so as to process it faster to the finish. However, care should be taken to

notice the parallel potential of the task; otherwise, not only will the job not end sooner, but it will

also finish later due to communication overhead.

⁎ Corresponding author.

 E-mail addresses: jvahidi@iust.ac.ir (J. Vahidi)

https://doi.org/10.22124/cse.2024.26504.1072

© 2023 Published by University of Guilan

https://cse.guilan.ac.ir/
mailto:jvahidi@iust.ac.ir
https://doi.org/10.22124/cse.2024.26504.1072

178 S. Mirpour Marzuni, J. Vahidi/ Computational Sciences and Engineering 3(2) (2023) 177-188 178

Generally, great applications consist of smaller tasks so they are processed in a parallel. These small

tasks are often dependent, meaning that the task results must be executed [1]. One of the issues

mentioned in this field is task scheduling in heterogeneous systems. These systems are those having

different resources working together to fulfill a job. The efficiency of the parallel execution of

applications in heterogeneous systems depends on the way in which the tasks of an application are

selected for scheduling. The purpose is to minimize the total response time or make span [2]. The

reason why the task scheduling problem in heterogeneous systems is more complicated than that of

homogenous systems is because there are various processors whose run time is different for each

task on each processor. In addition to this difference in run time, there is significant variance in the

communication overhead among various processors. The task scheduling problem can be presented

on a Directed Acyclic Graph (DAG), in which each vertex of the graph illustrates one task and the

edges indicate the priority between tasks [1]. The edge weight also shows the cost of the

communication among processors. For instance, if E(i,j)=10, then task i must be run before task j

and, if these two tasks run in two different processors, the communication cost will be 10.

Task scheduling problems are divided into two categories [2]: static scheduling, in which all the

information about tasks is prior specified, including the run-time, communication cost, and priority

of each task; and dynamic scheduling, in which information is not available and decisions are made

at run-time. Researchers have proposed various algorithms to solve static scheduling problems.

These are categorized as deterministic (heuristic-based algorithm) and nondeterministic (random

search-based algorithms). Deterministic methods are divided into three types: list scheduling, cluster

scheduling, and task duplication scheduling.

The nondeterministic scheduling methods consist of various categories [3]: Particle Swarm

Optimization (PSO), Ant Colony Optimization (ACO), Tabu Search (TS), Simulated Annealing,

Random Search, and the Genetic Algorithm (GA). The current paper proposes an algorithm for

static task scheduling using random search and genetic algorithms as non-deterministic method.

In this paper, we proposed a new genetic algorithm with final scheduler that can schedule tasks

efficiently. Our algorithm, using genetics algorithm and final scheduler, can efficiently schedule the

tasks in heterogeneous systems.

The remainder of the present paper is organized as follows: In the next section the literature in this

field is reviewed. Section 3 states the problem and identifies the symbols needing exploration.

Section 4 describes the suggested algorithm in detail, the convergence of which is checked by

Markov’s model. In Section 5, the experiments and the obtained results are then analyzed and

compared with other algorithms. Finally, the conclusion is presented in the last section.

2. Related Work

The task scheduling problem can be formulated as a search for the optimum assignment of a set of

tasks to a set of processors so that the time of the last executed task will be minimized [1]. The NP-

completeness of DAG scheduling for homogenous systems is presented in [4], [5], and [6].

Accordingly, researchers attempt to solve this problem utilizing heuristic methods to achieve a

suitable scheduler. A heuristic-based algorithm searches a solution space where some feasible

solution has not been considered [7,8]. Most heuristic scheduling belongs to a scheduling list

category. When searching in a scheduling list, algorithms are divided into two phases. In the first

 179 S. Mirpour Marzuni, J. Vahidi/ Computational Sciences and Engineering 3(2) (2023) 177-188 179

phase, each task is assigned to a priority queue and then this is added to a list of pending tasks so as

to lower the priority based on a specific scale. In the second phase, each task with the highest priority

is selected and assigned to a processor. One of the best heuristics-based lists in a heterogeneous

system is the HEFT [9].

