تعداد نشریات | 31 |
تعداد شمارهها | 748 |
تعداد مقالات | 7,108 |
تعداد مشاهده مقاله | 10,240,278 |
تعداد دریافت فایل اصل مقاله | 6,897,878 |
اثر شکل های مختلف کروم بر مصرف خوراک، فراسنجه های شکمبه ای و متابولیتهای خونی میش های افشاری طی دوره انتقال و بره های آن ها در شرایط تنش گرمایی | ||
تحقیقات تولیدات دامی | ||
دوره 13، شماره 1، خرداد 1403، صفحه 29-47 اصل مقاله (1.29 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22124/ar.2023.24356.1763 | ||
نویسندگان | ||
محمد اسدی* 1؛ تقی قورچی2؛ عبدالحکیم توغدری3 | ||
1دانشجوی دکتری، گروه تغذیه دام و طیور، دانشکده علوم دامی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان | ||
2استاد، گروه تغذیه دام و طیور، دانشکده علوم دامی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان | ||
3استادیار، گروه تغذیه دام و طیور، دانشکده علوم دامی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان | ||
چکیده | ||
مطالعه حاضر جهت بررسی تأثیر استفاده از شکلهای مختلف کروم بر مصرف خوراک، فراسنجههای شکمبهای و متابولیتهای خونی میشهای افشار در دوره انتقال و برههای آنها در شرایط تنش گرمایی انجام شد. تعداد 40 رأس میش افشاری آبستن از 5±42 روز پیش از زایش مورد انتظار در قالب طرح کاملأ تصادفی به چهار تیمار با 10 تکرار اختصاص یافتند. تیمارهای آزمایشی شامل: 1) جیره پایه بدون مکمل کروم (شاهد)، 2) جیره پایه حاوی سه میلیگرم کروم معدنی بهازای هر کیلوگرم ماده خشک جیره، 3) جیره پایه حاوی سه میلیگرم کروم به شکل کروم-متیونین بهازای هر کیلوگرم ماده خشک و 4) جیره پایه حاوی سه میلیگرم کروم به شکل نانو ذرات کروم بهازای هر کیلوگرم ماده خشک جیره بودند. نتایج نشان داد که از هفته سوم تا ششم پس از زایش، ماده خشک مصرفی در میشهای دریافتکننده کروم-متیونین و نانوذرات کروم در مقایسه با دو تیمار دیگر، یک روند صعودی داشت (05/0>P). افزودن کروم به جیره میشها، تأثیر معنیداری بر pH شکمبه، غلظت اسیدهای چرب فرار و نیتروژن آمونیاکی شکمبه نداشت. افزودن مکمل کروم به جیره میشها سبب کاهش معنیدار جمعیت پروتوزوآی شکمبه نسبت به گروه شاهد شد (05/0>P). افزودن شکلهای مختلف کروم به جیره میشها سبب کاهش غلظت گلوکز و افزایش غلظت کروم، انسولین، پروتئین تام، آلبومین و گلوبولین سرم نسبت به گروه شاهد شد (05/0>P). اختلاف معنیداری بین غلظت کلسترول، تریگلیسرید، اوره و کراتینین خون در تیمارهای آزمایشی مشاهده نشد. همچنین، شکلهای مختلف کروم، تأثیر معنیداری بر فراسنجههای خونی برههای متولد شده ایجاد نکرد. بهطورکلی، استفاده از کروم بهویژه به شکلهای کروم-متیونین و نانوذرات کروم در دوره انتقال میشها در شرایط تنش گرمایی توصیه می شود. | ||
کلیدواژهها | ||
تنش گرمایی؛ دوره انتقال؛ کروم؛ متابولیت های خونی؛ میش افشاری | ||
مراجع | ||
Abdelnour, S. A., Abd El-Hack, M. E., Khafaga, A. F., Arif, M., Taha, A. E., & Noreldin, A. E. (2019). Stress biomarkers and proteomics alteration to thermal stress in ruminants: a review. Journal of Thermal Biology, 79, 120–134. doi: 10.1016/j.jtherbio.2018.12.013 Alfano, F. R. D. A., Palella, B. I., & Riccio, G. (2011). Thermal environment assessment reliability using temperature—humidity indices. Industrial Health, 49(1), 95-106. doi: 10.2486/indhealth.MS1097 Al-Saiadi, M. Y., Al-Shaikh, M. A., Al-Mofarrej, S. I., Al-Showeimi, T. A., Mogawer, H. H., & Dirrar, A. (2004). Effect of chelated chromium supplementation on lactation performance and blood parameters of Holstein cows under heat stress. Animal Feed Science and Technology, 117, 223-233. doi: 10.1016/j.anifeedsci.2004.07.008 Amoikon, E. K., Fernandez, J. M., Southern, L. L., Thompson, Jr. D. L. Ward, T. L., & Olcott, B. M. (1995). Effects of chromium tripicolinate on growth, glucose tolerance, insulin sensitivity, plasma