Picard iterative approach for $\psi-$ Hilfer fractional differential problem

Eknath D. Pawar ${ }^{\dagger}$, Ramkrishna M. Dhaigude ${ }^{\text {** }}$
${ }^{\dagger}$ Department of Mathematics, Dr Babasaheb Ambedkar Marathwada University, Aurangabad, India
${ }^{\ddagger}$ Department of Mathematics, Government Vidarbh Institute of Science \& Humanities, Amaravati, (M.S) India
Email(s): eknathpawar0801@gmail.com, rmdhaigude@gmail.com

Abstract

In present work, we discuss local existance and uniqueness of solution to the $\psi-$ Hilfer fractional differential problem. By using the Picard successive approximations, we construct a computable iterative scheme uniformly approximating solution. Two illustrative examples are given to support our findings.

Keywords: Fractional calculus, $\psi-$ Hilfer fractional derivative, Picard's iterative scheme, convergence.
AMS Subject Classification 2010: 26A33, 26D10, 34A08, 40A30.

1 Introduction

Fractional Calculus (FC) has a glorious history of more than three decades and has been evolving in almost all branches of science and engineering. It has emerged and spread its offshoot as a new field of applied mathematics research in twenty first century due to its applicability in many real world applications, for instance see $[4,9,13,14,16,22]$ and references therein. During the theoretical development of FC, many fractional differential and integral operators are emerged with specific motive and used by contemporary researchers. Starting with Grunwald-Letnikov, Wyel, Riesz, Liouville-Caputo, RiemannLiouville, Hadamard, generalized through Hilfer, Katugampola and ψ-Hilfer came to be known in material physics and mechanics, signal and image processing, biochemical and electrical engineering, economics and mathematical modelling to name few $[1,3-5,8,10-12,14,17,18,20,21,23,25,26]$. In details of on theory and application of FC, see $[14,20]$ and their recent citations.

In 2006, Kilbas et al. [14] introduced the concept of fractional differentiation of a function with respect to another function in the Riemann-Liouville sense. They further defined suitable weighted spaces

[^0]and studied some of its properties by using corresponding fractional integral. Using this idea for Caputo fractional derivative, Almaida [3] proposed a new concept of fractional derivative of a function with respect to anther function called ψ-Caputo derivative. This ψ-Caputo fractional derivative has been widely used by many researchers and studied for its various qualitative properties. Recently in 2018, Sousa and Oliviera [24] proposed interpolator of ψ-Riemann-Liouville and ψ-Caputo fractional derivatives in Hilfers [13] sense of definition, and named ψ-Hilfer fractional derivative. This new operator used for generalization of the Gronwall inequality and the data dependence of Cauchy-type problem studied in suitable weighted space [25], also see [2,15, 19, 26]. Vanterler et al. [25] in 2019 discussed about existence and uniqueness of solution to ψ-Hilfer Cauchy-type problem using Banach contraction mapping principle. Motivated by these results [25], in this paper, we study the initial value problem (IVP) for fractional differential equation (FDE) involving ψ - Hilfer fractional derivative
\[

\left\{$$
\begin{array}{l}
\mathfrak{D}_{a^{+}}^{\delta, \rho ; \psi} \zeta(s)=\lambda(s, \zeta(s)), \quad 0<\delta<1,0 \leq \rho \leq 1, s>a>0, \tag{1}\\
\lim _{s \rightarrow a}(\psi(s)-\psi(a))^{1-\eta} \zeta(s)=\zeta_{0}, \quad \zeta_{0} \in \mathfrak{R}, \quad \eta=\delta+\rho-\delta \rho,
\end{array}
$$\right.
\]

where $\mathfrak{D}_{a^{+}}^{\delta, \rho ; \psi}$ is the ψ-Hilfer fractional derivative, $\lambda:(a, T] \times \Re \longrightarrow \mathfrak{R}$ is given nonlinear function.
We prove the local existence and uniqueness result for IVP (1) using the method presented in Yang et al. [27], Dhaigude et al. [11] and Bhairat [6,7]. The iterative scheme and uniform convergence criterion for the solution will be discussed.

2 Preliminaries

The following definitions, lemmas, properties of fractional operators will be used in the development of main results.

Definition 1. [24] Let (a, T) be a finite or infinite interval of \mathfrak{R} and $\delta>0$. Also $\psi(s)$ be an increasing and positive monotone function on ($a, T]$ having a continuous derivative $\psi^{\prime}(s)$ on (a, T). The (left-sided) fractional integral of λ with respect to another function ψ on $[a, T]$ is defined by

$$
\mathfrak{I}_{a+}^{\delta ; \psi} \lambda(s)=\frac{1}{\Gamma(\delta)} \int_{a}^{s} \psi^{\prime}(t)(\psi(s)-\psi(t))^{\delta-1} \lambda(t) d t
$$

Definition 2. [24] Let $\psi^{\prime}(s) \neq 0,(-\infty \leq a<b \leq \infty)$ and $\delta>0, n \in \mathfrak{N}$. The (left-sided) RiemannLiouville derivative of function λ with respect to ψ of order $\delta>0$ is defined by

$$
\mathfrak{D}_{a+}^{\delta ; \psi} \lambda(s)=\left(\frac{1}{\psi^{\prime}(s)} \frac{d}{d s}\right)^{n} \mathfrak{I}_{a+}^{n-\delta ; \psi} \lambda(s) .
$$

Definition 3. [24] Let $\delta>0, n \in \mathfrak{N}, I=[a, T]$ is the interval $(-\infty \leq a<T \leq \infty)$ and $\lambda, \psi \in C^{n}([a, b], \mathfrak{R})$ two functions such that ψ is increasing function and $\psi^{\prime}(s) \neq 0$ for all $s \in I$. The Caputo fractional derivative of λ of order δ is given by

$$
{ }^{c} \mathfrak{D}_{a+}^{\delta ; \psi} \lambda(s)=\mathfrak{I}_{a+}^{n-\delta ; \psi}\left(\frac{1}{\psi^{\prime}} \frac{d}{d s}\right)^{n} \lambda(s),
$$

where $n=[\delta]+1$ for $\delta \notin \mathfrak{N}$, and $n=\delta$ for $\delta \in \mathfrak{N}$.

