تعداد نشریات | 31 |
تعداد شمارهها | 766 |
تعداد مقالات | 7,260 |
تعداد مشاهده مقاله | 10,624,186 |
تعداد دریافت فایل اصل مقاله | 7,094,199 |
Dokdo sub-hoops and Dokdo filters of hoops | ||
Journal of Algebra and Related Topics | ||
دوره 11، شماره 2، اسفند 2023، صفحه 149-164 اصل مقاله (302.78 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22124/jart.2023.21930.1391 | ||
نویسندگان | ||
S. Z. Song* 1؛ Y. B. Jun2 | ||
1Department of Mathematics, Jeju National University, South korea | ||
2Gyeongsang National University, Chinju, South Korea | ||
چکیده | ||
The concepts of Dokdo sub-hoops and Dokdo filters are introduced, and their properties are investigated. The relationship between Dokdo sub-hoops and Dokdo filters is discussed, and characterizations of Dokdo sub-hoops and Dokdo filters are established. | ||
کلیدواژهها | ||
bipolar fuzzy set؛ Dokdo sub-hoop؛ Dokdo filter | ||
مراجع | ||
1. M. Aaly Kologani and R. A. Borzooei, On ideal theory of hoops, Math. Bohem., 145 (2020), 141{162. DOI: 10.21136/MB.2019.0140-17 2. P. Agliano, I. M. A. Ferreirim and F. Montagna, Basic hoops: an algebraic study of continuous t-norms, Studia Logica, 87 (2007), 73{98. DOI: 10.1007/s11225- 007-9078-1 3. W. J. Blok and I. M. A. Ferreirim, On the structure of hoops, Algebra Universalis, 43 (2000), 233-257. 4. R. A. Borzooei and M. Aaly kologani, Filter theory of hoop-algebras, J. Adv. Res. Pure Math., 6 (2014), 1-15. 5. R. A. Borzooei, H. R. Varasteh and K. Borna, Fundamental hoop-algebras, Ratio Mathematica, 29 (2015), 25-40. 6. B. Bosbach, Komplementare Halbgruppen. Axiomatik und Arithmetik, Funda. Math., 64 (1969), 257-287. 7. B. Bosbach, Komplementare Halbgruppen. Kongruenzen und Quatienten, Funda. Math., 69 (1970), 1-14. 8. G. Georgescu, L. Leustean and V. Preoteasa, Pseudo-hoops, J. Mult.-Valued Logic Soft Comput., (1-2) 11 (2005), 153-184. 9. M. B. Gorzalczany, A method of inference in approximate reasoning based on interval-valued fuzzy sets, Fuzzy sets and Systems, 21 (1987), 1-17. 10. Y. B. Jun, Dokdo structure and its application in BCK/BCI-algebras, TWMS J. Pure Appl. Math., (in press). 11. M. Kondo, Some types of lters in hoops, Multiple-Valued Logic, (ISMVL), 2011, 50-53, doi: 10.1109/ISMVL.2011.9. 12. K. M. Lee, Bipolar-valued fuzzy sets and their basic operations, Proc. Int. Conf. on Intelligent Technologies, Bangkok, Thailand (2000), 307-312. 13. P. K. Maji, R. Biswas and A. R. Roy, Soft set theory, Comput. Math. Appl., 45 (2003), 555-562. 14. D. Molodtsov, Soft set theory - First results, Comput. Math. Appl., 37 (1999),19-31. 15. A. Namdar and R. A. Borzooei, Nodal lters in hoop algebras, Soft Comput.,22 (2018), 7119-7128. 16. A. Namdar, R. A. Borzooei, A. Borumand Saeid and M. Aaly Kologani, Some results in hoop algebras, J. Intell. Fuzzy Syst., 32 (2017), 1805-1813. 17. A. Paad and A. Jafari, n-fold obstinate and n-fold fantastic (pre) lters of EQ-algebras, J. Algebra Relat. Topics, 9(1) (2021), 31-50. 10.22124/JART.2021.16939.1210 18. L. A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning-I, Inform. Sci., 8 (1975), 199-249. | ||
آمار تعداد مشاهده مقاله: 134 تعداد دریافت فایل اصل مقاله: 189 |