metabolites, and growth hormone in pigs. Journal of Animal Science, 73, 1123-1130. doi: 10.2527/1995.7341123x Asadi, M., Toghdori, A., Ghoorchi, T., & Hatami, M. (2023). Influence of organic manganese supplementation on performance, digestibility, milk yield and composition of Afshari ewes in the transition period, and the health of their lambs. Animal Production Research, 12(1), 1-12. doi: 10.22124/AR.2023.23808.1752 [In Persian] Asadi, M., Toghdory, A., Ghoorchi, T., & Kargar, Sh. (2018). Effect of physical form of the concentrate and buffer type on the rumen and blood parameters and microbial protein synthesis in fattening Dalagh lamb. Animal Science Journal (Pajouhesh & Sazandegi), 122(1), 143-158. doi: 10.22092/asj.2018.121090.1658 [In Persian] Bell, A. W, Greenwood, P. L., & Ehrhardt, R. A. (2005). Regulation of metabolism and growth during prenatal growth. In: Burrin DG, Mersmann HJ, editor. Biology of metabolism in growing animals. Edinburgh, UK: Elsevier Limited. doi: 10.1016/S1877-1823(09)70008-6 Besong, S., Jackson, J. A., Trammell, D. S., & Akay, V. (2001). Influence of supplemental chromium on concentrations of liver triglyceride, blood metabolites and rumen VFA profile in steers fed a moderately high fat diet. Journal of Dairy Science, 84, 1679-1685. doi: 10.3168/jds.S0022-0302(01)74603-6 Broderick, G. A., & Kang, J. H. (1980). Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. Journal of Dairy Science, 54, 1176-1183. doi: 10.3168/jds.S0022-0302(80)82888-8 Bunting, L. D., Tarifa, T. A., Crochet, B. T., Fernandez, J. M., Depew, C. L., & Lovejoy, J. C. (2000). Dietary inclusion of chromium propionate and (or) calcium propionate influences gastrointestinal development and insulin function in dairy calves. Journal of Dairy Science, 83, 2491-2498. doi: 10.3168/jds.S0022-0302(00)75141-1 Choi, S. J., Oh, J. M., & Choy, J. H. (2010). Biocompatible nanoparticles intercalated with anticancer drug for target delivery: pharmacokinetic and biodistribution study. Journal of Nanoscience and Nanotechnology, 10(4), 2913-2916. doi: 10.1166/jnn.2010.1415 Cortas, N. K., & Wakid, N. W. (1990). Determination of inorganic nitrate in serum and urine by a kinetic cadmium-reduction method. Clinical Chemistry, 36(8), 1440-1443. doi: 10.1093/clinchem/36.8.1440 Dallago, B., McManus, C., Caldeira, D., Lopes, A., Paim, T., Franco, E., Borges, B., Teles, P., Correa, P., & Louvandini, H. (2011). Performance and ruminal protozoa in lambs with chromium supplementation. Veterinary Science Research, 90, 253-256. doi: 10.1016/j.rvsc.2010.06.015 Dębski, B., Zalewski, W., Gralak, M. A., & Kosla, T. (2004). Chromium-yeast supplementation of chicken broilers in an industrial farming system. Journal of Trace Elements in Medicine and Biology 18(1), 47-51. doi: 10.1016/j.jtemb.2004.02.003 Dehority, B. A., & Males, J. R. (1984). Rumen Fluid Osmolality: Evaluation of influence upon the occurrence and numbers of holotrich protozoa in sheep. Journal Animal Science, 38, 865-870. doi: 10.2527/jas1974.384865x Deka, R. S., Mani, V., Kumar, M., Shiwajirao, Z. S., & Kaur, H. (2015). Chromium supplements in the feed for lactating Murrah buffaloes (Bubalus bubalis): influence on nutrient utilization, lactation performance, and metabolic responses. Biological Trace Element Research, 168, 362-371. doi: 10.1007/s12011-015-0372-x Domínguez-Vara, I. A., González-Muñoz, S. S., Pinos-Rodríguez, J. M., Bórquez-Gastelum, J. L., Bárcena-Gama, R., Mendoza-Martínez, G., Zapata, L. E., & Landois-Palencia, L .L. (2009). Effect of feeding selenium-yeast and chromium-yeast to finishing lambs on growth, carcass characteristics, and blood hormones and metabolites. Journal of Animal Feed Science and Technology, 152, 42-49. doi: 10.1016/j.anifeedsci.2009.03.008 Duffield, T. F., Merrill, J. K., & Bagg, R. N. (2012). Meta-analysis of the effects of monensin in beef cattle on feed efficiency, body weight gain, and dry matter intake. Journal of Animal Science, 90(12), 4583-4592. doi: 10.2527/jas.2011-5018 Emami, A., Zali, A. Ganjkhanlou, M., Hozhabri, A., & Akbari, A. (2013). Effect of different levels of chromium methionin supplementation on growth performance, meat oxidative stability and ruminal metabolites of male goat kids. Iranian Journal of Applied Animal Science, 3(2), 273-278. Forbes, C. D., Fernandez, J. M., Bunting, L. D., Southern, L. L., Thompson, D. L., Gentry, L. R., & Chapa, A. M. (1998). Growth and metabolic characteristics of Suffolk and Gulf Coast Native yearling ewes supplemented with chromium tripicolinate. Small Ruminant Research, 28(2), 149-160. doi: 10.1016/S0921-4488(97)00078-3 Ghorbani, A., Noorian Soroor, M. A., & Moini, M. M. (2017). The effect of zinc and selenium supplements on feed intake, digestibility and parameters of ruminal fermentation in sheep. Journal of Animal Science, 36, 11-17. doi: 10.22092/asj.2017.113262 Ghorbani, A., Sadri, H., Alizadeh, A. R., & Bruckmaier, R. M. (2012). Performance and metabolic responses of Holstein calves to supple-mental chromium in colostrum and milk. Journal of Dairy Science, 95, 5760-5769. doi: 10.3168/jds.2012-5500 Haldar, S., Mondal, S. Samanta, S., & Ghosh, T. K. (2009b). Performance traits and metabolic responses in goats (Capra hircus) supplemented with inorganic trivalent chromium. Journal of Biological Trace Element Research, 131, 110-123. doi: 10.1007/s12011-009-8356-3 Harrison, G. A., Hemken, R. W., Dawson, K. A., Harmon, R. J., & Barker, K. B. (1988). Influence of addition of yeast culture supplement to diets of lactating cows on ruminal fermentation and microbial populations 1. Journal of Dairy Science, 71, 2967-2975. doi: 10.3168/jds.S0022-0302(88)79894-X Harvey, K. M., Cooke, R. F., & Marques, R. S. (2021). Supplementing trace minerals to beef cows during gestation to enhance productive and health responses of the offspring. Animals, 11(4), 1159. doi: 10.3390/ani11041159 Hassan, F. A, Mahmoud, R., & El-Araby, I. E. (2017). Growth performance, serum biochemical, economic evaluation and IL6 gene expression in growing rabbits fed diets supplemented with zinc nanoparticles. Zagazig Veterinary Journal, 45(3), 238-249. doi: 10.21608/zvjz.2017.7949 Hill, E. K., & Li, J. (2017). Current and future prospects for nanotechnology in animal production. Journal of Animal Science and Biotechnology, 8(1), 1-13. doi: 10.1186/s40104-017-0157-5 Hodgson, E., Cope, W. G., & Leidy, R. B. (2004). Classes of toxicants: use classes. Pp. 49-74 in Textbook of Modern Toxicology. E. A. Hodgson Ed. 3th Ed. Wiley-Interscience, New Jersey. doi: 10.1002/0471646776.ch5 Ibrahim, W. M., Oda, S. S., & Khafaga, A. F. (2017). Pathological evaluation of the effect of zinc oxide nanoparticles on chromium-induced reproductive toxicity in male albino rats. Alexandria Journal of Veterinary Sciences, 53(2), 24-32. doi: 10.5455/ajvs.251315 Jin, D., Kang, K., Wang, H., Wang, Z., Xue, B., Wang, L., Xu, F., & Peng, Q. (2017). Effects of di-etary supplementation of active dried yeast on fecal methanogenic archaea diversity in dairy cows. Anaerobe Journal, 44, 78-86. doi: 10.1016/j.anaerobe.2017.02.007 Kaneko, J. J. (2008). Clinical biochemistry of domestic animals. 