Journal of Algebra and Related Topics Vol. 2, No 2, (2014), pp 63-72

WEAKLY PRIME TERNARY SUBSEMIMODULES OF TERNARY SEMIMODULES

J. N. CHAUDHARI* AND H. P. BENDALE

ABSTRACT. In this paper we introduce the concept of weakly prime ternary subsemimodules of a ternary semimodule over a ternary semiring and obtain some characterizations of weakly prime ternary subsemimodules. We prove that if N is a weakly prime subtractive ternary subsemimodule of a ternary R-semimodule M, then either N is a prime ternary subsemimodule or (N : M)(N : M)N = 0. If N is a Q-ternary subsemimodule of a ternary R-semimodule M, then a relation between weakly prime ternary subsemimodules of M containing N and weakly prime ternary subsemimodules of the quotient ternary R-semimodule $M/N_{(Q)}$ is obtained.

1. INTRODUCTION

Anderson and Smith [2] introduced the notion of weakly prime ideals in commutative ring with non-zero identity in 2003. Later on, this concept has been studied in modules and semirings by many authors [4, 5, 16]. Further it is extended for semimodule by Chaudhari and Bonde [11]. For more study on various generalization of prime ideals see [3, 6, 7, 8, 9]. In this paper we introduce the concept of weakly prime ternary subsemimodule of a ternary semimodule over a ternary semiring and obtain some characterizations of weakly prime ternary subsemimodules. For the definitions of monoid and semiring we refer [1, 15] and for ternary semiring we refer [13, 14]. All ternary semirings in

MSC(2010): Primary: 16Y60; Secondary: 16Y99.

Keywords: Entire ternary semimodule; subtractive ternary subsemimodule; partitioning ternary subsemimodule; weakly prime ternary subsemimodule; quotient ternary semimodule.

Received: 22 August 2014, Accepted: 2 November 2014.

^{*}Corresponding author.

this paper are commutative with nonzero identity. \mathbb{Z}_0^+ (N) will denote the set of all non-negative (positive) integers where as \mathbb{Z}_0^- (\mathbb{Z}^-) will denote the set of all non-positive (negative) integers. An ideal I of a ternary semiring R is called a subtractive ideal (= k-ideal) if $a, a+b \in I$, $b \in R$, then $b \in I$. A proper ideal P of a ternary semiring R is said to be prime if $abc \in P$, then either $a \in P$ or $b \in P$ or $c \in P$. A proper ideal P of a ternary semiring R is said to be weakly prime if $0 \neq abc \in P$, then either $a \in P$ or $b \in P$.

Let R be a ternary semiring. A left ternary R-semimodule is a commutative monoid (M, +) with additive identity 0_M for which we have a function $R \times R \times M \to M$, defined by $(r_1, r_2, x) \mapsto r_1 r_2 x$ called ternary scalar multiplication, which satisfies the following conditions for all elements r_1, r_2, r_3 and r_4 of R and all elements x and y of M:

- 1) $(r_1r_2r_3)r_4x = r_1(r_2r_3r_4)x = r_1r_2(r_3r_4x);$
- 2) $r_1r_2(x+y) = r_1r_2x + r_1r_2y;$
- 3) $r_1(r_2 + r_3)x = r_1r_2x + r_1r_3x;$
- 4) $(r_1 + r_2)r_3x = r_1r_3x + r_2r_3x;$
- 5) $1_R 1_R x = x;$
- 6) $r_1 r_2 0_M = 0_M = 0_R r_2 x = r_1 0_R x.$

Throughout this paper, by a ternary *R*-semimodule we mean a left ternary semimodule over a ternary semiring *R*. Every ternary semiring *R* is ternary $(\mathbb{Z}_0^-, +, \cdot)$ -semimodule [10]. A nonempty subset *N* of a ternary *R*-semimodule *M* is called ternary subsemimodule of *M* if *N* is closed under addition and closed under ternary scalar multiplication.