Canon et al. [10] conducted a study to compare 20 scheduling heuristics and their findings revealed

that HEFT was one of the best heuristics in terms of robustness and schedule length. One of the

disadvantages of list scheduling algorithms based on heuristics is that their performances are greatly

affected by heuristics. Therefore, a constant result for task scheduling might not be produced [1].

The other heuristic-based category is the cluster, which is generally designed for homogenous

systems and is composed of clusters of tasks assigned to processors. For heterogeneous systems, the

CHP [11] and Triplet [12] algorithms are designed for but limited to systems with a higher degree

of heterogeneity [2]. Frequent heuristics may produce the lowest make span, but they feature two

shortcomings: higher time complexity and task execution frequency. Genetic algorithms are widely

utilized to solve problems with task scheduling. These algorithms differ in coding, implementation

of genetic operators, and evaluating methods. In this paper, a genetic algorithm is proposed at first.

Its result is several suggestions for task scheduling. After that, the final scheduler is applied for

selecting the best suggestions. The proposed genetic algorithm is then modeled with the Markov

Chain and, finally, the convergence of the algorithm is proved by it.

3. Problem Statement

In the current study, the task scheduling problem is solved by EGA. The underlying assumption is

that there is a set of processors which are connected via a network. Task scheduling is responsible

for mapping tasks to processors in the system and determining the order of their execution in each

processor [13]. Scheduling problems are divided into two categories: static and dynamic. The aim

is assessing the static task scheduling problem so there is enough information on the task priority

and execution time of each task on each processor. In addition, it is necessary to be aware of any

wasting of time between two tasks which are interdependent and executed in two different

processors (i.e. the data movement time between two processors in two dependent tasks).

3.1. Dag Modeling

DAG is a directed graph that has no directed cycles (or no path with the same initial and final vertex).

In Figure 1, a directed acyclic graph, G=(V, E), is shown in which V is the set of vertices and E

represents the edges. This kind of directed acyclic graph is utilized for the task scheduling problem

to show the dependency of tasks. In each graph, each vertex displays one task in each problem and

the edges show the priority between tasks. For instance, E(i,j) goes from i to j indicating that task i

has more priority than task j or, in other words, task i must be executed before task j.

180 S. Mirpour Marzuni, J. Vahidi/ Computational Sciences and Engineering 3(2) (2023) 177-188 180

Figure 1. A DAG for the task scheduling problem [2]

Each edge has a weight of Wij that specifies the time consumed to move data between two

processors. For example, W12=17 means that if task T1 is executed in a processor and then task T2

in the other processor, the required cost to move data will be 17; however, if the two tasks are

executed in one processor, the cost will be zero. In addition to the DAG, a matrix of M*N is

illustrated, in which M is the number of tasks that should be executed and N is the number of existing

processors in the heterogonous system. As mentioned before, the speed of each one of the processors

in the heterogeneous system is different, so the execution time of the tasks on each processor will

take a different amount of time, as shown in the matrix in Figure 2.

Figure 2. Required time for running each task on each processor [2]

4. Enhanced Genetic Algorithm

The current study proposes a task scheduling problem by applying a genetic algorithm. The genetic

algorithm was introduced by Holland in 1975 [14] and is considered as one of the random search

algorithms conceived from nature. Genetic algorithms are mostly used in the optimization of

problem solving. Naturally, the combination of better chromosomes will produce better generations.

Among chromosomes, mutations sometimes occur which will lead to improved future generations.

Based on this concept, the genetic algorithm attempts to problem solve. The genetic algorithm

makes use of three basic genetic operators: selection, crossover, and mutation.

 181 S. Mirpour Marzuni, J. Vahidi/ Computational Sciences and Engineering 3(2) (2023) 177-188 181

4.1. Problem Coding

To solve a problem using a genetic algorithm, a model should be proposed to code the problem into

a string. For task scheduling, each task is considered as a gene and the combination of these genes

indicates the chromosome. Note that each one of these chromosomes will be a proposed model in

task scheduling. As Figure 3 illustrates, each gene consists of a number that identifies a processor.