6th ed. Academic Press, Inc., San Diego. Kargar, S., Mousavi, F., & Karimi-Dehkordi, S. (2018). Effects of chromium supplementation on weight gain, feeding behaviour, health and metabolic criteria of environmentally heat-loaded Holstein dairy calves from birth to weaning. Archives of Animal Nutrition, 72, 443-457. doi: 10.1080/1745039X.2018.1510157 Kargar, S., Mousavi, S., Karimi-Dehkordi, M., & Ghaffari, M. H, (2018). Growth performance, feeding behavior, health status, and blood metabolites of environmentally heat-loaded Holstein dairy calves fed diets supplemented with chromium. Journal of Dairy Science, 101, 1-12. doi: 10.3168/jds.2017-14154 Kashfi, H., Yazdani, A. R., & Latifi, M. (2011). Economical study of effective management strategies on prevention of displaced abomasum in transition period in commercial dairy farms in Shahroud. Research on Animal Production, 2(4), 61-70. doi: 10.1586/s40104-564-0877-5 Kegley, E. B., Galloway, D. L., & Fakler, T. M. (2000). Effect of dietary Chromium-L- methionine on glucose metabolism of beef steers. Journal of Animal Science, 78, 3177-3183. doi: 10.2527/2000.78123177x Kitchalong, L., Fernandez, J. M. Bunting, L. D. Southern, L. L., & Bidner, T. D. (1995). Influence of chromium tripicolinate on glucose metabolism and nutrient partitioning in growing lambs. Journal of Animal Science, 73, 2694-2705. doi: 10.2527/1995.7392694x Kojouri, G. A., & Shirazi, A. (2007). Serum concentrations of Cu, Zn, Fe, Mo and Co in newborn lambs following systemic administration of vitamin E and selenium to the pregnant ewes. Small Ruminant Research, 70(2-3), 136-139. doi: 10.1016/j.smallrumres.2006.02.002 Lashkari, S, Habibian, M., & Jensen, S. K. (2018). A review on the role of chromium supplementation in ruminant nutrition—effects on productive performance, blood metabolites, antioxidant status, and immunocompetence. Biological Trace Element Research, 186, 305-321. doi: 10.1007/s12011-018-1310-5 Matthews, J. O., Southern, L. L., Fernandez, J. M., Pontif, J. E., Bidner, T. D., & Odgaard, R.L. (2001). Effect of chromium picolinate and chromium propionate on glucose and insulin kinetics of growing barrows and on growth and carcass traits of growingfinishing barrows. Journal of Animal Science, 79, 2172-2178. doi: 10.2527/2001.7982172x Maximino, N., Pérez-Alvarez, M., Sierra-Ávila, R., Ávila-Orta, C. A., Jiménez-Regalado, E., Bello, A. M., & Cadenas-Pliego, G. (2018). Oxidation of copper nanoparticles protected with different coatings and stored under ambient conditions. Journal of Nanomaterials, 2018, 512768. doi: 10.1155/2018/9512768 Mayorga, E. J., Kvidera, S. K., Seibert, J. T., Horst, E. A., Abuajamieh, M., Al-Qaisi, M., Lei, S., Ross, J. W., Johnson, C. D., Kremer, B., Ochoa, L., Rhoads, R. P., & Baumgard, L. H. (2019). Effects of dietary chromium propionate on growth performance, metabolism, and immune biomarkers in heat-stressedfinishing pigs1. Journal of Animal Science, 97, 1185-1197. doi: 10.1093/jas/sky484 Meyer, A. M., Reed, J. J, Neville, L., Thorson, J., Maddock-Carlin, R., Taylor, B., Reynolds, P., Redmer, A., Luther, S., Hammer, J., Vonnahme, A., & Caton, S. (2011). Nutritional