تعداد نشریات | 31 |
تعداد شمارهها | 741 |
تعداد مقالات | 7,009 |
تعداد مشاهده مقاله | 10,027,075 |
تعداد دریافت فایل اصل مقاله | 6,755,976 |
توان بیوچار در تقویت اثرگذاری پروبیوتیکهای باسیلی و لاکتوباسیلی بر جمعیتهای میکروبی، آنزیمهای هیدرولیتیک و تخمیر برونتنی شکمبه گوسفند | ||
تحقیقات تولیدات دامی | ||
دوره 12، شماره 3، آذر 1402، صفحه 29-47 اصل مقاله (1.29 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22124/ar.2023.25526.1790 | ||
نویسندگان | ||
زهرا باقرپور1؛ جواد رضائی* 2؛ یوسف روزبهان3 | ||
1دانشآموخته کارشناسی ارشد تغذیه دام، گروه علوم دامی، دانشکده کشاورزی، دانشگاه تربیت مدرس | ||
2دانشیار، گروه علوم دامی، دانشکده کشاورزی، دانشگاه تربیت مدرس | ||
3استاد، گروه علوم دامی، دانشکده کشاورزی، دانشگاه تربیت مدرس | ||
چکیده | ||
هدف این پژوهش، بررسی پتانسیل بیوچار در تقویت اثربخشی پروبیوتیکها (باسیل/لاکتوباسیل) بر فعالیتهای میکروبی-آنزیمی و تخمیر برونتنی شکمبه گوسفند بود. آزمایش با هفت تیمار شامل جیره فاقد پروبیوتیک و بیوچار (شاهد) و جیرههای حاوی باسیل، لاکتوباسیل، بیوچار، باسیل-بیوچار، لاکتوباسیل-بیوچار و باسیل-لاکتوباسیل-بیوچار انجام شد. جمعیتهای باکتریایی و پروتوزوآیی، آنزیمهای هیدرولیتیک، هضمپذیری، فراسنجههای تولید گاز، ظرفیت آنتیاکسیدانی و فرآوردههای تخمیر طی انکوباسیونهای 24 و 72 ساعته تعیین شدند. مصرف جداگانه پروبیوتیکها و بیوچار موجب افزایش هضمپذیری، سوبسترای تجزیهشده، اسیدهای چرب فرار و توده میکروبی شد (05/0>P)، اما باکتریهای پروتئولیتیک، پروتئاز و فعالیت آنتیاکسیدانی تغییر نکرد. باکتریهای سلولولیتیک و آنزیمهای فیبرولیتیک در تیمارهای باسیل و بیوچار بیشتر از شاهد بود (05/0>P). همچنین، تعداد پروتوزوآها در گروههای باسیل و لاکتوباسیل کمتر از شاهد بود (05/0>P). آلفاآمیلاز در انکوباسیون 24 ساعته در تیمارهای باسیل و لاکتوباسیل افزایش یافت (05/0>P)، اما تحت تأثیر بیوچار قرار نگرفت. در زمان 72، آلفاآمیلاز در شاهد کمتر از تیمارهای پروبیوتیکی و بیوچار بود (05/0>P). متان، آمونیاک و نسبت استات:پروپیونات در تیمارهای پروبیوتیک و بیوچار در مقایسه با شاهد کاهش یافت (05/0>P). گنجاندن بیوچار در جیرههای پروبیوتیکی (باسیل-بیوچار، لاکتوباسیل-بیوچار و باسیل-لاکتوباسیل-بیوچار)، هضمپذیری، سوبسترای تجزیه شده، توده میکروبی، اسیدهای چرب فرار و آنزیمهای فیبرولیتیک را به بیشترین مقدار رساند، و کمترین آمونیاک و متان حاصل شد (05/0>P). بیشترین جمعیت سلولولیتیکها در گروههای باسیل-بیوچار و باسیل-لاکتوباسیل-بیوچار، و بیشترین آلفاآمیلاز در تیمارهای لاکتوباسیل-بیوچار و باسیل-لاکتوباسیل-بیوچار مشاهده شد. درمجموع، افزودن بیوچار در جیرههای پروبیوتیکی به منظور تقویت تأثیر پروبیوتیکها بر هضم و تولید توده میکروبی، و کاهش متان و آمونیاک قابل توصیه است، هرچند مطالعات بیشتری لازم است. | ||
کلیدواژهها | ||
باسیل؛ بیوچار؛ شکمبه؛ فعالیت میکروبی-آنزیمی؛ لاکتوباسیل | ||
مراجع | ||
AFRC. (1993). Energy and protein requirements of ruminants. Agricultural and Food Research Council, Technical Committee on Responses to Nutrients. CABI Publisher. Wallingford, UK. 176 p. Agarwal, N., Kamra D. N., Chaudhary, L. C., Sahoo, A., & Pathak N. N. (2002). Microbial status and rumen enzyme profile of crossbred calves fed on different microbial feed additives. Letters in Applied Microbiology, 34, 329-336. doi: 10.1046/j.1472-765X.2002.01092.x Anele, U. Y., Südekum, K. H., Hummel, J., Arigbede, O. M., Oni, A. O., Olanite, J. A., Böttger, C., Ojo, V. O., & Jolaosho, A. O. (2011). Chemical characterization, in vitro dry matter and ruminal crude protein degradability and microbial protein synthesis of some cowpea (Vigna unguiculata L. Walp) haulm varieties. Animal Feed Science and Technology, 163(2-4), 161-169. doi: 