Definition 4. [24] Let $\lambda, \psi \in C^{n}([a, T], \mathfrak{R})$ be two functions such that $\psi(s)$ is increasing function and $\psi^{\prime}(s) \neq 0$ for all $s \in I$. The (left-sided) ψ fractional derivative of function of λ of order $n-1<\delta<n$ and type $0 \leq \rho \leq 1$ is defined by

$$
\mathfrak{D}_{a+}^{\delta, \rho ; \psi} \lambda(s)=\mathfrak{I}_{a+}^{\rho(n-\delta) ; \psi}\left(\frac{1}{\psi^{\prime}} \frac{d}{d s}\right)^{n} \mathfrak{I}_{a+}^{(1-\rho)(n-\delta) ; \psi} \lambda(s)
$$

The (left-sided) $\psi-$ Hilfer fractional derivative is also defined in the following notational form:

$$
\mathfrak{D}_{a+}^{\delta, \rho ; \psi} \lambda(s)=\mathfrak{I}_{a+}^{\eta \rho ; \psi} \mathfrak{D}_{a+}^{\eta ; \psi} \lambda(s),
$$

with $\eta=\delta+\rho(n-\delta)$; and $\mathfrak{I}^{\eta-\delta: \psi}, \mathfrak{D}^{\eta ; \psi}$ are as defined respectively by Definition 1 and Definition 2 .
Lemma 1. [24] Let $\delta, \rho>0$ then the following semi-group property holds:

$$
\mathfrak{I}_{a+}^{\delta ; \psi} \mathfrak{I}_{a+}^{\rho ; \psi} \lambda(s)=\mathfrak{I}_{a+}^{\delta+\rho ; \psi} \lambda(s) .
$$

Lemma 2. [24] Let $\delta>0, \tau>0$. If $\lambda(x)=(\psi(x)-\psi(a))^{\tau-1}$, then

$$
\mathfrak{I}_{a+}^{\delta ; \psi} \lambda(s)=\frac{\Gamma(\tau)}{\Gamma(\delta+\tau)}(\psi(s)-\psi(a))^{\delta+\rho-1}
$$

Lemma 3. [24] Let $\delta, \tau>0$. If $\lambda(s)=(\psi(s)-\psi(a))^{\tau-1}$, then

$$
\mathfrak{D}_{a+}^{\delta ; \psi} \lambda(s)=\frac{\Gamma(\tau)}{\Gamma(\delta-\tau)}(\psi(s)-\psi(a))^{\delta-\rho-1} .
$$

Lemma 4. [18] For $s>0$,

$$
\Gamma(s)=\lim _{\mu \rightarrow \infty} \frac{(\mu)^{s} \mu!}{s(s+1)(s+2) \ldots(s+\mu)}
$$

Lemma 5. [24] Let $\lambda \in C^{1}[a, T], \delta>0$, and $0 \leq \rho \leq 1$, we have $\mathfrak{D}^{\delta, \rho ; \psi} \mathfrak{I}_{a+}^{\delta ; \psi} \lambda(s)=\lambda(s)$.
Lemma 6. [24] Let $s>a$. If $n-1<\tau<n$, then $\mathfrak{D}^{\tau, \rho ; \psi}(\psi(t)-\psi(a))^{\tau-1}=0$.
A function $\zeta(s)$ is said to be a solution of IVP (1) if $\exists l>0$ such that $\zeta \in C^{0}(I)$ satisfies the differential equation $\mathfrak{D}_{a+}^{\delta, \rho ; \psi} \zeta(s)=\lambda(s, \zeta(s))$ a.e. on I along with the condition $\lim _{s \rightarrow a}(\psi(s)-\psi(a))^{1-\eta}=\zeta_{0}$.

We denote $\omega=[a, a+\sigma], \omega_{\sigma}=(a, a+\sigma], I=(a, a+l], J=\left[\begin{array}{c}s \rightarrow a+l] \\ a+l\end{array}\right.$, for $\sigma>0$. Moreover, define $\varepsilon=\left\{\zeta:\left|(\psi(t)-\psi(a))^{1-\eta} \zeta(s)-\zeta_{0}\right| \leq T\right\}$. Further

$$
l=\min \left\{\sigma,\left(\frac{T}{\boldsymbol{\gamma}} \frac{\Gamma(\delta+k+1)}{\Gamma(k+1)}\right)^{\frac{1}{v+k}}\right\} \quad \text { for } v=1-\rho(1-\delta) .
$$

The generalized weighted spaces suitable for problem at hand are defined as follows:

$$
C_{1-\eta, v}^{\delta, \rho}[a, T]=C_{\eta, \psi}=\left\{\left.\zeta \in C_{1-\eta, \psi}[a, T]\right|^{H} D_{a+}^{\delta, \rho ; \psi} \in C_{v, \psi}[a, T]\right\}, \text { for } 0 \leq v<1, \eta=\delta+\rho(1-\delta),
$$

where $C_{\eta, \psi}[a, T]=\left\{\kappa:(a, T] \rightarrow \mathfrak{R} \mid(\psi(s)-\psi(a))^{\eta} \kappa \in C[a, T]\right\}, 0 \leq \eta<1$.
To prove the main result we consider the following hypotheses.
$\left(H_{1}\right) \quad(s, \zeta) \rightarrow \lambda\left(s,(\psi(s)-\psi(a))^{\eta-1} \zeta(s)\right)$ is defined on $\omega_{\sigma} \times \varepsilon$ and satisfies:
(i) $\zeta \rightarrow \lambda\left(s,(\psi(s)-\psi(a))^{\eta-1} \zeta(s)\right)$ is continuous on $\varepsilon, \forall s \in \omega_{\sigma}, s \rightarrow \lambda\left(s,(\psi(s)-\psi(a))^{\eta-1} \zeta(s)\right)$ is measurable on $\omega_{\sigma} \forall \zeta \in \varepsilon$.
(ii) $\exists k>\rho(1-\delta)-1$ and $\rightsquigarrow 0$ such that

$$
\left|\zeta\left(s,(\psi(s)-\psi(a))^{\eta-1} \zeta(s)\right)\right| \leq \boldsymbol{\aleph}(\psi(s)-\psi(a))^{k}
$$

holds $\forall s \in \omega_{\sigma}$.
$\left(H_{2}\right) \exists \theta>0$ and $\zeta_{1}, \zeta_{2} \in \varepsilon$ such that

$$
\left|\lambda\left(s,(\psi(s)-\psi(a))^{\eta-1} \zeta_{1}(s)\right)-\lambda\left(s,(\psi(s)-\psi(a))^{\eta-1} \zeta_{2}(s)\right)\right| \leq \theta(\psi(s)-\psi(a))^{k}\left|\zeta_{1}-\zeta_{2}\right|, \forall s \in I .
$$

3 Main result

In this section, we state and prove the existence and uniqueness results for IVP (1).
Lemma 7. Suppose that $\left(H_{1}\right)$ holds. Then $\zeta: J \longrightarrow \mathfrak{R}$ is the IVP (1) if and only if $\zeta: I \longrightarrow \mathfrak{R}$ is the solution of the Volterra integral equation of second kind

$$
\begin{equation*}
\zeta(s)=\zeta_{0}(\psi(s)-\psi(a))^{\eta-1}+\frac{1}{\Gamma(\delta)} \int_{a}^{s} \psi^{\prime}(p)(\psi(s)-\psi(p))^{\delta-1} \lambda(p, \zeta(p)) d p \tag{2}
\end{equation*}
$$