plane and selenium supply during gestation affect yield and nutrient composition of colostrum and milk in primiparous ewes. Journal of Animal Science, 89, 1627-1639. doi: 10.2527/jas.2010-3394 Moezzi, A., McDonagh, A. M., & Cortie, M. B. (2012). Zinc oxide particles: Synthesis, properties and applications. Chemical Engineering Journal, 185, 1-22. doi: 10.1016/j.cej.2012.01.076 Moreira, P. S. A., Palhari, C., & Berber, R. C. A. (2020). Dietary chromium and growth performance animals: a review. Scientific Electronic Archives, 13(7), 59-66. doi: 10.36560/13620201151 Mosayebi, M., Aliarabi, H., & Farahavar, A. (2017). Effect of adding organic chromium and L-carnitine to feedlot lamb's diet on performance, glucose metabolism and some blood parameters. Journal of Ruminant Research, 5, 81-110. doi: 10.29252/rap.10.23.65 [In Persian] Mousaie, A., Valizadeh, R., Naserian, A. A., Heidarpour, M., & Mehrjerdi, H. K. (2014). Impacts of feeding selenium-methionine and chromium-methionine on performance, serum components, antioxidant status, and physiological responses to transportation stress of Baluchi ewe lambs. Biological Trace Element Research, 162, 113-123. doi: 10.1007/s12011-014-0162-x Mousavi, F., Karimi-Dehkordi, S., Kargar, S., & Ghaffari, M. H. (2019). Effect of chromium supplementation on growth performance, meal pattern, metabolic and antioxidant status and insulin sensitivity of summer-exposed weaned dairy calves. Animal, 13(5), 968-974. doi: 10.1017/S1751731118002318 Mousavi, F., Karimi-Dehkordi, S., Kargar, S., & Khosravi-Bakhtiari, M. (2019). Effects of dietary chromium supplementation on calf performance, metabolic hormones, oxidative status, and susceptibility to diarrhea and pneumonia. Animal Feed Science and Technology, 248, 95-105. doi: 10.1016/j.anifeedsci.2019.01.004 Mullins, C. R., Mamedova, L. K., Brouk, M. J., Moore, C. E., Green, H. B., Perfield, K. L., & Bradford, B. J. (2012). Effects of monensin on metabolic parameters, feeding behavior, and productivity of transition dairy cows. Journal of Dairy Science, 95(3), 1323-1336. doi: 10.3168/jds.2011-4744 National Research Council. (2001). Nutrient Requirements for Dairy Cattle. 7th Revised edition. National Academies Press, Washington, DC, USA. National Research Council. (2007). Nutrient Requirements of Small Ruminants. Sheep, goats, cervide and new world camelids. Washington, DC: National Academy Press. Nikkhah, A., Mirzaei, M., Khorvash, M., Rahmani, H. R., & Ghorbani, G. R. (2011). Chromium improves production and alters metabolism of early lactation cows in summer. Journal of Animal Physiology and Animal Nutrition, 95, 81-89. doi: 10.1111/j.1439-0396.2010.01007.x Nonaka, I., Takusari, N., Tajima, K., Suzuki, T., Higuchi, K., & Kurihara, M. (2008). Effects of high environmental temperatures on physiological and nutritional status of prepubertal Holstein heifers. Livestock Science, 113(1), 14-23. doi: 10.1016/j.livsci.2007.02.010 Noori, G. H., Amanlou, R. H., Harakinejhad, M. T., Eskandainasab, M. P., & Mirzayee, H. R. (2015). The effects of chromium supplementation during late pregnancy on performance and blood metabolites of twin-bearing ewes. Journal of Ruminant Research, 3(1), 35-52. doi: 10.2347/s15961-014-7642-x [In Persian] Nooriyan Soroor, M. E., Haghi Ghobadi, M., Eskandari, K., & Moeini, M. M. (2018). Effects of three sources of chromium on growth traits, fermentation parameters, protozoa