Figure 3. A chromosome for the task scheduling problem

Figure 3 shows one sample of chromosome for a graph in Figure 1, meaning that task numbers 1, 2,

3 and 4 are run on CPU numbers 1, 2, 3 and 1 respectively. This would be a proposed model for

task scheduling.

4.2. Selection Opeator

The rank-based wheel selection mechanism is used in EGA, as done in [15]. First, the chromosomes

are sorted based on their qualities. The position of chromosomes in the list are defined as a

chromosome rank and is shown as ,...,2,1, =iRi
, in which is the number of chromosomes in the

population of the genetic algorithm. The current study employs a ranking in which Rx= ε is assigned

to the best chromosome of X and Ry= ε-1 to the second best chromosome of Y and so on. A fitness

value corresponding to each chromosome is defined in Eq. (1):

𝑓𝑖 =
2.𝑅𝑖

𝜀.(𝜀+1)
 (1)

Note that the amount of 0 and 1 are normalized based on the position of chromosomes in the ranking

list. It is important that the rank-based selection mechanism is regarded as a static model since the

probability of survival (fi) is not dependent on generation but on the position of chromosomes on

the list. For example, consider a sample of Five chromosomes in which chromosome 1 is the best

quality (R1=5), chromosome 2 is the best chromosome after chromosome 1 (R2=4) and so on. In

this case, the fitness value assigned to chromosomes is {0.33,0.26,0.2,0.13,0.06} and the associated

intervals for the roulette wheel are {0-0.33,0.34-0.6,0.61-0.8,0.81-0.93,0.94-1} [15].

The EGA process applies parent selection for crossover and mutation by using the mentioned

selection mechanism. This process is performed by replacement, meaning that one assumed

chromosome can be selected several times as one parent, but the members in the crossover operator

are different from each other.

4.3. Crossover Operator

Crossover operator is a powerful step in the genetic algorithm. In this algorithm, the operator

randomly selects the position of gene and replaces the sequence before and after that gene in two

chromosomes, thus producing two offsprings [16]. For example, the string 1 2 3 2 1 3 2 2 3 1 and 3

3 2 2 3 2 1 3 1 1 can be mixed after the randomized selection of the third gene and two offsprings 1

2 3 2 1 3 2 3 1 1 and 3 3 2 2 3 2 1 2 3 1, are composed. The aim of this operator is to stimulate

inherited genes and the guaranteed population change. The crossover probability should be high in

182 S. Mirpour Marzuni, J. Vahidi/ Computational Sciences and Engineering 3(2) (2023) 177-188 182

the early steps and average in the final steps so that the search space is properly explored. Hence,

the probability crossover is defined as Eq. (2):

𝑃𝑐(𝑛) = 𝑃𝑐 +
𝑛

𝐺
. 𝛼 (2)

where Pc (n) is the probability of crossover in generation (n), G is the illustrator of the number of

generations, Pc is the initial probability of crossover, and α is the coefficient between (-1,-Pc).

4.4. Mutation operator

The mutation operator produces changes in each chromosome with a low probability. This operator

was found to search the new region in the search space and is used to escape the local optimum,

where the algorithm is close to convergence [15]. The mutation is performed on each chromosome

in an attempt to make the selected chromosome better than before. In the EGA, the mutation operator

is described as follows:

For the mutation action of the present paper, a randomized amount between 0 and 1 is selected for

each gene and then the randomized number for each gene is assessed as to whether it is lower than

the amount of probability of mutation or not. Then the gene is omitted and transmitted to the end of

the string. Similar to the crossover operator, the possibility of mutation that is lower in the first

generation and increases by the final generation. Therefore, the probability of mutation is defined

as Eq. (3).

𝑃𝑚(𝑛) = 𝑃𝑚 +
𝑛

𝐺
. 𝛼 (3)

where Pm(n) is the possibility of mutation in generation n, Pm is the initial probability of mutation,

and α is the coefficient between (0, Pm).

4.5. Forced Reserved Strategy

In a study by Li et al. [17] forced reserved strategy was employed to maintain solutions of high

quality for future generations. The current paper utilizes the same strategy. this is a type of

reservation that can guarantee finding the optimized solution as soon as possible. To do so, 20% of

the previous top generations are directly transmitted to the next generation without any modification.

