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Abstract. Recently, polymeric multi-layer capsules have gained a great deal of attention from the
life science community. Furthermore, myriad interesting systems have appeared in the literature with
biodegradable components and biospecific functionalities. In the present work, we presented a math-
ematical model of drug release from a multi-layer capsule into a target tissue. The diffusion problem
was described by a system of coupled partial differential equations, Fickian and non-Fickian, which we
solved numerically via nonuniform finite differences method. Energy estimates were further established
for the coupled system and also, the convergence properties of the proposed numerical method were
justified. We ultimately demonstrated the qualitative behavior of the system.
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1 Introduction

Capsules are currently utilized as targeted drug delivery systems to augment therapeutic efficacy and
minimize the side effects. Capsules are composed of a drug-filled core surrounded by a few layers.
These layers increase the mechanical stability of the capsule and prevent its degradation from the external
chemical aggression [17, 21]. To surround the whole capsule structure, a thin layer is required so as to
protect it from mechanical erosion and external chemical aggressions [14].

Some reviews have suggested models for drug release from coated formulations, polymeric materials,
and capsules with empirical models [13, 20, 21]. There exists a mechanistic model for studying the drug
release from a multi-layer coated spherical capsule [5, 15, 16]. In [16], the authors proposed a novel in
silico model for computing drug release from multi-layer capsules. They delineated the diffusion issue
in this heterogeneous layer-by-layer composite medium through a system of coupled partial differential
equations and analytically solved the model by separating variables. In [5], the researchers made use
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of the Laplace transform to solve the model. In [15], an alternative numerical approach was developed
to investigate the mass transfer from a stationary core-shell reservoir under channel flow conditions.
Using the lattice Boltzmann method, the author computed both the solvent fluid flow and the diffusion
and advection of the solute. Pontrelli et al. [18] presented a mechanistic model of drug release from a
multiple emulsion into an external surrounding fluid. Through the use of finite volume discretization,
they solved the model numerically. In a majority of these investigations, the release and numerical
behavior of drug were addressed whereas the viscoelasticity of the polymeric shell was neglected. This
feature significantly affects the drug release scenario, hence the fact that it should be considered in the
model.

The present research aimed to examine a system of one-dimensional coupled model that can be
employed to elucidate the drug release from a drug-filled core to the polymeric shell with viscoelastic
properties and its subsequent release into the target tissue. A non-Fickian mathematical model was pre-
sented for drug release in the polymeric shell. In this novel model, the Fick’s law for the flux is modified
through introducing a non-Fickian contribution defined with Maxwell fluid model [6, 7]. The coupled
system is completed with initial, boundary, and interface conditions. We further established energy es-
timates for the coupled system based on [19]. These estimates were utilized to achieve an upper bound
for the drug mass in the coupled system. Following [3,10], we proposed a discrete model to numerically
solve the coupled problem and demonstrate the qualitative behavior of the drug concentration in each
layer. The accuracy of the spatial discretizations of the model was also determined.

The paper is organized as follows. Section 2 delineates the model and its initial, boundary, and inter-
face conditions. Section 3 specifies the energy estimates for the coupled system. Section 4 introduces a
numerical method that mimics the qualitative behavior of the continuous model. Numerical simulations
are discussed in Section 5, and Section 6 concludes the paper.

2 Model development

Let us consider a multi-layer capsule made of an internal core or depot (Ω0) surrounded by a number of
layers (Ωi, with i = 1, . . . , s) as illustrated in Fig. 1. These layers are made of different materials, but
homogeneous, and are controlling the drug release. The last outer shell is the target tissue. This layer
can be considered as semi-infinite [5, 16]. Due to the homogeneity and isotropy of the layers, we can
assume that drug penetration occurs only along the center line of the layers, and therefore we use a one-
dimensional model for the study, which means ci(x,y,z, t) = ci(x,0,0, t) = ci(x, t), where ci is the drug
concentration of each layer. We consider the special case of the layers: a drug-filled core Ω0 = (0, `1),
encapsulated by a single polymeric shell Ω1 = (`1, `2) and surrounded by a target tissue Ω2 = (`2, `3).
We assume that `1 < `2 < `3. Thus, the time-space drug evolution is described by the mass conservation
law as following

∂c1

∂ t
= D1

∂ 2c1

∂x2 , 0 < x < `1, (1)

∂c2

∂ t
= D2

∂ 2c2

∂x2 +Dv
∂ 2σ

∂x2 , `1 < x < `2, (2)

∂σ

∂ t
+

E
µ

σ = −Ēc2, `1 < x < `2, (3)