Proof. Suppose $\zeta: I \longrightarrow \mathfrak{R}$ is solution of IVP ((1)). Then $\left|(\psi(s)-\psi(a))^{1-\eta} \zeta(s)-\zeta_{0}\right| \leq T$, for all $s \in I$. Since $\left(H_{1}\right)$ holds, $\exists k>(\rho(1-\delta)-1)$ and $\aleph \geq 0$ such that

$$
\begin{aligned}
|\lambda(s, \zeta(s))| & =\mid \lambda\left(s,(\psi(s)-\psi(a))^{\eta-1}(\psi(s)-\psi(a))^{1-\eta} \zeta(s) \mid\right. \\
& \leq \mathbb{N}(\psi(s)-\psi(a))^{k}, \quad \text { for all } s \in I .
\end{aligned}
$$

We have

$$
\begin{aligned}
&\left|\frac{1}{\Gamma(\delta)} \int_{a}^{s} \psi^{\prime}(p)(\psi(s)-\psi(p))^{\delta-1} \zeta(p, \zeta(p)) d p\right| \\
& \leq \frac{1}{\Gamma(\delta)} \int_{a}^{s} \psi^{\prime}(p)(\psi(s)-\psi(p))^{\delta-1}|\zeta(p, \zeta(p))| d p \\
& \leq \frac{1}{\Gamma(\delta)} \int_{a}^{s} \psi^{\prime}(p)(\psi(s)-\psi(p))^{\delta-1} \aleph(\psi(p)-\psi(a))^{k} d p \\
& \leq \frac{\aleph}{\Gamma(\delta)} \int_{a}^{s} \psi^{\prime}(p)(\psi(s)-\psi(p))^{\delta-1}(\psi(p)-\psi(a))^{k} d p \\
& \leq \mathbb{N} \Im_{a}^{\delta ; \psi}(\psi(s)-\psi(a))^{k} \\
& \leq \frac{\aleph \Gamma(k+1)}{\Gamma(\delta+k+1)}(\psi(s)-\psi(a))^{\delta+k} \\
&=\mathbb{\aleph}(\psi(s)-\psi(a))^{\delta+k} \frac{\Gamma(k+1)}{\Gamma(\delta+k+1)}
\end{aligned}
$$

Next

$$
\begin{aligned}
\lim _{s \rightarrow a}(\psi(s)-\psi(a))^{1-\eta} \frac{1}{\Gamma(\delta)} \int_{a}^{s} \psi^{\prime}(p)(\psi(s)-\psi(p))^{\delta-1} \zeta(p, \zeta(p)) d p & =\lim _{s \rightarrow a} \aleph(\psi(s)-\psi(a))^{\delta+k+1-\eta} \\
& \times \frac{\Gamma(k+1)}{\Gamma(\delta+k+1)}=0
\end{aligned}
$$

It follows that

$$
\begin{equation*}
\zeta(s)=\zeta_{0}(\psi(s)-\psi(a))^{\delta-1}+\frac{1}{\Gamma(\delta)} \int_{a}^{s} \psi^{\prime}(p)(\psi(s)-\psi(p))^{\delta-1} \lambda(p, \zeta(p)) d p \tag{3}
\end{equation*}
$$

Since $k>(\rho(1-\delta)-1)$, we see that $\zeta \in C^{0}(I)$ is solution of Volterra integral equation(2).
Conversely, $\zeta: I \longrightarrow \Re$ is solution of Volterra integral equation (2). Now, applying ${ }^{H} \mathfrak{D}^{\delta, \rho ; \psi}$ on both sides of (2)

$$
\begin{aligned}
{ }^{H} \mathfrak{D}^{\delta, \rho ; \psi} \zeta(s) & ={ }^{H} \mathfrak{D}^{\delta, \rho ; \psi}\left[\zeta_{0}(\psi(s)-\psi(a))^{\eta-1}\right]+\frac{1}{\Gamma(\delta)}{ }^{H} \mathfrak{D}^{\delta, \rho ; \psi} \mathfrak{I}^{\delta ; \psi} \lambda(t, \zeta(t)) \\
H^{H} \mathfrak{D}^{\delta, \rho ; \psi} \zeta(s) & =\lambda(s, \zeta(s)) \\
\lim _{s \rightarrow a}(\psi(s)-\psi(a))^{1-\eta} & =\zeta_{0}
\end{aligned}
$$

which completes the proof.
Now we present the iterative scheme for approximating the unique solution with following Picard's function.

$$
\begin{gather*}
\chi_{0}(s)=\zeta_{0}(\psi(s)-\psi(a))^{\eta-1}=\chi_{0}(s)=\zeta_{0} \Lambda^{\eta-1} \quad s \in I \tag{4}\\
\chi_{n}(s)=\chi_{0}(s)+\frac{1}{\Gamma(\delta)} \int_{a}^{s} \psi^{\prime}(p)(\psi(s)-\psi(p))^{\delta-1} \lambda\left(p, \chi_{n-1}(p)\right) d p ; s \in I, n=1,2, \cdots \tag{5}
\end{gather*}
$$

Lemma 8. Suppose that $\left(H_{1}\right)$ holds. Then χ_{n} is continuous on I and satisfies $\left|\Lambda^{1-\eta} \chi_{n}(s)-\zeta_{0}\right| \leq T$
Proof. From $\left(H_{1}\right)$, clearly we obtain $\left|\lambda\left(s, \Lambda^{\eta-1}\right) \zeta(s)\right| \leq \aleph \Lambda^{k}$, for all $s \in \omega_{\sigma}$ and $\left|\Lambda^{1-\eta} \chi_{n}(s)-\zeta_{0}\right| \leq T$. For $n=1$, we have

$$
\begin{equation*}
\chi_{1}(t)=\zeta_{0} \Lambda^{\eta-1}+\frac{1}{\Gamma(\delta)} \int_{a}^{s} \psi^{\prime}(p)(\psi(s)-\psi(p))^{\delta-1} \lambda\left(p, \chi_{0}(p)\right) d p \tag{6}
\end{equation*}
$$