Assume that two parent individuals are selected and two new offspring individuals are created.

Then, the mutation operator is utilized on the two offspring individuals and two chromosomes are

created. The fitness of each of the four chromosomes is analyzed and the two top chromosomes

among these four are transferred to the next generation.

4.6. Fitness Function

Fitness function is a special case of the objective function used to determine the extent to which

chromosomes are worthy or not. As mentioned earlier, each chromosome can be a signal for finding

the scheduling solution. Therefore, these solutions can be assessed based on each other and based

on those which are advantageous to other chromosomes. From this, a proposed model of the genetic

algorithm can be designed. This function is actually responsible for this evaluation and assigns a

real value to each chromosome. The fitness function in EGA is defined as Eq. (4):

 183 S. Mirpour Marzuni, J. Vahidi/ Computational Sciences and Engineering 3(2) (2023) 177-188 183

𝐹𝑖 =
1

𝑀𝑖
 (4)

where Mi, is the make span related to chromosome i. Note that the focus is on finding a scheduling

model that has a minimum make span, which shows that a higher quantity assigned numbers to a

chromosome indicates the chromosome’s higher priority. To achieve a make span, the start and

finish time of each task in each processor should be identified and the finish time of the final task is

regarded as a make span. In current study the start and finish time for each task is determined by as

Eqs. (5) and (6):

𝑆𝑇(𝑡𝑖) = 𝑀𝐴𝑋{𝑀𝐴𝑋{𝐸𝑇(𝐷𝑇𝐾 + 𝐶(𝐷𝑇𝐾)}, 𝐹𝑇𝑃𝑗(𝑡𝑖)} (5)

𝐸𝑇(𝑡𝑖) = 𝑆𝑇(𝑡𝑖) + 𝑅𝑇𝑃𝑗(𝑡𝑖) (6)

in which ST(ti) is indicative of the start time of task i, DTk is the tasks prior to task i, C is the

communication cost between the prior task and task i, and FTPj (ti) is the release time of processor

i to which task i is assigned. In addition to ET(ti) represents the finish time of task i and RT is the

running time of task i on processor j.

4.7. Final Scheduler

In the present work’s suggested method, EGA is applied to create several proposed models for task

scheduling. At first, the use of EGA on tasks and processors leads to several scheduling models. In

fact, EGA takes into account the priority of tasks and attempts to produce a minimum make span.

The task running order in each processor is considered as a default order based on the number of

each task. It might be possible that, in each processor, the make span changes in terms of the

changing tasks order and decreases in some cases. For this reason, after EGA is run and some

proposed model are obtained, the Earliest Finished Time (EFT) for each task in each processor is

applied by Algorithm 1.

Algorithm 1:

Input: proposed scheduling by genetic algorithm

Output: produce a final scheduler

1: for each processor Pi

2: for each task ti that assigned to Pi

3: get minimum ET(ti) and put it in the queue

 that belonging to Pi

4: end

5: end

In fact, after receiving the proposed EGA models, the order of task execution for each processor is

identified. In this way, the task in each processor that finishes sooner than other tasks are sent to be

executed first.

4.8. The Analysis of The Convergence of The Algorithm

To theoretically prove the convergence of the algorithm, Markov’s chain is used, which reveals that

this algorithm can be turned into a homogeneous Markov model. The Markov process is a stochastic

process in which the random variable value in sample n is only related to sample n-1 [18]. If there

184 S. Mirpour Marzuni, J. Vahidi/ Computational Sciences and Engineering 3(2) (2023) 177-188 184

is a discrete space for a Markov chain, that process is named Markov’s chain [18], in which time is

assumed to be discrete and is defined as Eq. (7).

𝑃{𝑋𝑘+1 = 𝑥𝑘+1|𝑋𝑘 = 𝑥𝑘 , … , 𝑋0 = 𝑥0} = 𝑃{𝑋𝑘+1 = 𝑥𝑘+1|𝑋𝑘 = 𝑥𝑘} (7)

where Xk presents the state value in step k. If the transition probability from one state to another is

independent of time, the Markov chain is named as a homogenous Markov chain [18].