∂c3

∂ t
= D3

∂ 2c3

∂x2 , `2 < x < `3, (4)
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where Di, i= 1,2,3 are the diffusion coefficients of the drug in the core, polymeric shell and target tissue,

Figure 1: Drug releasing from a multi-layer capsule.

respectively, E represents the Young modulus of the material, µ is its viscosity, σ is the stress response to
the strain and Ē = kE, where k is a positive constant. Equations (1) and (4) are describing the distribution
of the drug concentration in the drug-filled core and target tissue, respectively. Equation (2) is describing
the distribution of the drug concentration in the polymeric shell which has viscoelastic properties. The
viscoelastic influence in the drug transport is represented by the term Dv

∂ 2σ

∂x2 where Dv is the viscoelastic
diffusion coefficient. The viscoelastic term states that the polymer acts as a barrier to the diffusion of the
drug: as the drug strains the polymer it reacts with a stress of opposite sign [9]. Equation (3) defines the
viscoelastic behavior of the polymer as described by the Maxwell fluid model [1, 2, 4, 6–8, 11, 12].

System (1)-(4) is complemented with the boundary conditions

∂c1

∂x
(0, t) = 0, (5)

c3(`3, t) = 0, (6)

interface conditions

−D1
∂c1

∂x
(`1, t) =−D2

∂c2

∂x
(`1, t)−Dv

∂σ

∂x
(`1, t), c1(`1, t) = ζ c2(`1, t), (7)

−D2
∂c2

∂x
(`2, t)−Dv

∂σ

∂x
(`2, t) =−D3

∂c3

∂x
(`2, t) = P(c2− c3), (8)

and the initial condition

c1(x,0) =C0, c2(x,0) = 0, c3(x,0) = 0, σ(x,0) = σ0. (9)

Equation (5) means that the system is insulated while equation (6) states that the drug is immediately
removed.

Equation (7) emphasises the continuity of the mass flux and the continuity of the concentration at the
boundary between Ω0 and Ω1, where ζ = 1 is a constant [10]. To help better control and prevent fast
delivery, at the boundary between the polymer and the target tissue, Ω1 and Ω2, we assume the boundary
is a thin layer with a small but not zero thickness. This assumed coating layer shields and preserves the
encapsulated drug from degradation and fluid convection, protects the capsule structure and guarantees
a more controlled and sustained release [16]. So the continuity of the mass flux and the continuity of the
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concentration are then replaced with equation (8), where P is the shell mass transfer coefficient, which
is a positive constant.

The initial condition means that there is initially a homogeneous drug distribution in the drug-filled
core and that the polymeric shell and target tissue are empty. The C0 is the initial concentration of drug
and σ0 is the initial stress.
The model which is presented by equations (1)-(9) can be used in drug delivery from multiple emulsions.
The release of the drug from the nano-emojis means that the drug first enters the gel phase from the
emulsion phase and then penetrates the target tissue from the gel phase.

3 Energy estimates

The qualitative behavior of the drug delivery in multi-layer capsules is studied through an a priori energy
estimate. We show that the continuous model is stable, under initial perturbations, and for bounded in-
tervals of time, by imposing some conditions on the parameters. These conditions appear as a technical
tool, in the sense that they represent mathematical constraints needed to establish the result. They es-
sentially say that the mathematical model is stable under some conditions. We introduce now the weak
formulation of the initial-boundary value coupled problem (1)-(9). To do that we define the following
spaces

Vi = {w ∈ H1(`i−1, `i) : w(`3) = 0},
for i= 1,2,3, where `0 = 0. Let (·, ·)i be the usual inner product in L2(`i−1, `i) and ‖·‖i the corresponding
norm, i = 1,2,3, where `0 = 0.

From equation (3) and by considering c2(x,0) = 0, we easily get

σ(x, t) =Ē
∫ t

0
e−

E
µ
(t−s)c2(s)ds+σ0e−

E
µ

t .

Using this equality in the equation (2) and considering σ0 is a constant, we obtain for c2 the following
equation

∂c2

∂ t
=D2

∂ 2c2

∂x2 +Dσ

∫ t

0
e−

E
µ
(t−s) ∂ 2c2

∂x2 (s)ds, (10)

where Dσ = ĒDv. Then the interface boundary conditions (7) and (8) is replaced by the following
interface boundary conditions

−D1
∂c1

∂x
(`1, t) =−D2

∂c2

∂x
(`1, t)−Dσ

∫ t

0
e−

E
µ
(t−s) ∂c2

∂x
(`1,s)ds, c1(`1, t) = c2(`1, t),

−D2
∂c2

∂x
(`2, t)−Dσ

∫ t

0
e−

E
µ
(t−s) ∂c2

∂x
(`2,s)ds =−D3

∂c3

∂x
(`2, t) = P(c2− c3).