Then

$$
\begin{aligned}
& \left|\frac{1}{\Gamma(\delta)} \int_{a}^{s} \psi^{\prime}(p)(\psi(s)-\psi(p))^{\delta-1} \lambda\left(p, \chi_{0}(p)\right) d p\right| \\
& \quad \leq \frac{1}{\Gamma(\delta)} \int_{a}^{s} \psi^{\prime}(p)(\psi(s)-\psi(p))^{\delta-1}(\psi(p)-\psi(a))^{\eta-1} \times(\psi(p)-\psi(a))^{1-\eta} \lambda\left(p, \chi_{0}(p)\right) d p \\
& \quad \leq \frac{\kappa}{\Gamma(\delta)} \int_{a}^{s} \psi^{\prime}(p)(\psi(s)-\psi(p))^{\delta-1}(\psi(p)-\psi(a))^{k} d p \leq \aleph \Lambda^{\delta+k} \frac{\Gamma(k+1)}{\Gamma(\delta+k+1)}
\end{aligned}
$$

This implies that $\chi_{1} \in C^{0}(I)$, we get

$$
\Lambda^{1-\eta} \chi_{1}(s)-\zeta_{0}=\Lambda^{1-\eta} \frac{1}{\Gamma(\delta)} \int_{a}^{s} \psi^{\prime}(p)(\psi(s)-\psi(p))^{\delta-1} \lambda\left(p, \chi_{0}(p)\right) d p
$$

Therefore
$\left|\Lambda^{1-\eta} \chi_{1}(S)-\zeta_{0}\right| \leq \Lambda^{1-\eta} \Lambda^{\delta+k} \frac{\Gamma(k+1)}{\Gamma(\delta+k+1)} \leq \Lambda^{\delta+k+1-\eta} \frac{\Gamma(k+1)}{\Gamma(\delta+k+1)} \leq \aleph l^{\delta+k+1-\eta} \frac{\Gamma(k+1)}{\Gamma(\delta+k+1)}$.
Now by mathematical induction hypothesis, for $n=m$, suppose $\chi_{m} \in C^{0}(I)$ for all $s \in J$

$$
\left|\Lambda^{1-\eta} \chi_{m}(t)-\zeta_{0}\right| \leq T .
$$

We have

$$
\chi_{m+1}(s)=\zeta_{0} \Lambda^{\eta-1}+\frac{1}{\Gamma(\delta)} \int_{a}^{s} \psi^{\prime}(p)(\psi(s)-\psi(p))^{\delta-1} \lambda\left(p, \chi_{m}(p)\right) d p
$$

From the above discussion, we obtain $\chi_{m+1} \in C^{0}[I]$ for all $s \in J$,

$$
\begin{aligned}
\left|\Lambda^{1-\eta} \chi_{m+1}(s)-\zeta_{0}\right| & \leq \Lambda^{1-\eta} \aleph \Lambda^{\delta+k} \frac{\Gamma(k+1)}{\Gamma(\delta+k+1)} \leq \aleph \Lambda^{\delta+k+1-\eta} \frac{\Gamma(k+1)}{\Gamma(\delta+k+1)} \\
& \leq \mathbb{\aleph} l^{\delta+k+1-\eta} \frac{\Gamma(k+1)}{\Gamma(\delta+k+1)} \leq T
\end{aligned}
$$

Thus, the result is true for $n=m+1$. Hence by mathematical induction principle the result is true for all n. The proof is complete.

Theorem 1. Suppose that $\left(H_{1}\right)$ and $\left(H_{2}\right)$ hold. Consider the Picard's function χ_{n}, then the sequence $\left\{\Lambda^{1-\eta} \chi_{n}(s)\right\}$ is uniformly convergent on J.
Proof. Consider the series:

$$
\begin{gathered}
\Lambda^{1-\eta} \chi_{0}(s)+\Lambda^{1-\eta}\left[\chi_{1}(s)-\chi_{0}(s)\right]+\cdots+\Lambda^{1-\eta}\left[\chi_{n}(s)-\chi_{n-1}(s)\right]+\cdots, \quad s \in J \\
\Lambda^{1-\eta}\left|\chi_{1}(s)-\chi_{0}(s)\right| \leq \Lambda^{\delta+k+1-\eta} \frac{\Gamma(k+1)}{\Gamma(\delta+k+1)} ; \quad s \in J,
\end{gathered}
$$

and

$$
\begin{aligned}
\Lambda^{1-\eta} & \left|\chi_{1}(s)-\chi_{0}(s)\right| \\
& \leq \frac{\Lambda^{1-\eta}}{\Gamma(\delta)} \int_{a}^{s} \psi^{\prime}(p)(\psi(s)-\psi(p))^{\delta-1}\left|\lambda\left(s, \chi_{1}(s)\right)-\lambda\left(p, \chi_{0}(p)\right)\right| d p \\
& \leq \frac{\Lambda^{1-\eta}}{\Gamma(\delta)} \int_{a}^{s} \psi^{\prime}(p)(\psi(s)-\psi(p))^{\delta-1} \times\left|\lambda\left(p, \Lambda^{1-\eta} \Lambda^{\eta-1} \chi_{1}(p)\right)-\lambda\left(p, \Lambda^{1-\eta} \Lambda^{\eta-1} \chi_{0}(s)\right)\right| d p \\
& \leq \frac{\Lambda^{1-\eta}}{\Gamma(\delta)} \int_{a}^{s} \psi^{\prime}(p)(\psi(s)-\psi(p))^{\delta-1} \theta(\psi(p)-\psi(a))^{k} \times(\psi(p)-\psi(a))^{1-\eta}\left|\chi_{1}(p)-\chi_{0}(p)\right| d p \\
& \leq \frac{\Lambda^{1-\eta}}{\Gamma(\delta)} \int_{a}^{s} \psi^{\prime}(p)(\psi(s)-\psi(p))^{\delta-1} \theta \aleph \Lambda^{\delta+k+1-\eta} \frac{\Gamma(k+1)}{\Gamma(\delta+k+1)} d p \\
& \leq \theta \aleph \frac{\Gamma(k+1)}{\Gamma(\delta+k+1)} \frac{1}{\Gamma(\delta)} \int_{a}^{s} \psi^{\prime}(p)(\psi(s)-\psi(p))^{\delta-1}(\psi(p)-\psi(a))^{\delta+2 k+1-\eta} d p \\
& \leq \theta \aleph \frac{\Gamma(k+1)}{\Gamma(\delta+k+1)} \frac{\Gamma(\delta+2 k+2-\eta)}{\Gamma(2 \delta+2 k+2-\eta)} \Lambda^{2(\delta+k+1-\eta)}
\end{aligned}
$$

Similarly, we get

$$
\Lambda^{1-\eta}\left|\chi_{2}(s)-\chi_{1}(s)\right| \leq \theta^{2} \aleph \frac{\Gamma(k+1)}{\Gamma(\delta+k+1)} \frac{\Gamma(\delta+2 k+(1-\eta)+1)}{\Gamma(2(\delta+k)+(1-\eta)+1)} \Lambda^{3(\delta+k+1-\eta)}
$$