Hence, for modeling EGA to Markov chain, assume G(n) is the generation (n) in EGA and is known

as system states and fn is the maximum fitness of chromosomes in generation n. Since the number

of generations is countable and discrete, the Markov chain state shows a generation in EGA. As

mentioned earlier, to produce a new generation, the current generation is utilized, as defined in Eq.

(8).

𝑃{𝐺(𝑛 + 1) = 𝑓𝑛+1|𝐺(𝑛) = 𝑓𝑛, … , 𝐺(0) = 𝑓0} = 𝑃{𝐺(𝑛 + 1) = 𝑓𝑛+1|𝐺(𝑛) = 𝑓𝑛 (8)

Since the production of a new generation is dependent on the current generation, crossover,

mutation, and selection operations and is also independent of time, it is concluded that this algorithm

is a homogenous Markov chain (based on the definition of the homogenous Markov’s chain). In

Consideration that 20 percent of the EGA population is sent to the next generation, the system

remains in the same state or moves on to the next state; this signifies that it can never return from

the current state to its previous one. In fact, probability Pij is equal to zero as Pij is the probability of

going from state i to state j if j<i. Therefore, it can be said that EGA settles to a steady state after

several steps, and it converges to a global optimal solution.

5. Experiments

The proposed method is programmed by MATLAB, the R2009a version, and executed on Genuine

Intel(R) processor CPU U7300 @ 1.30GHz. In EGA, the initial population is considered 50 and the

maximum evolution generation is 80, as specified in Figures 5, 6 and 7.

In this section, the performance of the proposed method is investigated in case studies mentioned in

the previous algorithm [3,7,4,13,19]. In [3] and [2], the algorithm is executed on a directed acyclic

graph (Figure 1). The results gathered from the proposed algorithm and the previous one are found

in Table 1. The results assessed on their make span and indicate that EGA is no worse than other

algorithms while also better than others in some cases.

Table 1. COMPARISON OF PREVIOUS ALGORITHM AND EGA RESULTS

Number of

Tasks
Obtained Make Span

using EGA

 Obtained Make Span of Previous

Algorithms

 Case Study of

Previous Papers

9 15 23]13[

8 66 66]1[

10 73 73 [4]
10 117 122]2[

10 117 118]3[

As shown in Table 1, the EGA make span, compared to that of the algorithm presented in [13],

improved by 7 time units, by 5 time units compared to the algorithm in [2], and by 1 time unit

compared to the algorithm in [3]. However, it did not improve in comparison to the algorithms in

[1] and [4]. This may be due to the specific examples presented in these papers.

 185 S. Mirpour Marzuni, J. Vahidi/ Computational Sciences and Engineering 3(2) (2023) 177-188 185

Figure 4. Problem schedule using the proposed algorithm for DAG from Figure 1

Figure 4 presents the scheduling by EGA for the example in Figure 1. As shown tasks 1, 2, 3, and 7

are assigned to processor 2 whose start times are 0, 21, 39, and 66 and finish times are 21, 39, 66,

and 99 respectively. Tasks 4, 5, and 9 are assigned to processor 3 with start times of 50, 54, and 89

and finish times of 54, 89, and 97 respectively. Tasks 8, 6, and 10 are assigned to processor 1 and

their start times are 28, 68, and 104 and finish times are 54, 94, and 117 respectively.

Figure 5 illustrates the fitness curve for EGA in three runs from the case study of [13]. Based on the

graph, the algorithm in the first run has the best fitness with a 15 make span; the solution is achieved

in generation 13 without any modifications. The convergence of EGA is clear in the graph. In the

second and third runs the algorithm produces a make span of 16 indicating that the solution occurs

in generation 38 and 5 respectively.

Figure 5. Fitness curve using EGA for the case study of [13]

 Figure 6 shows the EGA fitness curve in three runs from the case study of [1]. On the basis of the

graph, it is obvious that the algorithm achieves the best fitness in the second execution with a 72

make span; the solution is reached in generation 8 with no changes. The convergence is clear in the

graph. In the first execution the algorithm shows a make span of 76 in generation 5.