population and some blood metabolites in Mehraban male lambs. Animal Science Journal (Pajouhesh & Sazandegi), 123, 149-166. doi: 10.22092/asj.2018.121012.1654 [In Persian] Ohh, S. J., & Lee, J. Y. (2005). Dietary chromium-methionine chelate supplementation and animal performance. Asian-Australasian Journal of Animal Sciences, 18(6), 898-907. doi: 10.5713/ajas.2005.898 Ottenstein, D. M., & Batler, D. A. (1971). Imoroved gas chromatography separation of free acids C2-C5 in dilute solution. Analytical Chemistry, 43, 952-955. doi: 10.1093/chromsci/9.11.673 Page, T. G., Southern, L. L., Ward, T. L., & Thompson, Jr D. L. (1993). Effect of chromium Pantelić, M., Jovanović, L. J, Prodanović, R., Vujanac, I., Đurić, M., Ćulafić, T., & Kirovski, D. (2018). The impact of the chromium supplementation on insulin signalling pathway in different tissues and milk yield in dairy cows. Journal of Animal Physiology and Animal Nutrition, 102(1), 41-55. doi: 10.1111/jpn.12655 Pechova, A., Podhorsky, A., Lokajova, E., Pavlata, L., & Illek, J. (2002). Metabolic effects of chromium supplementation in dairy cows in the peripartal period. Acta Veterianaria Brunensis, 71, 9-18. doi: 10.2754/avb200271010009 Phan, T. T. V., Huynh, T. C., Manivasagan, P., Mondal, S., & Oh, J. (2020). An up-to-date review on biomedical applications of palladium nanoparticles. Nanomaterials, 10(1), 66. doi: 10.3390/nano10010066 Raje, K., Ojha, S., Mishra, A., Munde, V. K., Rawat, C., Chaudhary, S. K. (2018). Impact of supplementation of mineral nano particles on growth performance and health status of animals: A review. Journal of Entomology and Zoology Studies, 6, 1690-1694. doi: 10.21608/svu.2023.191602.1258 Rikhari, K., Tiwari, D., & Kumar, A. (2010). Effect of dietary supplemental chromium on nutrient utilization, rumen metabolites and enzyme activities in fistulated crossbred male cattle. Indian Journal of Animal Sciences, 80(Abstr). doi: 10.1007/s113022-014-0162-x Robinson, J. J., McDonald, I., Fraser, C., & Crofts, R. M. J. (1977). Studies on reproduction in prolific ewes I. Growth of the products of conception. The Journal of Agricultural Science, 88(3), 539-552. doi: 10.1017/S0021859600046372 SAS Institute. (2004). User’s Guide. Version 9.1: Statistics. SAS Institute, Cary, NC. Seifalinasab, A., Mousaie, A., Sattaei Mokhtari, M., & Doumari, H. (2019). The effect of organic chromium supplement on growth performance, nutrients digestibility and some ruminal fermentation parameters and blood metabolites in fattening lambs. Research on Animal Production, 10(23), 65-74. doi: 10.29252/rap.10.23.65 [In Persian] Soltan, M. A. (2010). Effect of dietary chromium supplementation on productive and repro-ductive performance of early lactating dairy cows under heat stress. Journal of Animal Physiology and Animal Nutrition, 94, 264-272. doi: 10.1111/j.1439-0396.2008.00913.x Soltan, M. A., Almujalli, A. M., Mandour, M. A., & Abeer, M. E. S. (2012). Effect of dietary chromium performance, supplementation rumen on growth fermentation characteristics and some blood serum units of fattening dairy calves under heat stress. Pakistan Journal of Nutrition, 11(9), 751-756. doi: 10.22092/asj.2018.121012.1654 Soriani, N., Panella, G., & Calamari, L. (2013). Rumination time during the summer season and its relationships with metabolic conditions and milk production. Journal of Dairy Science, 96, 5082-5094. doi: 10.3168/jds.2013-6620 