If N is a proper ternary subsemimodule of a ternary R-semimodule $M, m \in M$ and A is a non-empty subset of M, then we denote

- 1) $(N:m) = \{r \in R : rsm \in N \text{ for all } s \in R\};$
- 2) $(N:A) = \{r \in R : rsA \subseteq N \text{ for all } s \in R\};$
- 3) $(N:M) = \{r \in R : rsM \subseteq N \text{ for all } s \in R\}.$

Clearly, (N : m) and (N : M) are ideals of R. Also $(N : A) = \bigcap \{(N : m) : m \in A\}$. Since intersection of arbitrary family of ideals is again an ideal, (N : A) is an ideal of R.

Definition 1.1. A ternary subsemimodule N of a ternary R-semimodule M is called subtractive ternary subsemimodule (= ternary k-subsemimodule) if $x, x + y \in N, y \in M$, then $y \in N$.

Lemma 1.2. Let N be a subtractive ternary subsemimodule of a ternary R-semimodule $M, m \in M$ and A be a non-empty subset of M. Then (N:A), (N:m) are subtractive ideals of R.

Proof. Proof is trivial.

Since $\{0\} = 0$ is a subtractive ternary subsemimodule of a ternary R-semimodule M, (0 : m) and (0 : M) are subtractive ideals of R where $m \in M$.

Lemma 1.3. ([12, Theorem 3.4]) Let I and J be subtractive ideals of a ternary semiring R. Then $I \cup J$ is subtractive ideal of R if and only if $I \cup J = I$ or $I \cup J = J$.

2. Weakly prime ternary subsemimodules

In this section we introduce the concept of weakly prime ternary subsemimodule of a ternary semimodule over a ternary semiring and obtain some characterizations of weakly prime ternary subsemimodules.

Definition 2.1. A proper ternary subsemimodule N of a ternary Rsemimodule M is said to be prime if $r_1r_2m \in N$, $r_1, r_2 \in R, m \in M$, then either $r_1 \in (N : M)$ or $r_2 \in (N : M)$ or $m \in N$.

Definition 2.2. A proper ternary subsemimodule N of a ternary R-semimodule M is said to be weakly prime if $0 \neq r_1 r_2 m \in N$, $r_1, r_2 \in R, m \in M$, then either $r_1 \in (N : M)$ or $r_2 \in (N : M)$ or $m \in N$.

Clearly, every prime ternary subsemimodule of a ternary semimodule is weakly prime. Following example shows that the converse implication is not true.

Example 2.3. Consider the ternary semiring $R = (\mathbb{Z}_0^-, +, \cdot)$. Then $\{0\}$ is a weakly prime ternary subsemimodule of a ternary *R*-semimodule $M = (\{0, -1, -2, -3, -4, -5\}, +_{-6}) = (\mathbb{Z}_{-6}, +_{-6})$, which is not a prime ternary subsemimodule.

Definition 2.4. A ternary *R*-semimodule *M* is said to be entire if $r_1r_2m = 0$, $r_1, r_2 \in R$, $m \in M$, then either $r_1 = 0$ or $r_2 = 0$ or m = 0.

Proposition 2.5. Let M be an entire ternary R-semimodule and N be a weakly prime ternary subsemimodule of M. Then (N : M) is a weakly prime ideal of R.

Proof. Let $0 \neq abc \in (N : M)$ and $a \notin (N : M)$, $b \notin (N : M)$. To show $c \in (N : M)$. Let $0 \neq x \in M, 0 \neq r \in R$. Since M is entire, $0 \neq (abc)rx = a(bcr)x = ab(crx) \in N$. Therefore $a \in (N : M)$ or $b \in$ (N : M) or $crx \in N$, since N is a weakly prime ternary subsemimodule. Now $crx \in N$ for all $0 \neq r \in R$ and for all $0 \neq x \in M$. So $c \in (N : M)$. Thus (N : M) is a weakly prime ideal of R.

In Proposition 2.5 the condition that, M is an entire, is essential.

Example 2.6. Consider the ternary *R*-semimodule $M = (\{0, -1, -2, -3, -4, -5\}, +_{-6}) = (\mathbb{Z}_{-6}, +_{-6})$ where $R = (\mathbb{Z}_0^-, +, \cdot)$. Then $\{0\}$ is a weakly prime ternary subsemimodule of M, but $(\{0\} : M) = (-6)\mathbb{Z}_0^-\mathbb{Z}_0^-$ is not a weakly prime ideal because $0 \neq (-2) \cdot (-3) \cdot (-1) \in (-6)\mathbb{Z}_0^-\mathbb{Z}_0^-$, but $-2 \notin (-6)\mathbb{Z}_0^-\mathbb{Z}_0^-$, $-3 \notin (-6)\mathbb{Z}_0^-\mathbb{Z}_0^-$, $-1 \notin (-6)\mathbb{Z}_0^-\mathbb{Z}_0^-$.