186 S. Mirpour Marzuni, J. Vahidi/ Computational Sciences and Engineering 3(2) (2023) 177-188 186

Figure 6. Fitness curve using EGA for the case study of [1]

In the third execution the make span is 74 with the solution obtained in the same first randomized

population. Notice that this curve indicates the evolution of the genetic algorithm. In fact, it is the

achieved make spans of the proposed genetic algorithm models which show that the order of task

executions in processors is based on the default number of tasks. Therefore, the achieved make

spans do not deliver the best solution. However, if algorithm 1 is applied to a model with a make

span of 76 and the order of tasks is identified based on that, then the make span of 66 is the solution.

Figure 7. Fitness curve for DAG from Figure 1

Figure 7 shows the fitness curve of EGA in three runs, which is used in each execution of a proposed

problem in Figure 1. Based on the graph, the algorithm achieves its best fitness in the first and

second execution, with a make span of 117. According to the graph, in its second performance, the

algorithm is faster in finding a solution than in its first execution, as the solution is achieved in

generation 5 in the first execution and generation 31 in the next one. In the third execution, the

algorithm produces a make span of 120 in generation 7.

To analyze the effectiveness of EGA, it is executed many times, for example, in Figure 1 and the

results are shown in Table 2. In the first nine replications of the tests, the population is 50 and the

number of generations is 80. In seven out of the nine tests, the make span is 117 and two others

reach 118, indicating that the algorithm works well with make spans close to each other in

successive replications. In the next six replications, the population decreases to 20. The make spans

 187 S. Mirpour Marzuni, J. Vahidi/ Computational Sciences and Engineering 3(2) (2023) 177-188 187

are 117 in two cases and the worst make span among all of those six executions is 129. In the next

five replications, the population increases from 20 to 30 and the number of generations decreases

from 80 to 20. In these tests, the make spans are 117 in 3 out 5 times and the worst make span is

121. According to these results, it can be concluded that the algorithm achieves the solution in the

first generations and is dependent on the first population rather than on the number of generations.

It is the forced reserved strategy that leads to the solution in the first generations.

Table 2. RESULTS OF 20 ITERATIONS OF THE PROPOSED ALGORITHM FOR DAG FROM FIGURE 1

Iterations Number of the

Initial Population

Number of

Generations

Make Span Proposed Scheduling

1 50 80 117 2 2 2 3 3 1 2 1 3 1

2 50 80 117 2 2 2 3 3 1 2 1 3 1

3 50 80 117 2 2 2 3 3 1 2 1 3 1

4 50 80 117 2 2 2 3 3 1 2 1 3 1

5 50 80 118 2 1 2 3 3 2 2 1 3 1

6 50 80 118 2 1 2 3 3 2 2 1 3 1

7 50 80 117 1 1 1 2 3 2 1 2 3 2

8 50 80 117 1 1 1 2 3 2 1 2 3 2

9 50 80 117 1 1 1 2 3 2 1 2 3 2

10 20 80 129 1 3 1 3 11 2 1 1 3

11 20 80 121 2 1 2 2 3 2 1 2 3 2

12 20 80 117 2 2 2 3 3 1 2 1 3 1

13 20 80 124 2 3 2 2 1 3 2 2 1 2

14 20 80 117 1 1 1 2 3 2 1 2 3 2

15 20 80 121 2 1 2 2 3 2 1 2 3 2

16 30 20 117 2 2 2 3 3 1 2 1 3 1

17 30 20 118 2 1 2 1 3 2 2 1 3 1

18 30 20 117 1 1 1 2 3 2 1 2 3 2

19 30 20 117 2 2 2 3 3 1 2 1 3 1

20 30 20 121 2 1 2 2 3 2 1 2 3 2

6. Conclusion

The present study delves into solving the problem of task scheduling in heterogeneous systems

based on EGA. First applying this algorithm, several proposed models for task scheduling are

obtained. Then, based on using the Earliest Finished Time (EFT) on the EGA models, the order of

tasks on each processor is determined and, finally, the scheduling is produced. EGA obtains the

solution by utilizing forced reserved strategy faster and in the first generations. The comparisons

reveal that this is more effective when compared to previous algorithms and so achieves better make

spans.

