تعداد نشریات | 31 |
تعداد شمارهها | 743 |
تعداد مقالات | 7,072 |
تعداد مشاهده مقاله | 10,134,561 |
تعداد دریافت فایل اصل مقاله | 6,851,978 |
بررسی اثر ضدسرطانی نانوذرات نقره بیوسنتز شده توسط عصاره جلبک سبز Spirogyra sp. بر رده سلولی سرطان پستان MDA-MB-231 | ||
فیزیولوژی و بیوتکنولوژی آبزیان | ||
دوره 11، شماره 3، آذر 1402، صفحه 69-91 اصل مقاله (1.75 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22124/japb.2023.23586.1489 | ||
نویسندگان | ||
فریال مزرعاوی1؛ فاطمه مرادی2؛ محمود رضا آقا معالی* 3 | ||
1دانشجوی کارشناسی ارشد بیوشیمی، گروه زیستشناسی، دانشکده علوم پایه، دانشگاه گیلان، رشت، ایران | ||
2دکتری بیوشیمی، گروه زیستشناسی، دانشکده علوم پایه، دانشگاه گیلان، رشت، ایران | ||
3دانشیار گروه زیستشناسی، دانشکده علوم پایه، دانشگاه گیلان، رشت، ایران | ||
چکیده | ||
امروزه روش سبز با استفاده از عصارههای گیاهی برای تولید نانوذرات مورد استفاده در صنعت، به دلیل سریع بودن واکنش، اقتصادی بودن و سازگار بودن با محیط زیست توجه زیادی را به خود جلب کرده است. در مطالعه حاضر، اثر ضدسرطانی نانوذرات نقره بیوسنتز شده با عصاره آبی و متانولی (80 درصد) جلبک سبز Spirogyra sp. بر روی سلولهای سرطان پستان انسان رده MDA-MB-231 بررسی شد. کروماتوگرام طیفسنج GC-MS عصاره این جلبک نشان داد که ترکیبات Nonadecane (86/14 درصد)، Heneicosane (24/10 درصد) و Tridecane, 6-phenyl (44/5 درصد) بیشترین درصد را داشتند. نانوذرات نقره با افزودن عصاره آبی و متانولی جلبک به محلول نیترات نقره سنتز شد و ویژگیهای فیزیکی و شیمیایی آن توسط روشهای اسپکتروفتومتری UV/Vis، FTIR، DLS، پتانسیل زتا و میکروسکوپ الکترونی FESEM تعیین شد. همچنین، سمیت سلولی نانوذره نقره بیوسنتز شده در غلظتهای مختلف با روش MTT بر روی سلولهای سرطانی بررسی شد. نتایج نشان داد که نانوذرات نقره بیوسنتز شده دارای بیشترین جذب در طول موج 434 نانومتر بوده و میانگین اندازه آنها 30 تا 79 نانومتر با ریختشناسی کروی شکل بودند. سمیت سلولی نانوذرات نقره بیوسنتزی علیه سلولهای سرطانی با افزایش غلظت بیشتر شد. در نتیجه نانوذرات نقره بیوسنتز شده به روش زیستی دارای فعالیت مهاری بر سرطان بودند و میتوانند در جهت درمان سرطان پستان مورد مطالعه بیشتری قرار گیرند. | ||
کلیدواژهها | ||
نانوذرات نقره؛ سرطان؛ سنتز سبز؛ Spirogyra؛ MTT | ||
مراجع | ||
Acharya D., Sagarika S., Jesse J.T., Prathap S. and Gitanjali M. 2020. Biogenic synthesis of silver nanoparticles using marine algae Cladophora glomerata and evaluation of apoptotic effects in human colon cancer cells. Materials Technology, 26: 1–12. doi: 10.1080/10667857.2020.1863597 Acharya D., Satapathy S., Somu P., Parida U.K. and Mishra G. 2021. Apoptotic effect and anti-cancer activity of biosynthesized silver nanoparticles from marine algae Chaetomorpha linum extract against human colon cancer cell HCT-116. Biological Trace Element Research, 199(5): 1812–1822. doi: 10.1007/s12011-020-02304-7 Ravindran A., Chandran P. and Khan S.S. 2013. Bio functionalized silver nanoparticles: Advances and prospects. Colloids and Surfaces, 105: 342–352. doi: 10.1016/j.colsurfb.2012.07.036 Baharara J., Namvar F., Mousavi M., Ramezani T. and Mohamad R. 2014. Anti-angiogenesis effect of biogenic silver nanoparticles synthesized using Saliva officinalis on chick chorioalantoic membrane. Molecules, 19: 13498–13508. doi: 10.3390/molecules190913498 Barsanti L. and Gualtieri P. 2005. Algae: Anatomy, Biochemistry, and Biotechnology. Journal of Phycology. CRC Press, USA. 362P. Dutta T., Chattopadhyay A.P., Ghosh N.N., Khatua S., Acharya K., Kundu S. and Das M. 2020. Biogenic silver nanoparticle synthesis and stabilization for apoptotic activity; Insights from experimental and theoretical studies. Chemical Papers, 74(11): 4089–4101. doi: 10.1007/s11696-020-01216-z