10.1016/j.anifeedsci.2010.11.005 Ashkvari, A. (2019). Effect of Lactobacillales, Bacillales and/or yeast on in vitro ruminal fermentation, microbial populations and hydrolytic enzymes activities. MSc Thesis, Tarbiat Modares University, Tehran, Iran. [In Persian] Astuti, W. D., Ridwan, R., Fidriyanto, R., Rohmatussolihat, R., Sari, N. F., Sarwono, K. A., Fitri, A., & Widyastuti, Y. (2022). Changes in rumen fermentation and bacterial profiles after administering Lactiplantibacillus plantarum as a probiotic. Veterinary World, 15(8), 1969-1974. doi: 10.14202/vetworld.2022.1969-1974 Benzie, I. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical Biochemistry, 239(1), 70-76. doi: 10.1006/abio.1996.0292 Cabeza, I., Waterhouse, T., Sohi, S., & Rooke, J. A. (2018). Effect of biochar produced from different biomass sources and at different process temperatures on methane production and ammonia concentrations in vitro. Animal Feed Science and Technology, 237, 1-7. doi: 10.1016/j.anifeedsci.2018.01.003 Chen, L., Ren, A., Zhou, C., & Tan, Z. (2017). Effects of Lactobacillus acidophilus supplementation for improving in vitro rumen fermentation characteristics of cereal straws. Italian Journal of Animal Science, 16(1), 52-60. doi: 10.1080/1828051X.2016.1262753 Dehority, B. A. (2003). Rumen microbiology, 1st ed. Nottingham University Press, Nottingham, UK. 372 p. Di Gioia, D., & Biavati, B. (2018). Probiotics and prebiotics in animal health and food safety. Springer International Publishing, Gewerbestrasse, Switzerland. 273 p. Galyean, M. L. (2010). Laboratory procedures in animal nutrition research. Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX, USA. 189 p. Le, O. T., Schofield, B., Dart, P. J., Callaghan, M. J., Lisle, A. T., Ouwerkerk, D., Klieve, A. V., & McNeill, D. M. (2016). Production responses of reproducing ewes to a by-product-based diet inoculated with the probiotic Bacillus amyloliquefaciens strain H57. Animal Production Science, 57(6), 1097-1105. doi: 10.1071/AN16068 Leng, R. A., Inthapanya, S., & Preston, T. R. (2013). All biochars are not equal in lowering methane production in in vitro rumen incubations. Livestock Research for Rural Development, 25(6), #106. Leng, R. A., Preston, T. R., & Inthapanya, S. (2012). Biochar reduces enteric methane and improves growth and feed conversion in local “Yellow” cattle fed cassava root chips and fresh cassava foliage. Livestock Research for Rural Development, 24(11), #199. Makkar, H. P. S. (2010). In vitro screening of plant resources for extra-nutritional attributes in ruminants: nuclear and related methodologies. Vercoe P. E., Makkar H. P. S. and Schlink A. C. ed. In vitro screening of feed resources for efficiency of microbial protein synthesis. IAEA, Dordrecht, the Netherlands. Manhar, A. K., Bashir, Y., Saikia, D., Nath, D., Gupta, K., Konwar, B. K., Kumar, R., Namsa, N. D., & Mandal, M. (2016). Cellulolytic potential of probiotic Bacillus Subtilis AMS6 isolated from traditional fermented soybean (Churpi): An in vitro study with regards to application as an animal feed additive. Microbiological Research, 186, 62-70. doi: 10.1016/j.micres.2016.03.004 McDonald, P., Edwards, R. A., Greenhalgh, J. F., Morgan, C. A., Sinclair, L. A., & Wilkingson R. G. (2022). Animal nutrition, 7th ed. Prentice Hall, Essex, UK. 736 p. McFarlane, Z. D., Myer, P. R., Cope, E. R., Evans, N. D., Bone, T. C., Bliss, B. E., & Mulliniks, J. T. (2017). Effect