References

[1] Xu, Y., Li, K., Hu, J., & Li, K. (2014). A genetic algorithm for task scheduling on

heterogeneous computing systems using multiple priority queues. Information Sciences,

270, 255-287.

188 S. Mirpour Marzuni, J. Vahidi/ Computational Sciences and Engineering 3(2) (2023) 177-188 188

[2] Arabnejad, H., & Barbosa, J. G. (2013). List scheduling algorithm for heterogeneous

systems by an optimistic cost table. IEEE transactions on parallel and distributed systems,

25(3), 682-694.

[3] Panwar, P., Sachdeva, S., & Rana, S. (2016). A genetic algorithm based scheduling

algorithm for grid computing environments. In Proceedings of Fifth International

Conference on Soft Computing for Problem Solving: SocProS 2015,1,165-173 Springer

Singapore.
[4] Coffman, E. G., & Bruno, J. L. (1976). Computer and job-shop scheduling theory. John Wiley &

Sons.

[5] Gary, M. R., & Johnson, D. S. (1979). Computers and Intractability: A Guide to the Theory

of NP-completeness.

[6] Ullman, J. D. (1975). NP-complete scheduling problems. Journal of Computer and System

sciences, 10(3), 384-393.
[7] Zomaya, A. Y., Ward, C., & Macey, B. (1999). Genetic scheduling for parallel processor systems:

comparative studies and performance issues. IEEE Transactions on Parallel and Distributed

systems, 10(8), 795-812.

[8] Kwok, Y.K., Ahmad, I. (1999). Static scheduling algorithms for allocating directed task graphs to

multiprocessors. ACM Comput. Surv. (CSUR) 31(4).

[9] Topcuoglu, H., Hariri, S., & Wu, M. (2002). Performance-Effective and Low-Complexity Task

Scheduling for Heterogeneous Computing. IEEE Trans. Parallel and Distributed Systems, 13(3),

260-274.

[10] Canon, L.C., Jeannot, E., Sakellariou, R., & Zheng, W. (2008), Comparative Evaluation of the

Robustness of Dag Scheduling Heuristics. Grid Computing: Achievements and Prospects,

S.Gorlatch, P. Fragopoulou, and T. Priol, eds., Springer, 73-84.

[11] Boeres, C., Filho, J.V., & Rebello, V. E. F. (2004). A Cluster-Based Strategy for Scheduling Task

on Heterogeneous Processors. Proc. 16th Symp. Computer Architecture and High Performance

Computing, 214-221.

[12] Cirou, B., & Jeannot, E. (2001). Triplet: A Clustering Scheduling Algorithm for Heterogeneous

Systems. Proc. Int’l Conf. Parallel Processing Workshops, 231-236.

[13] Jiang, Y. S., & Chen, W. M. (2015). Task scheduling for grid computing systems using a

genetic algorithm. The Journal of Supercomputing, 71(4), 1357-1377.
[14] Holland, J. (1975). Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann

Arbor, MI, USA.

[15] Agustı, L. E., Salcedo-Sanz, S., Jiménez-Fernández, S., Carro-Calvo, L., Del Ser, J., &

Portilla-Figueras, J. A. (2012). A new grouping genetic algorithm for clustering problems.

Expert Systems with Applications, 39(10), 9695-9703.
[16] M. Mitchell, (1999). An Introduction to Genetic Algorithms. Cambridge, Massachusetts London,

England: Massachusetts Institute of Technolog.

[17] Li, F., Da Xu, L., Jin, C., & Wang, H. (2012). Random assignment method based on genetic

algorithms and its application in resource allocation. Expert Systems with Applications,

39(15), 12213-12219.
[18] Gebali, F. (2015). Analysis of Computer Networks. Cham Heidelberg New York Dordrecht London:

Springer.

[19] Panwar, P., Lal, A.K., & Singh, J. (2012). A Genetic algorithm based technique for efficient

scheduling of tasks on multiprocessor system. In: Proceedings of the International Conference on

Soft Computing for Problem Solving (SocProS 2011), 911–919. Springer India.

