تعداد نشریات | 31 |
تعداد شمارهها | 748 |
تعداد مقالات | 7,112 |
تعداد مشاهده مقاله | 10,247,709 |
تعداد دریافت فایل اصل مقاله | 6,900,825 |
An Effective Hybrid Harris Hawk Optimization for Facial Skin Segmentation Under Varying Illumination | ||
Computational Sciences and Engineering | ||
مقاله 7، دوره 3، شماره 1، تیر 2023، صفحه 99-113 اصل مقاله (840.2 K) | ||
نوع مقاله: Original Article | ||
شناسه دیجیتال (DOI): 10.22124/cse.2023.24965.1059 | ||
نویسندگان | ||
Ali Fahmi Jafargholkhanloo1؛ Mousa Shamsi* 2 | ||
1Faculty of Biomedical Engineering, Sahand University of Technology, Tabriz, Iran. | ||
2Faculty of Biomedical Engineering, Sahand University of Technology, Tabriz, Iran | ||
چکیده | ||
The segmentation of facial color images is an essential step for facial analysis purposes such as face recognition, identification, and planning of facial reconstruction surgeries. The varying illumination has a notable effect on it. One of the applications of facial skin segmentation is contour extraction in the analysis of facial plastic surgeries, which is a challenging problem under varying illumination. Therefore, in this paper, a modified version of the Fuzzy c-Means (MFCM) algorithm with adding varying illumination parameter is presented to segment frontal and profile facial color images. MFCM algorithm is sensitive to the initial value and may cause this algorithm to fall in a local minimum. In this paper, to overcome the mentioned problems, we proposed a hybrid optimization method, which combines Grey Wolf Optimization (GWO) and Harris Hawk Optimization (HHO). The main goal of using GWO is to improve the exploration phase in HHO. Also, the same weight coefficient is used for all three alpha, beta, and delta wolves. The ranking of wolves for selecting these coefficients is not considered. To improve the location update, weight coefficient is updated based on the rank of each wolf. Experimental results demonstrate that the proposed algorithm has high efficiency and is robust to the varying illumination effect in the segmentation of facial color images. Also, it shows that the proposed algorithm has a suitable performance in facial skin segmentation compared to other image segmentation methods. | ||
کلیدواژهها | ||
Facial Color Image؛ Facial Skin Segmentation؛ Fuzzy c-means Clustering؛ Grey Wolf Optimization؛ Harris Hawk Optimization؛ Varying Illumination Correction | ||
مراجع | ||
[1] Bakhshali, MA. & Shamsi, M. (2012). Facial skin segmentation using bacterial foraging optimization algorithm. Journal of medical signals and sensors, 2(4), 203. [2] Hossain, MF, Shamsi, M., Alsharif, MR., Zoroofi, RA., & Yamashita, K. (2012). Automatic facial skin detection using Gaussian mixture model under varying illumination. Int J Innovative Comput Inf Control, 8(2), 1135-1144. [3] Wu, Y, & Ji, Q. (2019). Facial landmark detection: A literature survey. International Journal of Computer Vision, 127(2), 115-142. [4] Naji, SA, Zainuddin, R., & Jalab, HA. (2012). Skin segmentation based on multi pixel color clustering models. Digital Signal Processing, 22(6), 933-940. [5] Al-Mohair, HK, Saleh, JM., & Suandi, SA. (2015). Hybrid human skin detection using neural network and K-means clustering technique. Applied Soft Computing, 33, 337-347. [6] Shamsi, M, Zoroofi, RA., Lucas, C., Hasanabadi, MS., & Alsharif, MR. (2008). Automatic facial skin segmentation based on em algorithm under varying illumination. IEICE TRANSACTIONS on Information and Systems, 91(5), 1543-1551. [7] Alaee, E, Shamsi, M., Ahmadi, H., Nazem, S., & Sedaaghi, M. (2014). Automatic Facial Skin Segmentation Using Possibilistic C-Means Algorithm for Evaluation of Facial Surgeries. International Journal of Computer and Information Engineering, 8(6), 