Theorem 2.7. If N is a weakly prime subtractive ternary subsemimodule of a ternary R-semimodule M, then either N is prime or (N : M)(N : M)N = 0.

Proof. Suppose that $(N:M)(N:M)N \neq 0$. Let $r_1r_2m \in N$ with $r_1, r_2 \in R$ and $m \in M$. If $r_1 r_2 m \neq 0$, then we are through. Suppose $r_1r_2m = 0$. If $r_1r_2N \neq 0$, then there exists $n \in N$ such that $r_1r_2n \neq 0$ 0. Now $0 \neq r_1 r_2(m+n) = r_1 r_2 n \in N \Rightarrow$ either $r_1 \in (N : M)$ or $r_2 \in (N:M)$ or $m \in N$, as N is a weakly prime subtractive ternary subsemimodule. Now suppose that $r_1r_2N = 0$. If $(N:M)r_2m \neq 0$, then there exists $r'_1 \in (N : M)$ such that $r'_1 r_2 m \neq 0$. Now $0 \neq 0$ $(r_1 + r'_1)r_2m = r'_1r_2m \in N \Rightarrow \text{either } r_1 + r'_1 \in (N:M) \text{ or } r_2 \in (N:M)$ or $m \in N$. By Lemma 1.2, (N : M) is a subtractive ideal, and hence either $r_1 \in (N : M)$ or $r_2 \in (N : M)$ or $m \in N$. So suppose that $(N:M)r_2m = 0$. On the similar lines we can assume that $r_1(N:$ M)m = 0. If $(N:M)(N:M)m \neq 0$, then there exist $r''_1, r''_2 \in (N:M)$ such that $r''_1r''_2m \neq 0$. Now $0 \neq (r_1 + r''_1)(r_2 + r''_2)m = r''_1r''_2m \in N \Rightarrow$ either $r_1 + r''_1 \in (N:M)$ or $r_2 + r''_2 \in (N:M)$ or $m \in N$. Again by using Lemma 1.2, either $r_1 \in (N : M)$ or $r_2 \in (N : M)$ or $m \in N$. So suppose that (N:M)(N:M)m = 0. Again on the similar lines we can assume that $(N:M)r_2N = 0$ and $r_1(N:M)N = 0$. Since $(N:M)(N:M)N \neq 0$, there exist $r_1^*, r_2^* \in (N:M)$ and $n^* \in N$ such that $r_1^* r_2^* n^* \neq 0$. Now $0 \neq (r_1 + r_1^*)(r_2 + r_2^*)(m + n^*) = r_1^* r_2^* n^* \in N \Rightarrow$ either $r_1 + r_1^* \in (N : M)$ or $r_2 + r_2^* \in (N : M)$ or $m + n^* \in N$. Since N is a subtractive ternary subsemimodule and by using Lemma 1.2, either $r_1 \in (N:M)$ or $r_2 \in (N:M)$ or $m \in N$. Hence N is a prime ternary subsemimodule of M.

Lemma 2.8. Let N be a proper ternary subsemimodule of a ternary R-semimodule M. Then the following statements are equivalent.

- i) N is a prime ternary subsemimodule of M.
- ii) If whenever $IJD \subseteq N$, with I, J are ideals of R and D is a ternary subsemimodule of M, then $I \subseteq (N : M)$ or $J \subseteq (N : M)$ or $D \subseteq N$.

Proof. (i) \Rightarrow (ii) Let $IJD \subseteq N$ where I, J are ideals of R and D is a ternary subsemimodule of M. Suppose that $J \nsubseteq (N : M)$ and $D \nsubseteq N$. Choose $r_2 \in J$ and $x \in D$ such that $r_2 \notin (N : M)$ and $x \notin N$.