Suppose $n=m$. Then, we obtain

$$
\Lambda^{1-\eta}\left|\chi_{m+1}(s)-\chi_{m}(s)\right| \leq \theta^{m} \aleph \Lambda^{(m+1)(\delta+k+1-\eta)} \Pi_{i=0}^{m} \frac{\Gamma[(i+1) k+i(\delta+1-\eta)+1]}{\Gamma[(i+1)(\delta+k)+i(1-\eta)+1]}
$$

Now

$$
\begin{aligned}
& \Lambda^{1-}\left|\chi_{m+1}(s)-\chi_{m}(s)\right| \\
& \leq \Lambda^{1-\eta} \frac{1}{\Gamma(\delta)} \int_{a}^{s} \psi^{\prime}(p)(\psi(s)-\psi(p))^{\delta-1}\left|\lambda\left(p, \chi_{m+1}(p)\right)-\lambda\left(p, \chi_{m}(p)\right)\right| d p \\
& \leq \frac{\Lambda^{1-\eta}}{\Gamma(\delta)} \int_{a}^{s} \psi^{\prime}(p)(\psi(s)-\psi(p))^{\delta-1}\left|\lambda\left(p, \Lambda^{1-\eta} \Lambda^{\eta-1} \chi_{m+1}(p)\right)-\lambda\left(p, \Lambda^{1-\eta} \Lambda^{\eta-1} \chi_{m}(p)\right)\right| d p \\
& \leq \frac{\Lambda^{1-\eta}}{\Gamma(\delta)} \int_{a}^{s} \psi^{\prime}(s)(\psi(s)-\psi(p))^{\delta-1} \theta\left[(\psi(p)-\psi(a))^{1-\eta}\left|\chi_{m+1}(p)-\chi_{m}(p)\right|\right] d p \\
& \quad \leq \theta^{m+1} \Lambda^{(m+2)(\delta+k+1-\eta)} \Pi_{i=0}^{m+1} \frac{\Gamma[(i+1) k+i(\delta+1-\eta)+1]}{\Gamma[(i+1)(\delta+k)+i(1-\eta)+1]}
\end{aligned}
$$

Thus the result is true for $n=m+1$. Hence, by mathematical induction, the result is true for all n.
Further

$$
\begin{equation*}
\sum_{n=1}^{\infty} \mathfrak{U}_{n+1}=\sum_{n=1}^{\infty} \aleph \theta^{n+2} l^{(n+3)(\delta+k+1-\eta)} \Pi_{i=0}^{n+2} \frac{\Gamma[(i+1) k+i(\delta+1-\gamma)+1]}{\Gamma[(i+1)(\delta+k)+i(1-\eta)+1]} \tag{7}
\end{equation*}
$$

The following ratio

$$
\begin{aligned}
\frac{\mathfrak{U}_{n+1}}{\mathfrak{U}_{n}} & =\frac{\boldsymbol{\aleph} \theta^{n+2} l^{(n+3)(\delta+k+1-\eta)} \Pi_{i=0}^{n+2} \frac{\Gamma[(i+1) k+i(\delta+1-\gamma)+1]}{\Gamma[(i+1)(\delta+k)+i(1-\eta)+1]}}{\boldsymbol{\aleph} \theta^{n+1} l^{(n+2)(\delta+k+1-\eta)} \Pi_{i=0}^{n+1} \frac{\Gamma[(i+1) k+i(\delta+1-\gamma)+1]}{\Gamma[(i+1)(\delta+k)+i(1-\eta)+1]}} \\
& =\theta l^{\delta+k+1-\eta} \frac{\Gamma((n+2+1) k+(n+2)(\delta+1-\eta)+1)}{\Gamma((n+2+1)(\delta+k)+(n+2)(1-\eta)+1)}
\end{aligned}
$$

in the light of Lemma 4, can be written as

$$
\frac{\mathfrak{U}_{n+1}}{\mathfrak{U}_{n}}=\theta l^{\delta+k+1-\eta}\left\{\frac{\lim _{m \rightarrow \infty} \frac{m^{(n+3) k+(n+2)(\delta+1-\eta)+1} m!}{[(n+3) k+(n+2)(\delta+1-\eta)+1][(n+3) k+(n+2)(\delta+1-\eta)+2] \cdots[(n+3) k+(n+2)(\delta+1-\eta)+m+1]}}{\left.\lim _{m \rightarrow \infty} \overline{[(n+3)(\delta+k)+(n+2)(1-\eta)+1 m!}(\delta+k)+(n+2)(1-\eta)+1\right][(n+3)(\delta+k)+(n+2)(1-\eta)+2] \cdots[(n+3)(\delta+k)+(n+2)(1-\eta)+m+1]}\right\} .
$$

Clearly,

$$
\frac{[(n+3)(\delta+k)+(n+2)(1-\eta)+1][(n+3)(\delta+k)+(n+2)(1-\eta)+2] \cdots[(n+3)(\delta+k)+(n+2)(1-\eta)+m+1]}{[(n+3) k+(n+2)(\delta+1-\eta)+1][(n+3) k+(n+2)(\delta+1-\eta)+2] \cdots[(n+3) k+(n+2)(\delta+1-\eta)+m+1]}
$$

is bounded for all m, n. Thus, $\lim _{n \rightarrow \infty} \frac{\mathfrak{U}_{n+1}}{\mathfrak{U}_{n}}=0$. This implies that $\sum_{n=1}^{\infty} \mathfrak{U}_{n}$ is convergent. Hence

$$
\Lambda^{1-\eta} \chi_{0}(s)+\Lambda^{1-\eta}\left[\chi_{1}(s)-\chi_{0}(s)\right]+\cdots+\Lambda^{1-\eta}\left[\chi_{n}(s)-\chi_{n-1}(s)\right]+\cdots
$$

is uniformly convergent for $s \in J$; i.e. the sequence $\left\{\Lambda^{1-\eta} \chi_{n}(s)\right\}$ is uniformly convergent on J.

Theorem 2. Suppose $\left(H_{1}\right)$ and $\left(H_{2}\right)$ hold. Then $\chi(s)=\Lambda^{\eta-1} \lim _{n \rightarrow \infty} \Lambda^{1-\eta} \chi_{n}(s)$ is unique continuous solution of integral equation (2) on J.