973-977. [8] Pujol, FA, Pujol, M., Jimeno-Morenilla, A., & Pujol, MJ. (2017). Face detection based on skin color segmentation using fuzzy entropy. Entropy, 19(1), 26. [9] Lu, Z, Jiang, X., & Kot, A. (2018). Color space construction by optimizing luminance and chrominance components for face recognition. Pattern Recognition, 83, 456-468. [10] Cuevas, E, Zaldivar, D., Perez, M., & Sanchez, EN. (2009). LVQ neural networks applied to face segmentation. Intelligent Automation & Soft Computing, 15(3), 439-450. [11] Xu, M, Guo, C., Hu, Y., Lu, H., Li, X., Li, F., & Zhang, W. (2017). Automatic Facial Complexion Classification Based on Mixture Model. In Pacific Rim Conference on Multimedia, 327-336. [12] Paracchini, M, Marcon, M., Villa, F., & Tubaro, S. (2020). Deep skin detection on low resolution grayscale images. Pattern Recognition Letters, 131, 322-328. [13] Salah, K. B., Othmani, M., & Kherallah, M. (2021). A novel approach for human skin detection using convolutional neural network. The Visual Computer, 1-11. [14] Sahnoune, A., Dahmani, D., & Aouat, S. (2020). A Rule Based Human Skin Detection Method in CMYK Color Space. In International Symposium on Modelling and Implementation of Complex Systems, 233-247. [15] Verma, H, Verma, D., & Tiwari, PK. (2020). A population based hybrid FCM-PSO algorithm for clustering analysis and segmentation of brain image. Expert Systems with Applications, 114121. [16] Ali, AR, Couceiro, M., Anter, A., & Hassanien, AE. (2016). Particle swarm optimization based fast fuzzy C-means clustering for liver CT segmentation. In Applications of intelligent optimization in biology and medicine, 233-250. [17] Fred AL, Kumar SN, Padmanaban, P., Gulyas, B., & Kumar, HA. (2020). Fuzzy-crow search optimization for medical image segmentation. In Applications of Hybrid Metaheuristic Algorithms for Image Processing, 413-439. [18] Tongbram, S, Shimray, BA., Singh, LS., & Dhanachandra, N. (2021). A novel image segmentation approach using fcm and whale optimization algorithm. Journal of Ambient Intelligence and Humanized Computing, 1-15. [19] Zhang, M, Jiang, W., Zhou, X., Xue, Y., & Chen, S. (2019). A hybrid biogeography-based optimization and fuzzy C-means algorithm for image segmentation. Soft computing, 23(6): 2033-2046. [20] Bose, A, & Mali, K. (2016). Fuzzy-based artificial bee colony optimization for gray image segmentation. Signal, Image and Video Processing, 10(6): 1089-1096. [21] Das, S, & De, S. (2017). A modified genetic algorithm based FCM clustering algorithm for magnetic resonance image segmentation. In Proceedings of the 5th International Conference on Frontiers in Intelligent Computing: Theory and Applications, 435-443. [22] Li, MQ, Xu, LP., Xu, N., Huang, T., & Yan, B. (2018). SAR image segmentation based on improved grey wolf optimization algorithm and fuzzy c-means. Mathematical Problems in Engineering. [23] Heidari, AA, Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M., & Chen, H. (2019). Harris hawks optimization: Algorithm and applications. Future generation computer systems, 97, 849-872. [24] Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in engineering software, 69, 46-61. [25] Bakhshali, M, Shamsi, M., & Sadeghi, M. (2015). Evaluation of facial soft tissue parameters for Northwestern students in Iran. Journal of Craniomaxillofacial Research, 78-82. [26] Ford, A, & Roberts, A. (1998). Colour space conversions. Westminster University, London, 1-31. [27] Khrissi, L, El Akkad, N., Satori, H., & Satori, K. (2021). Clustering method and sine cosine algorithm for image segmentation. Evolutionary Intelligence, 1-14. [28] Csurka, G, Larlus, D., Perronnin, F., Meylan, F. (2013). What is a good evaluation measure for semantic segmentation? In BMVC, 27, 10-5244. | ||
آمار تعداد مشاهده مقاله: 220 تعداد دریافت فایل اصل مقاله: 105 |