Let $r_1 \in I$. Now $r_1r_2x \in IJD \subseteq N$. Since N is a prime ternary subsemimodule, $r_1 \in (N : M)$. Hence $I \subseteq (N : M)$.

(ii) \Rightarrow (i) Let $r_1r_2m \in N$ where $r_1, r_2 \in R$ and $m \in M$. Take $I = RRr_1$, $J = RRr_2$ and D = RRm. Then I, J are ideals of R and D is a ternary subsemimodule of M such that $IJD \subseteq N$. By assumption either $I \subseteq (N : M)$ or $J \subseteq (N : M)$ or $D \subseteq N$. So either $r_1 \in (N : M)$ or $r_2 \in (N : M)$ or $m \in N$. Hence N is a prime ternary subsemimodule on M.

Theorem 2.9. If N is a proper subtractive ternary subsemimodule of a ternary R-semimodule M, then the following statements are equivalent:

- 1) If whenever $0 \neq IJD \subseteq N$, with I, J are ideals of R and D is a ternary subsemimodule of M, then either $I \subseteq (N : M)$ or $J \subseteq (N : M)$ or $D \subseteq N$;
- 2) N is a weakly prime ternary subsemimodule of M.

Proof. (1) \Rightarrow (2) Suppose that $0 \neq r_1r_2m \in N$ where $r_1, r_2 \in R$ and $m \in M$. Take $I = \langle r_1 \rangle = RRr_1$, $J = \langle r_2 \rangle = RRr_2$ and $D = \langle m \rangle = RRm$. Then $0 \neq IJD \subseteq N$. So either $I \subseteq (N : M)$ or $J \subseteq (N : M)$ or $D \subseteq N$ and hence either $r_1 \in (N : M)$ or $r_2 \in (N : M)$ or $m \in N$. Thus N is a weakly prime ternary subsemimodule of M.