El-Deeb N.M., Abo-Eleneen M.A., Awad O.A. and, Abo-Shady A.M. 2022. Arthrospira platensis mediated biosynthesis of silver nanoparticles as breast cancer proliferation and differentiation controlling agent: In-vitro and in-vivo safety approach. Applied Biochemistry and Biotechnology, 194(5): 2183–2203. doi: 10.1007/s12010-021-03751-1 Elgamouz A., Idriss H., Nassab C., Bihi A., Bajou K., Hasan K., Abu Haija M. and Patole S.P. 2020. Green synthesis, characterization, antimicrobial, anti-cancer, and optimization of colorimetric sensing of hydrogen peroxide of algae extract capped silver nanoparticles. Nanomaterials Journal, 10(9): 1861–1874. doi: 10.3390/nano10091861 Fock K.M. 2014. Review article: The epidemiology and prevention of gastric cancer. Advances in Pharmacology and Therapeutics Journal, 40: 250–260. doi: 10.1111/apt.12814 Ghasemipour T., Salehzadeh A. and Sadat Shandiz S. 2017. Biosynthesis of silver nanoparticles using Oscillatoria extract and evaluation the anticancer and antibacterial activities. Armaghan-e-Danesh; 22(4): 459–471. Ghavami S., Hashemi M., Ande S.R., Yeganeh B., Xiao W., Eshraghi M., Bus C.J., Kadkhoda K., Wiechec E., Halayko A.J. and Los M. 2009. Apoptosis and cancer: Mutations within caspase genes. Journal of Medical Genetics, 46(8): 497–510. doi: 10.1136/jmg.2009.066944 Ghoncheh M., Pournamdar Z. and Salehiniya H. 2016. Incidence and mortality and epidemiology of breast cancer in the world. Asian Pacific Journal of Cancer Prevention, 17(S3): 43–46. doi: 10.7314/apjcp.2016.17.s3.43 Gliga A.R., Skoglund S., Wallinder I.O., Fadeel B. and Karlsson H.L. 2014. Size-dependent cytotoxicity of silver nanoparticles in human lung cells: The role of cellular uptake, agglomeration and Ag release. Particle and Fibre Toxicology, 11: 1–11. doi: 10.1186/1743-8977-11-11 Hamouda R.A., Hussein M.H., Abo-Elmagd R.A. and Bawazir S.S. 2019. Synthesis and biological characterization of silver nanoparticles derived from the cyanobacterium Oscillatoria limnetica. Scientific Reports, 9(1): 1–17. doi: 10.1038/s41598-019-49444-y He Y., Li X., Wang J., Yang Q., Yao B., Zhao Y., Zhao A., Sun W. and Zhang Q. 2017. Synthesis, characterization and evaluation cytotoxic activity of silver nanoparticles synthesized by Chinese herbal Cornus officinalis via environment friendly approach. Environmental Toxicology and Pharmacology, 56: 56–60. doi: 10.1016/j.etap.2017.08.035 Hema J.A., Malaka R., Muthukumarasamy N.P., Sambandam A., Subramanian S. and Sevanan M. 2016. Green synthesis of silver nanoparticles using Zea mays and exploration of its biological applications. IET Nanobiotechnology, 10(5): 288–294. doi: 10.1049/iet-nbt.2015.0103 Jayalakshmi L., Gomathy J., Jayanthi J. and Ragunathan M.G. 2021. In vitro Anti-oxidant and anti-cancer efficacy of silver nanoparticles synthesized from the sea weed Syringodium isoetifolium D. (1939) collected from the Pulicat Lake of Tamil Nadu. Uttar Pradesh Journal of Zoology, 42(12): 54–67. Jegadeeswaran P., Shivaraj R. and Venckatesh R. 2012. Green synthesis of silver nanoparticles from extract of Padina tatrastromatica leaf. Digest Journal of Nanomaterials and Biostructures, 7: 991–998. Mansuya P., Aruna P., Sridhar S., Kumar J.S. and Babu S. 2010. Antibacterial activity and qualitative phytochemical analysis of selected seaweeds from Gulf of Mannar Region. Journal of Experimental Sciences, 1(8): 23–26. Narayanan K.B. and Sakthivel N. 2011. Extracellular synthesis of silver nanoparticles using the leaf extract of Coleus amboinicus Lour. Materials Research