(11)

The weak solution for the previous problem are functions ci ∈ L2(R+,Vi)∩C1(R+,L2(`i−1, `i)),
i = 1,2,3, `0 = 0 such that

3

∑
i=1

(
∂ci

∂ t
,wi)i =

3

∑
i=1

(Di
∂ 2ci

∂x2 ,wi)i +Dσ

∫ t

0
e−

E
µ
(t−s)(

∂ 2c2

∂x2 (s),w2)2ds, wi ∈Vi, (12)
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for i = 1,2,3 and initial condition (9).
From (12), after replacing wi = ci, i = 1,2,3, we deduce

3

∑
i=1

(
∂ci

∂ t
,ci)i =

3

∑
i=1

(Di
∂ 2ci

∂x2 ,ci)i +Dσ

∫ t

0
e−

E
µ
(t−s)(

∂ 2c2

∂x2 (s),c2)2ds, (13)

Combining (13) with the boundary conditions (5) and (6) and the interface condition (11), we get

1
2
ε′(t) =−

3

∑
i=1

Di‖
∂ci

∂x
‖2

i −Dσ

∫ t

0
e−

E
µ
(t−s)(

∂c2

∂x
(s),

∂c2

∂x
)2ds

− (P[c(t)], [c(t)])`2 , (14)

where ε(t) = ∑
3
i=1 ‖ci(t)‖2

i and

(P[c(t)], [c(t)])`2 =
∫
`2

P[c(t)]2dµ,

[c(t)] = c2(`2, t)− c3(`2, t).

In what follows, we establish an estimate for the energy functional

E(t) =ε(t)+
3

∑
i=1

∫ t

0
‖∂ci

∂x
(s)‖2

i ds+
∫ t

0
‖[c(s)]‖2

`2
ds. (15)

For any nonzero constant ε , we have the following inequality

Dσ

∫ t

0
e−

E
µ
(t−s)(

∂c2

∂x
(s),

∂c2

∂x
)2ds≤ε

2‖∂c2

∂x
(t)‖2

2 +
D2

σ µ

8ε2E

∫ t

0
‖∂c2

∂x
(s)‖2

2ds. (16)

Then, from (14) and using inequality (16), we get

ε′(t)+2 ∑
i=1,3

Di‖
∂ci

∂x
‖2

i +2(D2− ε
2)‖∂c2

∂x
‖2

2 ≤
D2

σ µ

4ε2E

∫ t

0
‖∂c2

∂x
(s)‖2

2ds−2P‖[c(t)]‖2
`2
. (17)

If we fix ε satisfying

D2− ε
2 > 0, (18)

then

ε(t)+2 ∑
i=1,3

Di

∫ t

0
‖∂ci

∂x
(s)‖2

i ds+2(D2− ε
2)
∫ t

0
‖∂c2

∂x
(s)‖2

2ds

≤ D2
σ µ

4ε2E

∫ t

0

∫
ν

0
‖∂c2

∂x
(ν)‖2

2dνds−2P
∫ t

0
‖[c(s)]‖2

`2
ds+ε(0). (19)

The equivalent of the above equation is as follows:

E(t)≤Φ

∫ t

0
E(s)ds+ε(0), (20)
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where

Φ =
min{1,2D1,2D3,2(D2− ε2),2P}

D2
σ µ

4ε2E

. (21)

By using Gronwall’s Lemma we obtain the following result.

Theorem 1. If ci ∈ L2(R+,Vi)∩C1(R+,L2(`i−1, `i)), i = 1,2,3, `0 = 0 are solutions of (12) and (9),
then

E(t)≤ ε(0)eΦt , (22)

where D2− ε2 > 0 and Φ is defined by (21).

The upper bound (22) shows that the initial boundary value problem (1)-(9) is stable for bounded
interval time that D2− ε2 is positive.

The upper bound (22) can be used to describe the behavior of the coupled system for the drug mass
of the coupled system. Let

Mi(t) =
∫ `i

`i−1

ci(x, t)dx, i = 1,2,3, `0 = 0, M(t) =
3

∑
i=1

Mi(t) =
∫ `3

0
c(x, t)dx, (23)

be the mass in the layer i, i = 1,2,3 and the total mass, respectively. Using Hölder’s inequality, we get

M2(t) =
(∫ `3

0
c(x, t)dx

)2

≤ `3ε(t).

Hence, from equation (22), we get the following upper bound for the drug mass in the coupled system

M(t)≤
√

`3ε(0)e
Φt
2 .