 $(2) \Rightarrow (1)$ Suppose that N is a weakly prime ternary subsemimodule of M. If N is prime, then the result is clear by using Lemma 2.8. So we can assume that N is not prime. Let $0 \neq IJD \subseteq N$ where I, Jare ideals of R and D is a ternary subsemimodule of M. To show $I \subseteq (N:M)$ or $J \subseteq (N:M)$ or $D \subseteq N$. Suppose that $I \not\subseteq (N:M)$, $J \nsubseteq (N : M)$ and $D \nsubseteq N$. Choose $r_1 \in I, r_2 \in J$ and $x \in D$ such that $r_1, r_2 \notin (N : M)$ and $x \notin N$. If $0 \neq r_1 r_2 x \in IJD \subseteq N$, then $r_1 \in (N : M)$ or $r_2 \in (N : M)$ or $x \in N$, as N is a weakly prime ternary subsemimodule. It is impossible. Hence assume that $r_1r_2x = 0$. If $r_1r_2D \neq 0$, then choose $d \in D$ such that $r_1r_2d \neq 0$. Now $0 \neq r_1 r_2 d \in IJD \subseteq N \Rightarrow d \in N$, since N is weakly prime ternary subsemimodule. Now $0 \neq r_1 r_2 (d+x) = r_1 r_2 d \in N \Rightarrow d+x \in$ N. Since N is a subtractive ternary subsemimodule and $d \in N$, so $x \in N$, a contradiction. Hence assume that $r_1 r_2 D = 0$. If $Ir_2 x \neq 0$, then there exists $r'_1 \in I$ such that $0 \neq r'_1 r_2 x \in IJD \subseteq N$. Since N is a weakly prime ternary subsemimodule, $r'_1 \in (N : M)$. Now $0 \neq (r_1 + r_1')r_2x = r_1'r_2x \in N \Rightarrow r_1 + r_1' \in (N : M)$, as N is a weakly prime ternary subsemimodule. By Lemma 1.2, $r_1 \in (N : M)$, a contradiction. Hence assume that $Ir_2x = 0$. On the similar lines we can assume that $r_1Jx = 0$. If $IJx \neq 0$, then there exist $r_1'' \in I$ and $r_2'' \in J$ such that $0 \neq r_1''r_2''x \in IJD \subseteq N$. Since N is a weakly prime ternary subsemimodule, $r_1'' \in (N:M)$ or $r_2'' \in (N:M)$. Case (i) $r_1'' \in (N:M) \text{ and } r_2'' \notin (N:M). \text{ Now } 0 \neq (r_1 + r_1'')r_2''x = r_1''r_2''x \in N \Rightarrow$ $r_1 + r_1'' \in (N:M)$. Now by Lemma 1.2, $r_1 \in (N:M)$, a contradiction. Similarly, Case (ii) $r_1'' \notin (N:M)$ and $r_2'' \in (N:M)$ is impossible. Case (iii) $r_1'' \in (N:M)$ and $r_2'' \in (N:M)$. Now $0 \neq (r_1 + r_1'')(r_2 + r_2'')x = r_1''r_2''x \in N \Rightarrow$ either $r_1 + r_1'' \in (N:M)$ or $r_2 + r_2'' \in (N:M)$. By Lemma 1.2, either $r_1 \in (N : M)$ or $r_2 \in (N : M)$, a contradiction. Hence assume that IJx = 0. On the similar lines we can assume that $Ir_2D = 0$ and $r_1JD = 0$. Since $IJD \neq 0$, there exist $r_1^* \in I$, $r_2^* \in J$ and $d^* \in D$ such that $0 \neq r_1^* r_2^* d^* \in IJD \subseteq N$. Since N is a weakly prime ternary subsemimodule, either $r_1^* \in (N:M)$ or $r_2^* \in (N:M)$ or $d^* \in N$. Case (α_1) $r_1^* \in (N:M)$, $r_2^* \notin (N:M)$ and $d^* \notin N$. Now $0 \neq (r_1 + r_1^*)r_2^*d^* = r_1^*r_2^*d^* \in N \Rightarrow r_1 + r_1^* \in (N:M).$ By Lemma 1.2, $r_1 \in (N : M)$, a contradiction. On the similar lines Case (α_2) $r_1^* \notin (N:M), r_2^* \in (N:M), d^* \notin N \text{ and Case } (\alpha_3) r_1^* \notin (N:M),$ $r_2^* \notin (N:M)$ and $d^* \in N$ are impossible. Case (α_4) $r_1^*, r_2^* \in (N:M)$ and $d^* \notin N$. Now $0 \neq (r_1 + r_1^*)(r_2 + r_2^*)d^* = r_1^* r_2^* d^* \in N \Rightarrow$ either $r_1 + r_1^* \in (N : M)$ or $r_2 + r_2^* \in (N : M)$. By Lemma 1.2, either $r_1 \in (N:M)$ or $r_2 \in (N:M)$, a contradiction. Again on the similar lines Case (α_5) $r_1^* \notin (N:M), r_2^* \in (N:M), d^* \in N$ and Case (α_6) $r_1^* \in (N:M), r_2^* \notin (N:M)$ and $d^* \in N$ are impossible. Case (α_7) $r_1^*, r_2^* \in (N:M)$ and $d^* \in N$. Now $0 \neq (r_1 + r_1^*)(r_2 + r_2^*)(x + d^*) =$ $r_1^* r_2^* d^* \in N \Rightarrow \text{ either } r_1 + r_1^* \in (N : M) \text{ or } r_2 + r_2^* \in (N : M) \text{ or }$ $(x+d^*) \in N$. By Lemma 1.2 and N is subtractive, either $r_1 \in (N:M)$ or $r_2 \in (N:M)$ or $x \in N$, a contradiction. Now $I \subseteq (N:M)$ or $J \subseteq (N:M)$ or $D \subseteq N$.

Theorem 2.10. Let N be a weakly prime subtractive ternary subsemimodule of a ternary R-semimodule M. Then the following statements hold:

1) For
$$m \in M \setminus N$$
, $(N : m) = (N : M) \cup (0 : m)$;
2) For $m \in M \setminus N$, $(N : m) = (N : M)$ or $(N : m) = (0 : m)$.