Proof. Since

$$
\chi(s)=\Lambda^{\eta-1} \lim _{n \rightarrow \infty} \Lambda^{1-\eta} \chi_{n}(s)
$$

on J. We have

$$
\begin{aligned}
\Lambda^{1-\eta}\left|\chi(s)-\chi_{0}(s)\right| & \leq T \\
\left|\lambda\left(s, \chi_{n}(s)\right)-\lambda(s, \chi(s))\right| & \leq \theta \Lambda^{k}\left|\chi(s)-\chi_{0}(s)\right| ; s \in I .
\end{aligned}
$$

Clearly

$$
\Lambda^{1-\eta}\left|\lambda\left(s, \chi_{n}(s)\right)-\lambda(s, \chi(s))\right| \leq \theta\left|\chi_{n}(s)-\chi(s)\right| \longrightarrow 0, \text { uniformly as } n \longrightarrow \infty \text { on } I .
$$

Therefore

$$
\begin{aligned}
\Lambda^{1-\eta} \chi(s)= & \lim _{n \rightarrow \infty} \chi_{n}(s) \\
= & \zeta_{0}+(\psi(s)-\psi(a))^{1-\eta} \frac{1}{\Gamma(\delta)} \int_{a}^{s} \psi^{\prime}(p)(\psi(s)-\psi(p))^{\delta-1}(\psi(p)-\psi(a))^{k} \\
& \times \lim _{n \rightarrow \infty}(\psi(p)-\psi(a))^{-k} \lambda\left(p, \chi_{n-1}(p)\right) d p \\
= & \zeta_{0}+(\psi(s)-\psi(a))^{1-\eta} \frac{1}{\Gamma(\delta)} \int_{a}^{s} \psi^{\prime}(p)(\psi(s)-\psi(p))^{\delta-1} \lambda(p, \chi(p)) d p .
\end{aligned}
$$

Hence $\chi(s)$ is continuous solution of integral equation (2) defined on J.
To prove the uniqueness, suppose that $\xi(s)$ is solution of integral equation (2), which implies for all $s \in I, \Lambda^{1-\eta}|\xi(s)| \leq T$, and

$$
\begin{equation*}
\xi(s)=\zeta_{0}(\psi(s)-\psi(a))^{\eta-1}+\frac{1}{\Gamma(\delta)} \int_{a}^{s} \psi^{\prime}(p)(\psi(s)-\psi(p))^{\delta-1} \lambda(p, \xi(p)) d p \tag{8}
\end{equation*}
$$

We prove, $\chi(s)=\xi(s)$ on I. From $\left(H_{1}\right), \exists k>(\rho(1-\delta)-1), m \geq 0$, such that

$$
\begin{aligned}
& |\lambda(s, \xi(s))|=\left|\lambda\left(s, \Lambda^{\eta-1} \Lambda^{1-\eta} \xi(s)\right)\right| \\
& |\lambda(s, \xi(s))| \leq \aleph \Lambda^{k} ; \forall s \in I .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\Lambda^{1-\eta}\left|\chi_{0}(s)-\xi(s)\right| & =\Lambda^{1-\eta}\left|\frac{1}{\Gamma(\delta)} \int_{a}^{s} \psi^{\prime}(p)(\psi(s)-\psi(p))^{\delta-1} \lambda(p, \xi(p)) d p\right| \\
& \leq \Lambda^{1-\eta} \frac{1}{\Gamma(\delta)} \int_{a}^{s} \psi^{\prime}(p)(\psi(s)-\psi(p))^{\delta-1} \aleph(\psi(p)-\psi(a))^{k} d p \\
\Lambda^{1-\eta}\left|\chi_{1}(s)-\zeta_{0}\right| & \leq \Lambda^{1-\eta} \aleph \Lambda^{\delta+k} \frac{\Gamma(k+1)}{\Gamma(\delta+k+1)} \\
& \leq \aleph \Lambda^{\delta+k+1-\eta} \frac{\Gamma(k+1)}{\Gamma(\delta+k+1)} \\
& \leq \mathbb{\aleph} l^{\delta+k+1-\eta} \frac{\Gamma(k+1)}{\Gamma(\delta+k+1)} .
\end{aligned}
$$

Moreover

$$
\begin{aligned}
\Lambda^{1-\eta} & \left|\chi_{1}(s)-\xi(s)\right| \leq \Lambda^{1-\eta} \frac{1}{\Gamma(\delta)} \int_{a}^{s} \psi^{\prime}(p)(\psi(s)-\psi(p))^{\delta-1}\left|\lambda\left(p, \chi_{0}(p)\right)-\lambda(p, \xi(p))\right| d p \\
& \leq \frac{\Lambda^{1-\eta}}{\Gamma(\delta)} \int_{a}^{s} \psi^{\prime}(p)(\psi(s)-\psi(p))^{\delta-1} \theta(\psi(p)-\psi(a))^{k}(\psi(p)-\psi(a))^{1-\eta}\left|\chi_{0}(p)-\xi(p)\right| d p \\
& \leq \frac{\Lambda^{1-\eta}}{\Gamma(\delta)} \int_{a}^{s} \psi^{\prime}(p)(\psi(s)-\psi(p))^{\delta-1} \theta \aleph \Lambda^{\delta+k+1-\eta} \frac{\Gamma(k+1)}{\Gamma(\delta+k+1)} d p \\
& \leq \theta \aleph \frac{\Gamma(k+1)}{\Gamma(\delta+k+1)} \frac{1}{\Gamma(\delta)} \int_{a}^{s} \psi^{\prime}(p)(\psi(s)-\psi(p))^{\delta-1}(\psi(p)-\psi(a))^{\delta+2 k+1-\eta} d p \\
& \leq \theta \aleph \frac{\Gamma(k+1)}{\Gamma(\delta+k+1)} \frac{\Gamma(\delta+2 k+2-\eta)}{\Gamma(2 \delta+2 k+2-\eta)} \Lambda^{2(\delta+k+1-\eta) .}
\end{aligned}
$$

Suppose

$$
\Lambda^{1-\eta}\left|\chi_{m}(s)-\xi(s)\right| \leq \theta^{m} \aleph \Lambda^{(m+1)(\delta+k+1-\eta)} \Pi_{i=0}^{m} \frac{\eta[(i+1) k+i(\delta+1-\eta)+1]}{\Gamma[(i+1)(\delta+k)+i(1-\eta)+1]},
$$