4 A discrete model

To simplify the equations, the following scaling groups are used, where the ’bar’ corresponds to a non-
dimensional variable,

τ =
Dmaxt
`2

3
, ξ =

x
`3
, c̄i =

ci

C0
, σ̄ =

σ

σ0
, D̄i =

Di

Dmax
, i = 1,2,3, (24)

and Dmax = max{Di, i = 1,2,3}. Equations (1)-(9), after using (24), transform to

∂ c̄1

∂τ
= D̄1

∂ 2c̄1

∂ξ 2 , 0 < ξ <
`1

`3
, (25)

∂ c̄2

∂τ
= D̄2

∂ 2c̄2

∂ξ 2 +Dvnon
∂ 2σ̄

∂ξ 2 ,
`1

`3
< ξ <

`2

`3
, (26)

∂ σ̄

∂τ
+Enonσ̄ =−µnonc̄2,

`1

`3
< ξ <

`2

`3
, (27)

∂ c̄3

∂τ
= D̄3

∂ 2c̄3

∂ξ 2 ,
`2

`3
< ξ < 1, (28)
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Figure 2: Schematic illustration of grid nodes in three layers.

∂ c̄1

∂ξ
(0,τ) = 0, (29)

c̄3(1,τ) = 0, (30)

−D̄1
∂ c̄1

∂ξ
(
`1

`3
,τ) =− D̄2

∂ c̄2

∂ξ
(
`1

`3
,τ)−Dvnon

∂ σ̄

∂ξ
(
`1

`3
,τ), c̄1(

`1

`3
,τ) = c̄2(

`1

`3
,τ) (31)

−D̄2
∂ c̄2

∂ξ
(
`2

`3
,τ)−Dvnon

∂ σ̄

∂ξ
(
`2

`3
,τ) =−D̄3

∂ c̄3

∂ξ
(
`2

`3
,τ) = λ (c̄2− c̄3), (32)

c̄1(ξ ,0) = 1, c̄2(ξ ,0) = 0, c̄3(ξ ,0) = 0, σ̄(ξ ,0) = 1, (33)

respectively, where several dimensionless controlling parameters are defined by

Dvnon =
Dvσ0

DmaxC0
,Enon =

E`2
3

Dmaxµ
,µnon =

ĒC0`
2
3

Dmaxσ0
,λ =

P`3

Dmax
.

We introduce a discretization of the IBVP (25)-(33) which mimics its continuous counterpart. We fix
a mesh size h. In the space domain [0,1], we introduce the grid Ih = {xi, i = 0, . . . , N} as following (see
Figure 2):

x0 = 0, x1 = x0 +
h
2
, xi = xi−1 +h, i = 2, . . . , N, xN = 1,

xM− 1
2
= xM−1 +

h
2
, xM =

`1

`3
+

h
2
, xL− 1

2
= xL−1 +

h
2
, xL =

`2

`3
+

h
2
,

where `1
`3
= xM− 1

2
and `2

`3
= xL− 1

2
. Let x−1 =−h

2 is the auxiliary point. By I∗h we define the grid Ih∪{x−1}.
By D−x, Dx, Dc and D2,h we denote the backward, forward, first order centred and second order centred
finite difference operators, respectively. We consider that D2,hvh(xM−1) is based on a nonuniform grid
and defined using the grid points xM−2, xM−1 and xM− 1

2
. Similarly, D2,hvh(xL−1) is defined using the

nonequally spaced grid points xL−2, xL−1 and xL− 1
2
.

Let c̄h(τ) and σ̄h(τ) be grid functions defined in the grid points I∗h ∪{xM− 1
2
,xL− 1

2
} that satisfies the

following system of differential equations
c̄′i(τ) = D̄kD2,hc̄i(τ)+DvnonD2,hσ̄i(τ),

i = 0, . . . , M−1, M, M+1, . . . , L−1, L, L+1, . . . , N−1,
σ̄ ′i (τ)+Enonσ̄i(τ) =−µnonc̄i(τ), i = M, . . . , L−1,

(34)
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where D̄k = D̄1, Dvnon = 0 if i ≤M− 1, D̄k = D̄2, Dvnon 6= 0 if M ≤ i ≤ L− 1 and D̄k = D̄3, Dvnon = 0
otherwise, coupled with the following algebraic conditions{

D̄1Dcc̄0(τ) = 0,
c̄N(τ) = 0,

(35)

{
−D̄1D−xc̄M− 1

2
(τ) =−D̄2Dxc̄M− 1

2
(τ)−DvnonDxσ̄M− 1

2
(τ),

−D̄2D−xc̄L− 1
2
(τ)−DvnonD−xσ̄L− 1

2
(τ) =−D̄3Dxc̄L− 1

2
(τ) = λ (c̄L−1− c̄L).