Proof. (1) Let $m \in M \setminus N$. Clearly, $(N : M) \cup (0 : m) \subseteq (N : m)$. Now let $a \in (N : m)$. Then $arm \in N$ for all $r \in R$. If $0 \neq a1m \in N$, then $a \in (N : M)$ or $1 \in (N : M)$ as N is a weakly prime ternary subsemimodule. Hence $a \in (N : M)$. Suppose that a1m = 0. Then arm = 1r(a1m) = 0 for all $r \in R$. So $a \in (0 : m)$. Thus $a \in (N : M) \cup (0 : m)$. Now $(N : m) \subseteq (N : M) \cup (0 : m)$. (2) It follows by Lemma 1.2 and Lemma 1.3.

3. Weakly prime ternary subsemimodules in quotient ternary semimodules

In this section, we extend results of [4, 10] and [11] to ternary semimodules over ternary semirings and give a relation between the prime (weakly prime) ternary subsemimodules of a ternary *R*-semimodule *M* and the prime (weakly prime) ternary subsemimodules of the quotient ternary *R*-semimodule $M/N_{(Q)}$ where *N* is a *Q*-ternary subsemimodule of *M*.

Lemma 3.1. ([10, Lemma 1.4]) Let N be a ternary subsemimodule of a ternary R-semimodule M and x, $y \in M$ such that $x + N \subseteq y + N$. Then $x + z + N \subseteq y + z + N$ and $rsx + N \subseteq rsy + N$ for all $z \in M$, $r, s \in R$.

Definition 3.2. ([10]) A ternary subsemimodule N of a ternary R-semimodule M is called Q-ternary subsemimodule (= partitioning ternary subsemimodule) if there exists a subset Q of M such that

- 1) $M = \bigcup \{q + N : q \in Q\}.$
- 2) If $q_1, q_2 \in Q$, then $(q_1 + N) \cap (q_2 + N) \neq \emptyset \Leftrightarrow q_1 = q_2$.

Let N be a Q-ternary subsemimodule of a ternary R-semimodule M. Then $M/N_{(Q)} = \{q + N : q \in Q\}$ forms a ternary R-semimodule under the following addition " \oplus " and ternary scalar multiplication " \odot ", $(q_1 + N) \oplus (q_2 + N) = q_3 + N$ where $q_3 \in Q$ is unique such that $q_1 + q_2 + N \subseteq q_3 + N$, and $r \odot s \odot (q_1 + N) = q_4 + N$ where $q_4 \in Q$ is unique such that $rsq_1 + N \subseteq q_4 + N$. This ternary R-semimodule $M/N_{(Q)}$ is called the quotient ternary semimodule of M by N and denoted by $(M/N_{(Q)}, \oplus, \odot)$ or just $M/N_{(Q)}$.

Lemma 3.3. ([10, Lemma 3.5]) Let N be a Q-ternary subsemimodule of a ternary R-semimodule M. If A is a subtractive ternary subsemimodule of M such that $N \subseteq A$, then N is a $Q \cap A$ -ternary subsemimodule of A.

Lemma 3.4. Let N be a Q-ternary subsemimodule of a ternary Rsemimodule M. If $r, s \in R$ and $m \in M$, then there exists a unique $q \in Q$ such that $rsm \in r \odot s \odot (q + N)$.

Proof. Let $r, s \in R$ and $m \in M$. Since N is a Q-ternary subsemimodule of M and $m, rsm \in M$, there exist unique $q, q' \in Q$ such that $m + N \subseteq q + N$ and $rsm + N \subseteq q' + N$. Also $r \odot s \odot (q + N) = q'' + N$ where $q'' \in Q$ is a unique element such that $rsq + N \subseteq q'' + N$. By Lemma 3.1, $rsm + N \subseteq rsq + N \subseteq q'' + N$. Now $rsm \in (q' + N) \cap (q'' + N)$. Hence $(q' + N) \cap (q'' + N) \neq \emptyset$. So q' = q''. Thus $rsm \in q' + N = q'' + N = r \odot s \odot (q + N)$. **Theorem 3.5.** Let N be a Q-ternary subsemimodule of a ternary Rsemimodule M and P be a subtractive ternary subsemimodule of M with $N \subseteq P$. Then

- 1) If P is a weakly prime ternary subsemimodule of M, then $P/N_{(Q\cap P)}$ is a weakly prime ternary subsemimodule of $M/N_{(Q)}$.
- 2) If N, $P/N_{(Q\cap P)}$ are weakly prime ternary subsemimodules of $M, M/N_{(Q)}$ respectively, then P is a weakly prime ternary subsemimodule of M.