then

$$
\begin{aligned}
\Lambda^{1-\eta}\left|\chi_{m+1}(s)-\xi(s)\right| \leq & \Lambda^{1-\eta} \frac{1}{\Gamma(\delta)} \int_{a}^{s} \psi^{\prime}(p)(\psi(s)-\psi(p))^{\delta-1}\left|\lambda\left(p, \chi_{m+1}(p)\right)-\lambda(p, \xi(p))\right| d p \\
\leq & \left.\frac{\Lambda^{1-\eta}}{\Gamma(\delta)} \int_{a}^{s} \psi^{\prime}(p)(\psi(s)-\psi(p))^{\delta-1} \right\rvert\, \lambda\left(p,(\psi(p)-\psi(a))^{1-\eta} \Lambda^{\eta-1} \chi_{m+1}(p)\right) \\
& -\lambda\left(p,(\psi(p)-\psi(a))^{1-\eta}(\psi(p)-\psi(a))^{\eta-1} \xi(p)\right) \mid d p \\
\leq & \frac{\Lambda^{1-\eta}}{\Gamma(\delta)} \int_{a}^{s} \psi^{\prime}(p)(\psi(s)-\psi(p))^{\delta-1} \theta\left[(\psi(p)-\psi(a))^{1-\eta}\left|\chi_{m+1}(p)-\xi(p)\right|\right] d p \\
\leq & \theta^{m+1} \aleph \Lambda^{(m+2)(\delta+k+1-\eta)} \Pi_{i=0}^{m+1} \frac{\Gamma[(i+1) k+i(\delta+1-\eta)+1]}{\Gamma[(i+1)(\delta+k)+i(1-\eta)+1]} \\
\leq & \theta^{m+1} \aleph \Lambda^{(m+2)(\delta+k+1-\eta)} \Pi_{i=0}^{m+1} \frac{\Gamma[(i+1) k+i(\delta+1-\eta)+1]}{\Gamma[(i+1)(\delta+k)+i(1-\eta)+1]}
\end{aligned}
$$

is convergent. Therefore

$$
\theta^{m+1} \aleph \Lambda^{(m+2)(\delta+k+1-\eta)} \Pi_{i=0}^{m+1} \frac{\Gamma[(i+1) k+i(\delta+1-\eta)+1]}{\Gamma[(i+1)(\delta+k)+i(1-\eta)+1]} \longrightarrow 0, \text { as } n \longrightarrow \infty .
$$

Also we observe that $\lim _{n \rightarrow \infty} \Lambda^{1-\eta} \psi_{n}(s)=\Lambda^{1-\eta} \xi(s)$ uniformly on J. Thus $\psi(s)=\xi(s)$ on I.
Theorem 3. Suppose $\left(H_{1}\right)$ and $\left(H_{2}\right)$ hold. Then IVP (1) has unique continuous solution

$$
\psi(s)=\Lambda^{\eta-1} \lim _{n \rightarrow \infty} \Lambda^{1-\eta} \psi_{n}(s) .
$$

Proof. Evidently if follows from Lemma 7 and Theorem 2.

4 Illustrative examples

Example 1. For the choice of $\psi(s)=\log (s), s \in(1, e), \delta=\frac{2}{3}, \rho=\frac{3}{4}, \eta=\frac{17}{20}$,

$$
\left\{\begin{array}{l}
\mathfrak{D}_{a^{+}}^{\frac{2,3}{4} ; \log (s)} \zeta(s)=\log (s)^{-\frac{1}{2}}(\sin (\zeta(s))+\sqrt{2} s), s \in[1, e], \tag{9}\\
\lim _{s \rightarrow a}(\log (s)-\log (a))^{\frac{3}{4}} \zeta(s)=2
\end{array}\right.
$$

In this application,

$$
\left\{\begin{array}{l}
\lambda(s, \zeta(s))=\log (s)^{-\frac{1}{2}}(\sin (\zeta(s))+\sqrt{2} s), \quad \text { for } \quad s \in[1, e], \quad \zeta \in \mathfrak{R} \\
\lambda(1, \zeta(1))=0, \quad \text { for } \zeta \in \mathfrak{R} .
\end{array}\right.
$$

clearly, λ is singular at $s=1$, and is continuous on $[1, e]$. We consider $v=\frac{11}{20}$ and $k=-\frac{1}{5} \geq-\frac{11}{20}$,

$$
M=\max _{s \in[1, e], \lambda \in[-2,2]}(\sin \lambda(t)+\sqrt{2} e) \approx 3.8791
$$

and

$$
l=\min \left\{5,\left(\frac{2.7182818258}{3.8791305282} \times \frac{\Gamma(1.2)}{\Gamma(1.8)}\right)^{4}\right\} \approx 0.09328
$$

with

$$
\begin{cases}\zeta_{0}(s)=2 \log (s)^{-\frac{3}{20}}, & \text { for } s \in[1, e] \\ \zeta_{n}(s)=\zeta_{0}(s)+\frac{1}{\Gamma\left(\frac{1}{2}\right)} \int_{0}^{s} \psi^{\prime}(p)(\psi(s)-\psi(a))^{-\frac{1}{3}} \lambda\left(p, \zeta_{n-1}\right)(p) d p, & \text { for } n=1,2, \cdots\end{cases}
$$

Hence, IVP (9) has a unique and continuous solution $\zeta(s)=\log (s)^{\frac{1}{2}} \lim _{s \rightarrow \infty} \log (s)^{-\frac{1}{2}} \zeta_{n}(s)$ on $(0,1]$.
Example 2. For the choice of $\psi(s)=s, s \in(0,1), \delta=\frac{2}{3}, \rho=\frac{1}{2}, \eta=\frac{1}{6}$, consider the following problem

$$
\left\{\begin{array}{l}
\mathfrak{D}_{a^{+}}^{\frac{2}{3}, \frac{1}{2} ; s} \zeta(s)=s^{-\frac{1}{4}}\left(\zeta(s)^{\frac{1}{2}}+|\sin (s)|\right), s \in[0,1], \tag{10}\\
\lim _{s \rightarrow a}(\psi(s)-\psi(a))^{-\frac{1}{4}} \zeta(s)=\Gamma\left(\frac{1}{2}\right) \approx 1.7725,
\end{array}\right.
$$

where

$$
\left\{\begin{array}{l}
\lambda(s, \zeta(s))=(s)^{-\frac{1}{4}}\left(\zeta(s)^{\frac{1}{2}}+|\sin (s)|\right), \quad \text { for } \quad s \in[0,1], \quad \zeta \in \mathfrak{R}, \\
\lambda(0, \zeta(0))=0, \quad \text { for } \quad \zeta \in \mathfrak{R} .
\end{array}\right.
$$

Clearly λ is singular at $s=0$, and is continuous on $[0,1]$. We consider $v=\frac{5}{6}$ and $k>-\frac{5}{6}$ which gives $M \approx 1.8268, l \approx 0.0395$ with

$$
\begin{cases}\zeta_{0}(s)=\Gamma\left(\frac{1}{2}\right) s^{\frac{1}{6}}, & \text { for } s \in(0,1) \\ \zeta_{n}(s)=\zeta_{0}(s)+\frac{1}{\Gamma\left(\frac{1}{2}\right)} \int_{0}^{s} \psi^{\prime}(p)(\psi(s)-\psi(a))^{-\frac{1}{4}} \lambda\left(p, \zeta_{n-1}\right)(p) d p, & \text { for } n=1,2, \ldots\end{cases}
$$

Hence, $\operatorname{IVP}(10)$ has a unique continuous solution $\zeta(s)=s^{-\frac{1}{4}} \lim _{s \rightarrow \infty} s^{\frac{1}{4}} \zeta_{n}(s)$ on $(0,1]$.