of biochar type and size on in vitro rumen fermentation of orchard grass hay. Agricultural Sciences, 8, 316-325. doi: 10.4236/as.2017.84023 Menke, K. H., Raab, L., Salewski, A., Steingass, H., Fritz, D., & Schneider, W. (1979). The estimation of the digestibility and metabolizable energy content of ruminant feedingstuffs from the gas production when they are incubated with rumen liquor in vitro. The Journal of Agricultural Science, 93(1), 217-222. doi: 10.1017/S0021859600086305 Millen, D. D., Arrigoni, M. D. B., & Pacheco, R. D. L. (2016). Rumenology. Springer, Berlin/Heidelberg, Germany. 330 p. Mirheidari, A., Torbatinejad, N., Hasani, S., & Shakeri, P. (2018a). Effects of pistachio by-product biochar on performance, microbial protein, some of ruminal fermentation parameters and blood metabolites in fattening lambs. Animal Sciences Journal, 30(117), 151-162. doi: 10.22092/asj.2017.109299.1382 [In Persian] Mirheidari, A., Torbatinejad, N. M., Hassani, S., & Shakeri, P. (2018b). Effect of different levels of walnut shell and chicken manure biochar on ruminal fermentation parameters and methane production. Journal of Ruminant Research, 1, 1-16. doi: 10.22069/ejrr.2017.13198.1546 [In Persian] Mirheidari, A., Torbatinejad, N. M., Shakeri, P., & Mokhtarpour, A. (2019). Effects of walnut shell and chicken manure biochar on in vitro fermentation and in vivo nutrient digestibility and performance of dairy ewes. Tropical animal Health and Production, 51, 2153-2160. doi: 10.1007/s11250-019-01909-y Morgavi, D. P., Forano, E., Martin, C., & Newbold, C. J. (2010). Microbial ecosystem and methanogenesis in ruminants. Animal, 4(7), 1024-1036. Doi: 10.1017/S1751731110000546 Mosoni, P., Martin, C., Forano, E., & Morgavi, D. P. (2011). Long-term defaunation increases the abundance of cellulolytic ruminococci and methanogens but does not affect the bacterial and methanogen diversity in the rumen of sheep. Journal of Animal Science, 89(3), 783-791. doi: 10.2527/jas.2010-2947 NRC. (2007). Nutrient requirements of small ruminants. National Research Council, Natl. Acad. Press, Washington, DC, USA. 341 p. Porsavathdy, P., Phongphanith, S., Preston, T. R., & Leng, R. A. (2017). Methane production in an in vitro rumen fermentation of molasses-urea was reduced by supplementation with fresh rather than dried cassava (Manihot esculenta, Crantz) leaves and by biochar. Livestock Research for Rural Development, 29(3), #41. Prasai, T. P., Walsh, K. B., Bhattarai, S. P., Midmore, D. J., Van, T. T., Moore, R. J., & Stanley, D. (2016). Biochar, bentonite and zeolite supplemented feeding of layer chickens alters intestinal microbiota and reduces campylobacter load. PLoS One, 11(4), e0154061. doi: 10.1371/journal.pone.0154061 Qiao, G. H., Shan, A. S., Ma, N., Ma, Q. Q., & Sun, Z. W. (2010). Effect of supplemental Bacillus cultures on rumen fermentation and milk yield in Chinese Holstein cows. Journal of Animal Physiology and Animal Nutrition, 94(4), 429-436. doi: 10.1111/j.1439-0396.2009.00926.x Radzikowski, D. (2017). Effect of probiotics, prebiotics and synbiotics on the productivity and health of dairy cows and calves. World Scientific News, 78, 193-198. Rashidi, N., Khatibjoo, A., Taherpour, K., Akbari Gharaei, M., & Shirzadi, H. (2018). Effect of licorice extract, probiotic, antifungal and biochar on performance of broiler chickens fed aflatoxin B1 contaminated diet. Animal Production, 20(1), 145-157. doi 10.22059/jap.2018.246192.623242 [In Persian] Rigobelo, E. C. (2012). Probiotic in animals. InTech, Rijeka, Croatia. 