تعداد نشریات | 31 |
تعداد شمارهها | 766 |
تعداد مقالات | 7,260 |
تعداد مشاهده مقاله | 10,624,174 |
تعداد دریافت فایل اصل مقاله | 7,094,176 |
Classical properties of skew Hurwitz series rings | ||
Journal of Algebra and Related Topics | ||
دوره 11، شماره 2، اسفند 2023، صفحه 105-115 اصل مقاله (276.81 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22124/jart.2023.23391.1469 | ||
نویسندگان | ||
A. B. Singh* 1؛ G. Sharma2؛ F. Siddiqui1 | ||
1Department of Computer Science and Engineering, Jamia Hamdard, New Delhi, India | ||
2Department of Applied Sciences, Apeejay Stya University, Gurgaon, Haryana (India), 122001, India | ||
چکیده | ||
In this paper, we study the transfer of some algebraic properties from the ring $R$ to the ring of skew Hurwitz series $(HR, \omega)$, where $\omega$ is an automorphism of $R$ and vice versa. Different properties of skew Hurwitz series are studied with respect to various clean ring structures and semiclean ring structures. | ||
کلیدواژهها | ||
Primary 16E50؛ 16U99؛ secondary 16L30 | ||
مراجع | ||
1. P. Ara, K. R. Goodearl, and E. Pardo, K0 of purely in nite simple regular rings, K-Theory, (1) 26 (2002), 69-100. 2. N. Ashra and E. Nasibi, Rings in which elements are sum of an idempotent and a regular element, Bull. Iranian Math. Soc. (3) 39 (2013), 579-588. 3. N. Ashra and E. Nasibi, r-clean rings, Math. Reports, 15(65) (2013), 125-132. 4. S. Bochner and W. T. Martin, Singularities of composite functions in several variables. Annals of Math., 38 (1937), 293-302. 5. V. P. Camillo and H. P. Yu, Exchange Rings, units and idempotents. Comm Algebra, 29 (2001), 2293-2295. 6. P. Crawley and B. Jonsson, Re nements for in nite direct decompositions of algebraic systems, Paci c J. Math. (3) 14 (1964), 797-855. 7. M. Fliess, Sur divers produits de series fonnelles, Bull. Soc. Math. France, 120 (1974), 181-191. 8. K .R. Goodearl, Von Neumann regular ring, 2nd ed., Robert E. Krieger Pub- lishing Co. Inc., Malabar, FL, 1991. 9. J. Han and W. K. Nicholson, Extensions of clean rings, Comm. Algebra, (6) 29 (2001), 2589-2595. 10. D. Handleman, Presprecivity and cancellation in regular rings, J. Algebra, 48 (1977), 1-16. 11. A. M. Hassanein and M. A. Farahat, Some properties of Skew Hurwitz Series, Le Mathematiche, (1) 19 (2014), 169-178. 12. A. M. Hassanein and M. A. Farahat. Some properties of Skew Hurwitz Series, Le Mathematiche, (1) 19 (2014), 169-178. 13. A. Hurwitz, Sur un th eor eme de M. Hadamard. C. R. Acad. Sc., 128 (1899), 350-353. 14. H. Hakmi, P-Regular and P-Local rings, J. Algebra Relat. Topics, (1) 9 (2021), 1-19. 15. S. Jamshidvanda, H. Haj Seyyed Javadia and N. Vahedian Javaheria, General- ized f-clean rings, Journal of Linear and Topological Algebra, (1) 3 (2014), 55-60. 16. W. F. Keigher, Adjunctions and comonads in di erential algebra, Pac. J. Math., 248 (1975), 99-112. 17. W. F. Keigher, On the ring of Hurwitz series, Comm. Algebra, (6) 25 (1997),1845-1859. 18. B. Li and L. Feng, f-Clean rings and rings having many full elements, J. Korean Math. Soc. (2) 47 (2010), 247-261. 19. W. K. Nicholson, Lifting idempotents and exchange rings, Trans. Amer. Math. Soc. 229 (1977), 269-278. 20. K. Paykan, Nilpotent elements of skew Hurwitz series rings, Rend. Circ. Mat. Palermo 2, (3) 65 (2016), 451-458. 21. K. Paykan, Principally quasi-Baer skew Hurwitz series rings, Bull. Unione Mat. Ital., (4) 10 (2016), 607-616. 22. G. Sharma and A. B. Singh, n-f-Semiclean rings, Global Sci-Tech. Al-Flah's Journal of Science and Technology, (2) 10 (2018), 67-71. 23. G. Sharma and A. B. Singh, Strongly r-clean rings, Int. J. Math. Comput. Sci. (2) 13 (2018), 207-214. 24. R. K. Sharma and A. B. Singh, On a theorem of McCoy, Mathematica Bohem- ica (2022) (To appear). 25. R. K. Sharma and A. B. Singh, Skew Hurwitz series rings and modules with Beachy-Blair conditions, Kragujevac J. Math. (4) 47 (2023), 511-521. 26. R. K. Sharma and A. B. Singh, Zip property of skew Hurwitz series rings and modules. Serdica Math. J., 45 (2019), 35-54. 27. E. J. Taft, Hurwitz invertibility of linearly recursive sequences, Congr. Numer- antium, 73 (1990), 37-40. 28. R. B. War eld Jr, Exchange rings and decompositions of modules, Mathematis- che Annalen, (1) 199 (1972), 31-36. 29. Y. Ye, Semiclean Rings, Comm. Alg, (11) 31 (2003), 5609-5625. | ||
آمار تعداد مشاهده مقاله: 166 تعداد دریافت فایل اصل مقاله: 225 |