Bulletin, 46(10): 1708–1713. doi: 10.1016/j.materresbull.2011.05.041 Okafor F., Janen A., Kukhtareva T., Edwards V. and Curley M. 2013. Green synthesis of silver nanoparticles, their characterization, application and antibacterial activity. International Journal of Environmental Research and Public Health, 10(10): 5221–5238. doi: 10.3390/ijerph10105221 Rahimi Z., Yousefzadi M., Noori A. and Akbarzadeh A. 2014. Synthesis of silver nanoparticles using three marine macro algae from the Persian Gulf. Journal of Oceanography, 5(19): 71–78. Rajeshkumar S., Sherif M., Malarkodi C., Ponnanikajamideen M., Arasu M.V., Al-Dhabi N.A. and Roopan S.M. 2021. Cytotoxicity behaviour of response surface model optimized gold nanoparticles by utilizing fucoidan extracted from Padina tetrastromatica. Journal of Molecular Structure, 1228: 1–9 (129440). doi: 10.1016/j.molstruc.2020.129440 Rao N.H., Lakshmidevi N., Pammi S.V.N., Kollu P., Ganapaty S., Lakshmi P. 2016. Green synthesis of silver nanoparticles using methanolic root extracts of Diospyros paniculata and their antimicrobial activities. Materials Science and Engineering, 62: 553– 557. doi: 10.1016/j.msec.2016.01.072 Ronavari A., Kovacs D., Igaz N., Vagvolgyi C., Boros I.M., Konya Z. and Kiricsi M. 2017. Biological activity of green synthesized silver nanoparticles depends on the applied natural extracts: A comprehensive study. International Journal of Nanomedicine, 12: 871–883. doi: 10.2147/IJN.S122842 Senapati S., Syde A., Moeez S., Kumar A. and Ahmah A. 2012. Intracellular synthesis of gold nanoparticles using alga Tetraselmis kochinensis. Materials Letters Journal, 79: 116–118. doi: 10.1016/j.matlet.2012.04.009 Singaravelu G., Arockiamary J.S., Ganesh Kumar V. and Govindaraju K. 2007. A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville. Colloids and Surfaces, 57: 97–101. DOI: 10.1016/j.colsurfb.2007.01.010 Sorlie T. 2016. The impact of gene expression patterns in breast cancer. Clinical Chemistry Journal, 62(8): 1150–1161. doi: 10.1373/clinchem.2015.253229 Vedpriya A. 2010. Living systems: Eco-friendly nanofactories. Digest Journal of Nanomaterials and Biostructures, 5: 9–21. Venu R., Ramulu T.S., Anandakumar S., Rani V.S. and Kim C.G. 2011. Bio-directed synthesis of platinum nano-particles using aqueous honey solutions and their catalytic applications. Colloids and Surfaces, 384(1-3): 733–738. doi: 10.1016/j.colsurfa.2011.05.045 Verma D.K., Hasan S.H. and Banik R.M. 2016. Photo-catalyzed and phyto-mediated rapid green synthesis of silver nanoparticles using herbal extract of Salvinia molesta and its antimicrobial efficacy. Journal of Photochemistry and Photobiology, 155: 51–90. doi: 10.1016/j.jphotobiol.2015.12.008 Willets K.A. and Duyne V. 2007. Localized surface plasmon resonance spectroscopy and sensing. Annual Review of Physical Chemistry, 58: 267–297. doi: 10.1146/annurev.physchem.58.032806.104607 Zhang T., Wang L., Chen Q. and Chen C. 2014. Cytotoxic potential of silver nanoparticles. Yonsei Medical Journal, 55(2): 283–291. doi: 10.3349/ymj.2014.55.2.283 Zhang W., Xiao B. and Fang T. 2018. Chemical transformation of silver nanoparticles in aquatic environments: Mechanism, morphology and toxicity. Chemosphere Journal, 191: 324–334. doi: 10.1016/j.chemosphere.2017.10.016 Zhang X.F., Liu Z.G., Shen W. and Gurunathan S. 2016. Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. International Journal of Molecular Sciences, 17(9): 1–13. doi: 10.3390/ijms17091534
| ||
آمار تعداد مشاهده مقاله: 406 تعداد دریافت فایل اصل مقاله: 173 |