(36)

We assume that at the initial time we have

c̄i(0) = 1, i = 0, . . . , M−1, c̄i(0) = 0, i = M, . . . , N−1,

σ̄i(0) = 1, i = M, . . . , L−1. (37)

The boundary condition (35) and interface condition (36) are the discrete version of equations (29), (30)
and (31), respectively.

Let us consider in the integration in time of the semi-discrete problem (34)-(37) the implicit-explicit
method. To do that we fix a time interval [0,T ] where we introduce a time grid {τn, n = 0, . . . , N∆τ} in
which τn− τn−1 = ∆τ,n = 1, . . . ,N∆τ , and N∆τ∆τ = T . Let c̄n

h, σ̄
n
h , n = 0, . . . , N∆τ be defined by

c̄n+1
i = c̄n

i +∆τD̄kD2,hc̄n+1
i +∆τDvnonD2,hσ̄

n
i ,

i = 0, . . . , M−1, M, M+1, . . . , L−1, L, L+1, . . . , N−1,
σ̄

n+1
i +(∆τEnon−1)σ̄n

i =−∆τµnonc̄n+1
i , i = M, . . . , L−1,

(38)

where n = 0, . . . , N∆τ − 1 and D̄k = D̄1, Dvnon = 0 if i ≤M− 1, D̄k = D̄2, Dvnon 6= 0 if M ≤ i ≤ L− 1,
D̄k = D̄3, Dvnon = 0, otherwise, {

D̄1Dcc̄n
0 = 0, n = 0, . . . , N∆τ ,

c̄n
N = 0, n = 1, . . . , N∆τ ,

(39)

−D̄1D−xc̄n
M− 1

2
=−D̄2Dxc̄n

M− 1
2
−DvnonDxσ̄

n
M− 1

2
, n = 1, . . . , N∆τ ,

−D̄2D−xc̄n
L− 1

2
−DvnonD−xσ̄

n
L− 1

2
=−D̄3Dxc̄n

L− 1
2
= λ (c̄n

L−1− c̄n
L).

(40)

We assume that at the initial time we have

c̄0
i = 1, i = 0, . . . , M−1, c̄0

i = 0, i = M, . . . , N−1,

σ̄
0
i = 1, i = M, . . . , L−1. (41)

4.1 Error analysis

To justify the behavior of the numerical method (38)-(41), in what follows we study the spatial dis-
cretization considering only the drug concentration, after solving the equation (27) and replacing in the
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equation (26). In this scenario, we analyze the convergence behavior of the solution of the differential
problem

dc̄h

dτ
(xi,τ) =D̄kD2,hc̄h(τ)−µnonDvnon

∫
τ

0
e−Enon(τ−s)D2,hc̄h(s)ds,

i = 0, . . . , M−1, M, M+1, . . . , L−1, L, L+1, . . . , N−1, (42)

where D̄k = D̄1, Dvnon = 0, if i≤M−1, D̄k = D̄2, Dvnon 6= 0, if M ≤ i≤ L−1 and D̄k = D̄3, Dvnon = 0,
otherwise, {

Dcc̄h(x0,τ) = 0,
c̄h(xN ,τ) = 0,

(43)


−D̄1D−xc̄h(xM− 1

2
,τ) =−D̄2Dxc̄h(xM− 1

2
,τ)+Dvnonµnon

∫
τ

0
e−Enon(τ−s)Dxc̄h(xM− 1

2
,s)ds,

−D̄2D−xc̄h(xL− 1
2
,τ)+Dvnonµnon

∫
τ

0
e−Enon(τ−s)D−xc̄h(xL− 1

2
,s)ds

=−D̄3Dxc̄h(xL− 1
2
,τ) = λ (c̄h(xL−1,τ)− c̄h(xL,τ)).

(44)

We assume that at the initial time we have

c̄h(0) = 1. (45)

Let Eh(τ) = Rhc̄(τ)− c̄h(τ) be the semi-discretization error induced by the spatial discretizations (42)-
(45), where Rh is the restriction operator and let Th(τ) be the corresponding truncation error. We have

dEh

dτ
(xi,τ) =D̄kD2,hEh(τ)−µnonDvnon

∫
τ

0
e−Enon(τ−s)D2,hEh(s)ds+Th(xi,τ),

i = 0, . . . , M−1, M, M+1, . . . , L−1, L, L+1, . . . , N−1, (46)

where D̄k = D̄1, Dvnon = 0, if i≤M−1, D̄k = D̄2, Dvnon 6= 0, if M ≤ i≤ L−1 and D̄k = D̄3, Dvnon = 0
otherwise, {