Proof. Let q_0 be the unique element of Q such that $q_0 + N$ is the zero element of $M/N_{(Q)}([10])$, Lemma 2.3).

(1) Let P be a weakly prime ternary subsemimodule of M. Let $r, s \in R$ and $q_1 + N \in M/N_{(Q)}$ be such that $q_0 + N \neq r \odot s \odot (q_1 + N) \in P/N_{(Q \cap P)}$. By Lemma 3.3, N is a $Q \cap P$ -ternary subsemimodule of P. Hence there exists a unique $q_2 \in Q \cap P$ such that $r \odot s \odot (q_1 + N) = q_2 + N$ where $rsq_1 + N \subseteq q_2 + N$. Since $N \subseteq P$, $rsq_1 \in P$. If $rsq_1 = 0$, then $rsq_1 \in P$. $(q_0+N)\cap(q_2+N)$, since $0 \in q_0+N$ (by [10], Lemma 2.3). So $q_0 = q_2$ and hence $q_0 + N = q_2 + N$, a contradiction. Thus $rsq_1 \neq 0$. As P is weakly prime ternary subsemimodule, either $r \in (P:M)$ or $s \in (P:M)$ or $q_1 \in P$. If $q_1 \in P$, then $q_1 \in Q \cap P$ and hence $q_1 + N \in P/N_{(Q \cap P)}$. Without loss of generality suppose that $r \in (P:M)$. For $q + N \in M/N_{(Q)}$ and $s' \in R$, let $r \odot s' \odot (q + N) = q_3 + N$ where q_3 is a unique element of Q such that $rs'q + N \subseteq q_3 + N$. Therefore $rs'q = q_3 + n$ for some $n \in N$. Now $r \in (P : M) \Rightarrow rs'q \in P \Rightarrow q_3 + n \in P \Rightarrow q_3 \in P$, as P is a subtractive ternary subsemimodule of M and $n \in N \subseteq P$. Hence $q_3 \in Q \cap P$. Now $r \odot s' \odot (q+N) = q_3 + N \in P/N_{(Q \cap P)}$ for all $s' \in R$ and $q + N \in M/N_{(Q)}$. Therefore $r \in (P/N_{(Q \cap P)} : M/N_{(Q)})$. Thus $P/N_{(Q\cap P)}$ is a weakly prime ternary subsemimodule of $M/N_{(Q)}$. (2) Suppose that $N, P/N_{(Q\cap P)}$ are weakly prime ternary subsemimodules of $M, M/N_{(Q)}$ respectively. Let $0 \neq rsm \in P$ where $r, s \in R, m \in$ M. If $rsm \in N$, then we are through, since N is a weakly prime ternary subsemimodule of M. So suppose that $rsm \in P \setminus N$. By using Lemma 3.4, there exists a unique $q_1 \in Q$ such that $m \in q_1 + N$ and $rsm \in r \odot s \odot (q_1 + N) = q_2 + N$ where q_2 is a unique element of Q such that $rsq_1 + N \subseteq q_2 + N$. Now $rsm \in P, rsm \in q_2 + N$ implies $q_2 \in P$, as P is a subtractive ternary subsemimodule and $N \subseteq P$. Hence $q_0 + N \neq r \odot s \odot (q_1 + N) = q_2 + N \in P/N_{(Q \cap P)}$. As $P/N_{(Q \cap P)}$ is a weakly prime ternary subsemimodule, $r \in (P/N_{(Q \cap P)} : M/N_{(Q)})$ or $s \in (P/N_{(Q \cap P)} : M/N_{(Q)})$ or $q_1 + N \in P/N_{(Q \cap P)}$. If $q_1 + N \in P/N_{(Q \cap P)}$, then $q_1 \in P$. Hence $m \in q_1 + N \subseteq P$. Now without loss of generality assume that $r \in (P/N_{(Q\cap P)}: M/N_{(Q)})$. Let $x \in M$ and $s' \in R$. By using Lemma 3.4, there exists a unique $q_3 \in Q$ such that $x \in q_3 + N$ and

70

 $rs'x \in r \odot s' \odot (q_3 + N) = q_4 + N$ where q_4 is a unique element of Q such that $rs'q_3 + N \subseteq q_4 + N$. Now $q_4 + N = r \odot s' \odot (q_3 + N) \in P/N_{(Q \cap P)}$ and hence $q_4 \in P$. As $rs'x \in q_4 + N$ and $N \subseteq P$, $rs'x \in P$. So $r \in (P:M)$.