272 p. Saleem, A. M., Ribeiro Jr, G. O., Yang, W. Z., Ran, T., Beauchemin, K. A., McGeough, E. J., Ominski, K. H., Okine, E. K., & McAllister, T. A. (2018). Effect of engineered biocarbon on rumen fermentation, microbial protein synthesis, and methane production in an artificial rumen (RUSITEC) fed a high forage diet. Journal of Animal Science, 96(8), 3121-3130. doi: doi.org/10.1093/jas/sky204 Saroeun, K., Preston, T. R., & Leng, R. A. (2018). Rice distillers’ byproduct and molasses-urea blocks containing biochar improved the growth performance of local Yellow cattle fed ensiled cassava roots, cassava foliage and rice straw. Livestock Research for Rural Development, 30(9), #162. Seo, J. K., Kim, S. W., Kim, M. H., Upadhaya, S. D., Kam, D. K., & Ha, J. K. (2010). Direct-fed microbials for ruminant animals. Asian-Australasian Journal of Animal Sciences, 23(12), 1657-1667. doi: 10.5713/ajas.2010.r.08 Sheikh, G. G., Ganai, A. M., Ahmad Sheikh, A., & Mir, D. M. (2022). Rumen microflora, fermentation pattern and microbial enzyme activity in sheep fed paddy straw based complete feed fortified with probiotics. Biological Rhythm Research, 53(4), 547-558. doi: 10.1080/09291016.2019.1644019 Silivong, P., & Preston, T. R. (2015). Growth performance of goats was improved when a basal diet of foliage of Bauhinia acuminata was supplemented with water spinach and biochar. Livestock Research for Rural Development, 27(3), #58. Sirjani, M. H., Rezaei, J., Zahedifar, M., & Rouzbehan, Y. (2022). Effect of adding biochar in diets containing probiotics on in vitro fermentation variables, health indicators, rectum bacteria, and blood enzymes of Holstein calves. Animal Production Research, 11(4), 1-19. doi: 10.22124/ar.2023.23067.1727 [In Persian] Soren, N. M., Tripathi, M. K., Bhatt, R. S., & Karim, S. A. (2013). Effect of yeast supplementation on the growth performance of Malpura lambs. Tropical Animal Health and Production, 45, 547-554. doi: 10.1007/s11250-012-0257-3 Sun, P., Wang, J. Q., & Deng, L. F. (2013). Effects of Bacillus subtilis natto on milk production, rumen fermentation and ruminal microbiome of dairy cows. Animal, 7(2), 216-222. doi: 10.1017/S1751731112001188 Teoh, R., Caro, E., Holman, D. B., Joseph, S., Meale, S. J., & Chaves, A. V. (2019). Effects of hardwood biochar on methane production, fermentation characteristics, and the rumen microbiota using rumen simulation. Frontiers in Microbiology, 10, 1534. doi: 10.3389/fmicb.2019.01534 Tilley, J. M. A., & Terry, D. R. (1963). A two‐stage technique for the in vitro digestion of forage crops. Grass and Forage Science, 18(2), 104-111. doi: 10.1111/j.1365-2494.1963.tb00335.x Uyeno, Y., Shigemori, S., & Shimosato, T. (2015). Effect of probiotics/prebiotics on cattle health and productivity. Microbes and Environments, 30(2), 126-132. doi: 10.1264/jsme2.ME14176 Wu, G. (2018). Principles of animal nutrition, 1th ed. CRC Press, Taylor & Francis Group LLC, Boca Raton FL, USA. 772 p. Zhang, R., Dong, X., Zhou, M., Tu, Y., Zhang, N., Deng, K., & Diao, Q. (2017). Oral administration of Lactobacillus plantarum and Bacillus subtilis on rumen fermentation and the bacterial community in calves. Animal Science Journal, 88(5), 755-762. doi: 10.1111/asj.12691 | ||
آمار تعداد مشاهده مقاله: 297 تعداد دریافت فایل اصل مقاله: 151 |