DcEh(x0,τ) = Tle f (τ),

Eh(xN ,τ) = 0,
(47)



−D̄1D−xEh(xM− 1
2
,τ) =−D̄2DxEh(xM− 1

2
,τ)

+Dvnonµnon
∫

τ

0 e−Enon(τ−s)DxEh(xM− 1
2
,s)ds+Tint,le f (τ),

−D̄2D−xEh(xL− 1
2
,τ)+Dvnonµnon

∫
τ

0
e−Enon(τ−s)D−xEh(xL− 1

2
,s)ds

=−D̄3DxEh(xL− 1
2
,τ) = λ (Eh(xL−1,τ)−Eh(xL,τ))+Tint,rig(τ),

(48)

where Tle f (τ), Tint,le f (τ) and Tint,rig(τ) are the truncation errors in x0, xM− 1
2

and xL− 1
2
, respectively.
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We assume that at the initial time we have

Eh(0) = 0. (49)

If we assume that c̄(τ) ∈C4([−h
2 ,1]), then ‖Th(τ)‖∞ ≤Ch2.

We introduce the following discrete L2(0,1) inner product (., .)h for grid functions defined in Ih and
null on xN ,

(uh,vh)h =
h
4

u0v0 +
M−2

∑
j=1

hu jv j +
3
4

h(uM−1vM−1 +uMvM)

+
L−2

∑
j=M+1

hu jv j +
3
4

h(uL−1vL−1 +uLvL)+
N−1

∑
j=L+1

hu jv j.

By ‖·‖h, we denote the norm induced by this inner product. For grid functions defined in Ih∪{xM− 1
2
,xL− 1

2
}

we use the following notations

(uh,vh)+ =
h
2

u1v1 +
M−1

∑
j=2

hu jv j +
h
2
(uM− 1

2
vM− 1

2
+uMvM)

+
L−1

∑
j=M+1

hu jv j +
h
2
(uL− 1

2
vL− 1

2
+uLvL)+

N

∑
j=L+1

hu jv j,

and
‖vh‖+ = (vh,vh)

1
2
+.

Theorem 2. Let uh,vh be grid functions defined in Īh∪{x− h
2
,xM,xL}. Then

(D2,huh,vh)h =−Dcuh(x0)vh(x0)− (D−xuh,D−xvh)+

+D−xuh(xM− 1
2
)vh(xM− 1

2
)−Dxuh(xM− 1

2
)vh(xM− 1

2
)

− (D−xuh,D−xvh)++D−xuh(xL− 1
2
)vh(xL− 1

2
)

−Dxuh(xL− 1
2
)vh(xL− 1

2
)− (D−xuh,D−xvh)+

+Dcuh(xN)vh(xN).

Theorem 3. If c̄ ∈C4([−h
2 ,1]), then the error Eh(τ) satisfies the following

‖Eh(τ)‖2
h+2

( 3

∑
i=1

D̄i− ε
2−η− (1+λ )

`2
3

2
− D2

vnonµ2
non

4ε2Enon

)∫ τ

0
‖D−xEh(s)‖2

+ds

≤
∫

τ

0
gh(s)ds, (50)

where ε,η and λ are nonzero constants and

gh(s) =‖Th(s)‖2
h +Tle f (s)2 +Tint,le f (s)2 +Tint,rig(s)2.
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Proof. From the differential equation of (46), we get

1
2

d
dτ
‖Eh(τ)‖2

h =(D̄kD2,hEh(τ),Eh(τ))h−Dvnonµnon

∫
τ

0
e−Enon(τ−s)(D2,hEh(s),Eh(τ))hds

+(Th(t),Eh(τ))h. (51)

From Theorem 2 and (51), we get

1
2

d
dτ
‖Eh(τ)‖2

h =− D̄1DcEh(x0)Eh(x0)− (D̄1D−xEh(τ),D−xEh(τ))+

+ D̄1D−xEh(xM− 1
2
)Eh(xM− 1

2
)− D̄2DxEh(xM− 1

2
)Eh(xM− 1

2
)

+Dvnonµnon

∫
τ

0
e−Enon(τ−s)DxEh(xM− 1

2
)dsEh(xM− 1

2
)

− (D̄2D−xEh(τ),D−xEh(τ))+

+Dvnonµnon

∫
τ

0
e−Enon(τ−s)(D−xEh(s),D−xEh(τ))+ds

+ D̄2D−xEh(xL− 1
2
)Eh(xL− 1

2
)

−Dvnonµnon

∫
τ

0
e−Enon(τ−s)D−xEh(xL− 1

2
)dsEh(xL− 1

2
)