Remark.

(1) Taking $\rho \rightarrow 1$, the nonsingular differential problem (1) becomes ψ-Caputo fractional differential problem.
(2) Taking $\rho \rightarrow 0$, the nonsingular differential problem (1) becomes $\psi-$ Reimann-Liouville fractional differential problem.
(3) For $\rho \rightarrow 1$ and $\psi(s)=s$, the nonsingular differential problem (1) becomes Caputo fractional differential problem.
(4) For $\rho \rightarrow 0$ and $\psi(s)=s^{p}, p \geq 1$ the nonsingular differential problem (1) becomes Katugompola fractional differential problem.
(5) For $\rho \rightarrow 0$ and $\psi(s)=s$ the nonsingular differential problem (1) reduces to Riemann-Liouville fractional differential problem.
(6) For $\rho \rightarrow 0$ and $\psi(s)=\log (s)$, the nonsingular differential problem (1) becomes Hadmard fractional differential problem.
(7) Taking $\rho \rightarrow 1$ and $\psi(s)=s$, the nonsingular differential problem (1) becomes Caputo-Hadamard fractional differential problem.

5 Concluding remarks

This study focused on establishing the local existence and uniqueness of solutions to the ψ-Hilfer fractional differential problem. By employing Picard's approximations, a computable iterative scheme is developed to uniformly approximate the solution. The validity of the findings is supported by two illustrative examples. This work contributes to a deeper understanding of the singular ψ-Hilfer fractional differential problem and offers a more generalized computational approach for approximating solutions, extending the existing contributions of various researchers.

References

[1] M.S. Abdo, S.K. Panchal, Fractional integro-differential equations involving ψ - Hilfer fractional derivative, Adv. Appl. Math. Mech. 11 (2019) 338-359.
[2] M.A. Almalahi, M.S. Abdo, S.K. Panchal ψ-Hilfer fractional functional differential equation by Picard operator method, J. Appl. Nonlinear Dynam. 9 (2020) 685-702.
[3] R. Almeida, A Caputo fractional derivative of a function with respect to another function, Comm. Nonlinear Sci. Numer. Sinulat., 44 (2017) 460-481.
[4] T.M. Atanackovic, S. Pilipovic, B. Stankovic, D. Zorica, Fractional calculus with applications in mechanics: Vibrations and diffusion processes, Wiley-ISTE, London, Hoboken, 2014.
[5] S.P. Bhairat, Existence and continuation of solutions of Hilfer fractional differential equations, J. Math. Model. 7 (2019) 1-20.
[6] S.P. Bhairat, On local existence of solution for nonlinear Hilfer fractional differential equation, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 29 (2022) 363-374.
[7] S.P. Bhairat, New approach to existence of solution for weighted Cauchy-type problem, J. Math. Model. 8 (2020) 377-391.
[8] D. Delbosco, L. Rodino, Existence and uniqueness for a nonlinear fractional differential equation, J. Math. Anal. Appl. 204 (1996) 609-625.
[9] K. Diethelm, The Analysis of Fractional Differential Equations, Lecture Notes in Mathematics, Springer-Verlag Berlin Heidelberg, 2010.
[10] D.B. Dhaigude, S.P. Bhairat, Existence and uniqueness of solution of Cauchy-type problem for Hilfer fractional differential equations, Comnun. Appl. Anal. 22 (2018) 121-134.
[11] D.B. Dhaigude, S.P. Bhairat, Local existence and uniqueness of solution of Hilfer fractional differential equations, Nonlinear Dyn. Syst. Theory. 18 (2018) 144-153.
[12] K.M. Furati, M.D. Kassim,Existence and uniqueness for a problem involving Hilfer fractional derivative, Computer Math. Appl. 64 (2012) 1616-1626.
[13] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.
[14] A.A. Kilbas, H.M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Math Stud, 204 Elsevier, Amsterdam, 2006.
[15] K.D. Kucche, A.D. Mali, J. Vanterler da C. Sousa, On the nonlinear ψ-Hilfer fractional differential equations, Comput. Appl. Math., 38 (2019) 73.
[16] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity, an Introduction to Mathematical Model, Imperical College Press, World Scientific Publishing, London, 2010.
[17] F. Norouzi, G.M. N'Guerekata A study of ψ-Hilfer fractional differential system with application in financial crisis, Chaos Solitons Fractals 6 (2021) 100056.
[18] I. Podlubny, Fractional Differential Equations, Academic Press, 1998.
[19] A. Salim, M. Benchohra, J.R. Graef, J.E. Lazreg, Initial value problem for hybrid ψ-Hilfer fractional implicit differential equations, J. Fixed Point Theory Appl. 24 (2022) 1-14.
[20] S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives - Theory and Applications, Gordon and Breach, 1993.
[21] C. Sousa, E.C. de Oliveira, Leibniz type rule: ψ-Hilfer fractional operator, Comnun. Nonlinear Sci. Numer. Sinulat. 77 (2019) 305-311.
[22] H.G. Sun, Y. Zhang, D. Baleanu, W. Chena, Y.Q. Chene, A new collection of real world applications of fractional calculus in science and engineering, Comnun. Nonlinear Sci. Numer. Sinulat. 64 (2018) 213-231.
[23] R. Toledo-Henrnandez, V. Rico-Ramirez, G.A. Iglesias-Silva, U.M. Diwekar, A fractional calculus approach to the dynamic optimization of biological reactive systems. Part I: Fractional models for biological reactions, Chem. Eng. Sci., 117 (2014) 217-228.
[24] J. Vanterler da C. Sousa, E. Capelas de Oliveira, On the ψ Hilfer fractional derivative, Comnun. Nonlinear Sci. Numer. Sinulat. 60 (2018) 72-91.
[25] J. Vanterler da C. Sousa, E. Capelas Oliveira, A Gronwall inequality and the Cauchy-type problem by means of ψ-Hilfer operator, Diff. Equ. Appl. 11 (2019), 87-106.
[26] N. Vieira, M.M. Rodregues, M. Ferriera, Fractional gradient methods via ψ-Hilfer derivative, Fractal Fract. 7 (2023) 275.
[27] X. Yang and Y. Liu, Picard iterative processes for initial value problems of singular fractional differential equations, Adv. Differ. Equat. 2014 (2014) 102.

[^0]: * Corresponding author

 Received: 31 June 2023/ Revised: 28 July 2023/ Accepted: 1 August 2023
 DOI: 10.22124/JMM.2023.24626.2201