Spears, J. W. (2019). Boron, chromium, manganese, and nickel in agricultural animal production. Biological Trace Element Research, 188(1), 35-44. doi: 10.1007/s12011-018-1529-1 Stahlhut, H. S., Whisnant, C. S., Lloyd, K. E., Baird, E. J., Legleiter, L. R., Hansen, S. L., & Spears, J. W. (2006). Effect of chromium supplementation and copper status on glucose and lipid metabolism in Angus and Simmental beef cows. Animal Feed Science and Technology, 128(3-4), 253-265. doi: 10.1016/j.anifeedsci.2005.11.002 Stewart, W. C., Bobe, G., Pirelli, G. J., Mosher, W. D., & Hall, J. A. (2012). Organic and inorganic selenium: III. Ewe and progeny performance. Journal of Animal Science, 90, 4536-4543. doi: 10.2527/jas.2011-5019 Taheri, H. R., & Tavakoli Alamuti, M. (2011). Animal nutrition science. 1thed. Aeeizh publication, Tehran, Iran. P. 432. [In Persian] Travan, A., Pelillo, C., Donati, I., Marsich, E., Benincasa, M., Scarpa, T., & Paoletti, S. (2009). Non-cytotoxic silver nanoparticle-polysaccharide nanocomposites with antimicrobial activity. Biomacromolecules, 10(6), 1429-1435. doi: 10.1021/bm900039x Uyanik, F. (2001). The effects of dietary chromium supplementation on some blood parameters in sheep. Journal of Biological Trace Element Research, 84, 93-101. doi: 10.1385/BTER:84:1-3:093 Uyanik, F., Kaya, Ş., Kolsua, A. H., Eren, M., & Şahin, N. (2002). The effect of chromium supplementation on egg production, egg quality and some serum parameters in laying hens. Turkish Journal of Veterinary and Animal Sciences, 26(2), 379-387. doi: 10.5607/s12011-064-5862-x Vincent, J. B. (2015). Is the pharmacological mode of action of chromium (III) as a second messenger. Biological Trace Element Research, 166, 7-12. doi: 10.1007/s12011-015-0231-9 Wang, C., Liu, Q., Yang, W. Z., Dong, Q., Yang, X. M., He, D. C., Zhang, P., Dong, K. H., & Huang, Y. X. (2009). Effects of selenium yeast on rumen fermentation, lactation performance and feed digestibilities in lactating dairy cows. Livestock Science, 126, 239-244. doi: 10.1016/j.livsci.2009.07.005 Wang, M. Q., Xu, Z. R., Zha, L. Y., & Lindemann, M. D. (2007). Effects of chromium nanocomposite supplementation on blood metabolites, endocrine parameters and immune traits in finishing pigs. Animal Feed Science and Technology, 139, 69-80. doi: 10.1016/j.anifeedsci.2006.12.004 West, J. W. (1999). Nutritional strategies for managing the heat-stressed dairy cows. Journal of Animal Science, 77, 21-29. doi: 10.2527/1997.77suppl_221x Yari, M., Baharifar, M., Alizadeh Masuleh, A., & Mousaie, A. (2018). Growth performance, feeding behavior and physiological responses of young growing Holstein male calves to dietary chromium-methionine (Cr-Met) supplementation related to body weight and age. Iranian Journal of Applied Animal Science, 8(3), 415-422. doi: 10.1017/S0021859600046372 Yari, M., Nikkhah, A., Alikhani, M., Khorvash, M., Rahmani, H., & Ghorbani, G. R. (2010). Physiological calf responses to increased chromium supply in summer. Journal of Dairy Science, 93, 4111-4120. doi: 10.3168/jds.2009-2568 Zhao, M. D., Di, L. F., Tang, Z. Y., Jiang, W., & Li, C. Y. (2019). Effect of tannins and cellulase on growth performance, nutrients digestibility, blood profiles, intestinal morphology and carcass characteristics in Hu sheep. Asian-Australasian Journal of Animal Sciences, 32, 1540-1547. doi: 10.5713/ajas.18.0901 | ||
آمار تعداد مشاهده مقاله: 453 تعداد دریافت فایل اصل مقاله: 118 |