− D̄3DxEh(xL− 1
2
)Eh(xL− 1

2
)− (D̄3D−xEh(τ),D−xEh(τ))+

+ D̄3DcEh(xN)Eh(xN)+(Th(τ),Eh(τ))h. (52)

Taking equations (47) and (48) in (52) we deduce that

1
2

d
dτ
‖Eh(τ)‖2

h =−Tle f (τ)Eh(x0)− D̄1‖D−xEh(τ)‖2
+

−Tint,le f (τ)Eh(xM− 1
2
)− D̄2‖D−xEh(τ)‖2

+

+Dvnonµnon

∫
τ

0
e−Enon(τ−s)(D−xEh(s),D−xEh(τ))+ds

−
(
Tint,rig +P(Eh(xL−1,τ)−Eh(xL,τ))

)
Eh(xL− 1

2
)

− D̄3‖D−xEh(τ)‖2
++(Th(τ),Eh(τ))h. (53)

Using ∫
τ

0
e−Enon(τ−s)ds =

1
Enon

(1− e−Enon)≤ 1
Enon

, (54)

and the CauchySchwarz inequality, we get

Dvnonµnon

∫
τ

0
e−Enon(τ−s)(D−xEh(s),D−xEh(τ))+ds

≤ D2
vnonµ2

non

4ε2

∫
τ

0
e−Enon(τ−s)e−Enon(τ−s)‖D−xEh(s)‖2

+ds+ ε
2‖D−xEh(τ)‖2

+

≤ D2
vnonµ2

non

4ε2Enon

∫
τ

0
e−Enon(τ−s)‖D−xEh(s)‖2

+ds+ ε
2‖D−xEh(τ)‖2

+. (55)
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Taking in (53), the estimates (55) and using CauchySchwarz inequality and the equality

Eh(xα− 1
2
) =

h
2

D−xEh(xα− 1
2
)+Eh(xα−1), α = M, L, (56)

we obtain

d
dτ
‖Eh(τ)‖2

h +2
( 3

∑
i=1

D̄i− ε
2−η

)
‖D−xEh(τ)‖2

+

≤ ‖Th(τ)‖2
h +(1+λ )‖Eh(τ)‖2

h +
D2

vnonµ2
non

2ε2Enon

∫
τ

0
e−Enon(τ−s)‖D−xEh(s)‖2

+ds+Tle f (τ)
2

+Tint,le f (τ)
2 +Tint,rig(τ)

2.

From Theorem 2 in [10], we know

‖Eh‖2
h ≤ `2

3‖D−xEh‖2
+. (57)

By integrating with respect to time and using (57), we obtain

‖Eh(τ)‖2
h +2

( 3

∑
i=1

D̄i− ε
2−η− (1+λ )

`2
3

2

)∫ τ

0
‖D−xEh(s)‖2

+ds

≤
∫

τ

0
gh(s)ds+

D2
vnonµ2

non

2ε2Enon

∫
τ

0

∫
γ

0
e−Enon(γ−s)‖D−xEh(s)‖2

+dγds.

Changing the order of integration in the double integral and using (54) we have

‖Eh(τ)‖2
h +2

( 3

∑
i=1

D̄i− ε
2−η− (1+λ )

`2
3

2

)∫ τ

0
‖D−xEh(s)‖2

+ds

≤
∫

τ

0
gh(s)ds+

D2
vnonµ2

non

2ε2Enon

∫
τ

0

∫
τ

s
e−Enon(γ−s)dγ‖D−xEh(s)‖2

+ds

≤
∫

τ

0
gh(s)ds+

D2
vnonµ2

non

2ε2E2
non

∫
τ

0
‖D−xEh(s)‖2

+ds. (58)

Finally, we obtain (50).

Corollary 1. Under the assumptions of Theorem 3, there exist a positive constant C, h and τ-independent,
such that

‖Eh(τ)‖2
h +

∫
τ

0
‖D−xEh(s)‖2

+ds≤Ch4, τ ∈ [0,T ]. (59)

5 Numerical simulations and discussions

Here we illustrate the qualitative behavior of the (25)-(33) using the method (38)-(41) for the parameters
listed as following [5, 16]:

`1 = 1.5×10−3m, `2 = 1.8×10−3m, `3 = 3×10−2m,

D1 = 3×10−10 m2

s
, D2 = 5×10−11 m2

s
, D3 = 3×10−10 m2

s
,
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Table 1: Convergence rates p(c)

h Eh,c p(c)

0.05 8.6342×10−3 1.77
0.01 5.0292×10−4 1.86
0.005 1.3882×10−4 2.01
0.002 2.1946×10−5 ——

P = 1×10−8 m
s
, Dv = 4×10−12 mol

m.s.Pa
, E = 5×103Pa,

µ = 5×109Pa.s, C0 = 1
mol
m3 , σ0 = 2×10−2Pa,

k = 1×10−12 m3

mol.s
, h = 1×10−2m, ∆t = 2×10−7s.