Theorem 3.6. Let N be a Q-ternary subsemimodule of a ternary Rsemimodule M and P be a subtractive ternary subsemimodule of M with $N \subseteq P$. Then P is a prime ternary subsemimodule of M if and only if $P/N_{(Q\cap P)}$ is a prime ternary subsemimodule of $M/N_{(Q)}$.

Proof. The proof is similar as in the proof of Theorem 3.5.

Every ternary semiring R is a ternary semimodule over itself and hence every ideal I of a ternary semiring R is a ternary subsemimodule of a ternary R-semimodule R. So we have:

Corollary 3.7. Let I be a Q-ideal and P be a subtractive ideal of a ternary semiring R with $I \subseteq P$. Then P is a prime ideal of ternary semiring R if and only if $P/I_{(Q\cap P)}$ is a prime ideal of quotient ternary semiring $R/I_{(Q)}$.

Acknowledgments

The authors are thankful to the referee for his helpful suggestions.

References

- P. J. Allen, A fundamental theorem of homomorphism for semirings, Proc. Amer. Math. Soc., 21 (1969), 412-416.
- D. D. Anderson and E. Smith, Weakly prime ideals, Houston Journal of Mathematics, (4) 23 (2003), 831-840.
- D. F. Anderson and A. Badawi, On n-absorbing ideals of commutative rings, Comm. Algebra, 39 (2011), 1646-1672.
- S. E. Atani, The ideal theory in quotient of commutative semirings, Glasnik Matematicki, (62) 42 (2007), 301-308.
- S. E. Atani and F. Farzalipour, On weakly prime submodules, Tamkang Journal of Mathematics, (3) 38 (2007), 247-252.
- S. E. Atani and F. Farzalipour, On weakly primary ideals, Georgian Mathematical J., (3) 12 (2005), 423-429.
- A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc., 75 (2007), 417-429.
- A. Badawi and A. Y. Darani, On weakly 2-absorbing ideals of commutative rings, Houston J. of Math., (2) 39 (2013), 441-452.
- A. Badawi, U. Tekir and E. Yetkin, On 2-absorbing primary ideals in commutative rings, Bull. Korean Math. Soc., (4) 51 (2014), 1163-1173.

- J. N. Chaudhari and H. P. Bendale, On partitioning and subtractive ternary subsemimodules of ternary semimodules over ternary semirings, International Journal of Algebra, (4) 6 (2012), 163-172.
- 11. J. N. Chaudhari and D. R. Bonde, Weakly prime subsemimodules of semimodules over semirings, International Journal of Algebra, (4) 5 (2011), 167-174.
- 12. J. N. Chaudhari and K. J. Ingale, *Prime avoidance theorem in ternary semirings*, Journal of Advanced Research in Pure Mathematics, (1) 5 (2013), 80-85.
- T. K. Dutta and S. Kar, On regular ternary semirings, Advances in Algebra, Proceedings of the ICM satellite conference in Algebra and related topics, World Scientific (2003), 343-355.
- T. K. Dutta and S. Kar, On the Jacobson radical of a ternary semirings, Southeast Asian Bull. of Maths., 28 (2004), 1-13.
- J. S. Golan, Semiring and their Applications, Kluwer Academic publisher Dordrecht, 1999.
- V. Gupta and J. N. Chaudhari, *Characterization of weakly prime subtractive ideals in semirings*, Bull. Inst. Math. Acad. Sinica (New Series), **3** (2008), 347-352.

J. N. Chaudhari

Department of Mathematics, M. J. College, N. M. University, Jalgaon-425002, India.

Email: jnchaudhari@rediffmail.com

H. P. Bendale

Department of Applied Sciences, J. T. Mahajan College of Engineering, Faizpur, N. M. University, Jalgaon-425524, India.

Email: hpbendale@gmail.com

72