تعداد نشریات | 31 |
تعداد شمارهها | 766 |
تعداد مقالات | 7,260 |
تعداد مشاهده مقاله | 10,623,825 |
تعداد دریافت فایل اصل مقاله | 7,093,917 |
Some results of the minimum edge dominating energy of the Cayley graphs for the finite group Sn | ||
Journal of Algebra and Related Topics | ||
دوره 11، شماره 2، اسفند 2023، صفحه 135-148 اصل مقاله (339.88 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22124/jart.2023.23490.1476 | ||
نویسندگان | ||
Sh. Chokani؛ F. Movahedi* ؛ S. M. Taheri | ||
Department of Mathematics, Faculty of Sciences, Golestan University, Gorgan, Iran. | ||
چکیده | ||
Let $\Gamma$ be a finite group and $S$ be a non-empty subset of $\Gamma$. A Cayley graph of the group $\Gamma$, denoted by $Cay(\Gamma, S)$ is defined as a simple graph that its vertices are the elements of $\Gamma$ and two vertices $u$ and $v$ are adjacent if $uv^{-1} \in \Gamma$. The minimum edge dominating energy of Cayley graph $Cay(\Gamma, S)$ is equal to the sum of the absolute values of eigenvalues of the minimum edge dominating matrix of graph $Cay(\Gamma, S)$. In this paper, we estimate the minimum edge dominating energy of the Cayley graphs for the finite group $S_n$. | ||
کلیدواژهها | ||
Minimum edge dominating energy؛ Eigenvalue؛ Cayley graph؛ Finite group | ||
مراجع | ||
1. S. Akbari, A. H. Ghodrati, I. Gutman, M. H. Hosseinzadeh, E. V. Konstantinova, On path energy of graphs, MATCH Commun. Math. Comput. Chem. (2) 81 (2019), 465-470. 2. M. H. Akhbari, K. K. Choong, F. Movahedi, A note on the minimum edge dominating energy of graphs, J Appl Math Comput, 63 (2020), 295-310. 3. L. E. Allem, G. Molina, A. Pastine, Short note on Randic energy, MATCH Commun. Math. Comput. Chem. (2) 82 (2019), 515{528. 4. S. Arumugam, S. Velammal, Edge Domination in Graphs, Taiwanese Journal of Mathematics, (2) 2 (1998), 173-179. 5. L. W. Beineke, R. J. Wilson, Topics in Algebraic Graph Theory. USA: Cambridge University Press. 2004. 6. S. B. Bozkurt, D. Bozkurt, On Incidence Energy, MATCH Commun. Math. Comput. Chem. 72 (2014), 215-225. 7. A. Cayley, Desiderata and suggestions: No. 2. the theory of groups: Graphical representation, Amer. J. Math. 1 (1878), 174-176. 8. B. F. Chen, E. Ghorbani, K. B. Wong, Cyclic Decomposition of k- Permutations and Eigenvalues of the Arrangement Graphs, (4) 20 (2013), https://doi.org/10.37236/3711. 9. S. Chokani, F. Movahedi, S. M. Taheri, Some of the graph energies of zero-divisor graphs of nite commutative rings, Int. J. Nonlinear Anal. Appl. (7) 14 (2023), 207-216. 10. S. Chokani, F. Movahedi, S. M. Taheri, Results on some energies of the Zero- divisor graph of the commutative ring Zn, The 14th Iranian International Group Theory Conference, Tehran, Iran, (2022), 138-146. 11. S. Chokani, F. Movahedi, S. M. Taheri, The minimum edge dominating energy of the Cayley graphs on some symmetric groups, Alg. Struc. Appl. (2) 10 (2023), 15-30. 12. C. Das, I. Gutman, Comparing laplacian energy and Kirchho index, MATCH Commun. Math. Comput. Chem. 81(2) (2019), 419-424. 13. K. C. Das, Conjectures on resolvent energy of graphs, MATCH Commun. Math. Comput. Chem. (2) 81 (2019), 453-464. 14. K. Day, A. Tripathi, Arrangement graphs: a class of generalized star graphs, Inf. Process. Lett. 42 (1992), 235-241. 15. A. F. A. Fadzil, N. H. Sarmin, A. Erfanian, The Energy of Cayley Graphs for Symmetric Groups of Order 24, ASM Sci. J., 13 (2020), 1-6. 16. I. Gutman, The energy of a graph, Ber. Math-Statist. Sekt. Forschungsz. Graz. 103 (1978), 1-22. 17. R. P. Gupta, In: proof Techniques in graph theory (ED. F. Harary), Academic press, New York, (1969), 61-62. 18. F. Harary, Graph Theory, Addison-Wesley, Reading, 1969. 19. E. N. Khomyakova, E. V. Konstantinova, Note on exact values of multiplicities of eigenvalues of the star graph. Sib. Elektron. Mat. Izv., 12 (2015), 92-100. 20. F. Movahedi, The relation between the minimum edge dominating energy and the other energies, Discrete Math. Algorithms Appl. (6) 12 (2020), 2050078 (14 pages). 21. F. Movahedi, Bounds on the minimum edge dominating energy of in- duced subgraphs of a graph, Discrete Math. Algorithms Appl. (6) 13 (2021), https://doi.org/10.1142/S1793830921500804. 22. F. Movahedi, M. H. Akhbari, New results on the minimum edge dominating energy of a graph, J. Math. Ext. (5) 16 (2022), 1-17. 23. M. R. Rajesh Kanna, B. N. Dharmendra, G. Sridhara, The minimum dominat- ing energy of a graph, Int J Pure Appl Math, 85 (2013), 707-718. | ||
آمار تعداد مشاهده مقاله: 90 تعداد دریافت فایل اصل مقاله: 191 |