In what follows, we illustrate Corollary 1. We present the convergence rates in Table 1 as following

p(c) =
ln
(Eh1 ,c

Eh2 ,c

)
ln
(h1

h2

) ,

where Eh,c is defined by

Eh,c = max
n=1,..., M

(
‖En

h‖2
h +∆t

n

∑
j=1
‖D−xE j

h‖
2
+

) 1
2
.

These convergence rates were obtained for the numerical approximations computed with the method
(38)-(41) for equations (25)-(33) and the reference solution defined by h = 0.001 and ∆t = 2×10−7.

The numerical estimates for the rate of convergence presented in Table 1 confirms the theoretical
estimate given in Corollary 1 which is second order approximation, Eh,c = O(h2).

Via the polymeric shell, the drug was transported from the inner core, to the target tissue. Each layer
received mass from the previous layer and transferred it to the next layer until a complete drug release
from the capsule. Figure 3 depicts the concentration profiles related to different P values at different
times. With the increase in time, the concentration decreased inside each layer. Concerning small P, the
interface between polymeric shell and target tissue acted as an impermeable barrier with a significantly
low transfer rate from the capsule to the target tissue. The increase in the P value had a major impact on
the release rate, reduced the drug concentration in the core, and increased it in the target tissue.

Figure 4 illustrates that the drug mass, defined as (23) for each layer, was monotonically reduced
in the core, while at the same time increasing up to some peak before decaying asymptotically in the
polymeric shell layer. In the target tissue, the mass progressively increased at a rate which depended on
the diffusive properties of the layers. It can be observed that the core was completely emptied following
the increase in P, at which point, all the mass was transferred to the target tissue. In terms of small P, it
was found that plenty of drug mass remained in the core and less drug was released into the target tissue.



400 E. Azhdari, A. Emami

ξ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

a
li
z
e
d
 c

o
n
c
e
n
tr

a
ti
o
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

t=0.002

t=0.02

t=0.3

(a) P = 2×10−8

ξ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

a
li
z
e
d
 c

o
n
c
e
n
tr

a
ti
o
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(b) P = 1×10−8

ξ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

a
li
z
e
d
 c

o
n
c
e
n
tr

a
ti
o
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(c) P = 1×10−9

ξ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

a
li
z
e
d
 c

o
n
c
e
n
tr

a
ti
o
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(d) P = 1×10−10

Figure 3: Normalized concentration profiles in the three layers.

Table 2 presents a number of simulations, clarifying the effect of the mechanical behavior of the
polymeric shell on drug release concentration. When viscoelasticity was considered (for different values
of Dv), the polymeric shell acted as a barrier against the drug release into the polymeric shell from the
drug-filled core, reducing the drug release into the target tissue. This table also shows the concentration
of the drug over time. In fact, over time, the drug decreases in the drug-filled core and the polymeric
shell, and vice versa, increases in the target tissue.

6 Conclusion

From an analytical and numerical point of view, we analyzed a coupled system of partial differential
equations complemented with boundary, interface, and initial conditions. This system can be employed
to describe the drug release from a multi-layer capsule into the target tissue where the drug is initially
dispersed in the drug-filled core. Since the capsule is surrounded by a polymeric shell, the Fick’s law
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Figure 4: Normalized drug mass profiles in the three layers.

Table 2: Influence of viscoelastic on the drug release
Time Viscoelastic effect drug-filled core polymeric shell target tissue

Dv = 4×10−12 0.36761253 0.33355918 0.02137680
0.02

Dv = 4×10−10 0.36763183 0.33356666 0.02137478

Dv = 4×10−12 0.25443642 0.23476291 0.04375192
0.1

Dv = 4×10−10 0.25447180 0.23478178 0.04375025

Dv = 4×10−12 0.10477098 0.09947387 0.04571464
0.3

Dv = 4×10−10 0.10480762 0.09949504 0.04571168

is modified through introducing a non-Fickian contribution defined with Maxwell fluid model so as to
justify the viscoelastic behavior of the polymeric shell.
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We also established the energy estimates of the coupled system. With these estimates, we were able
to establish the stability of the system and the uniqueness of the solution.

A numerical method mimicking the continuous model was further suggested. We analyzed the con-
vergence characteristics of the numerical methods, and the numerical results confirmed the convergence
results. We ultimately investigated the qualitative behavior of the numerical solutions.
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