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Abstract. A new version of the augmented self-scaling memoryless BFGS quasi-Newton update, pro-
posed in [Appl. Numer. Math. 167, 187–201, (2021)], is suggested for unconstrained optimization
problems. To use the corresponding scaled parameter, the clustering of the eigenvalues of the approxi-
mate Hessian matrix about one point is applied with three approaches. The first and second approaches
are based on the trace and the determinant of the matrix. The third approach is based on minimizing
the measure function. The sufficient descent property is guaranteed for uniformly convex functions, and
the global convergence of the proposed algorithm is proved both for the uniformly convex and general
nonlinear objective functions, separately. Numerical experiments on a set of test functions of the CUTEr
collection show that the proposed method is robust. In addition, the proposed algorithm is effectively
applied to the salt and pepper noise elimination problem.
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1 Introduction and motivation

Let f : Rn→ R be a continuously differentiable function. Then consider the unconstrained optimization
(UO) problem min

x∈Rn
f (x). Many applicable problems of science and engineering can be formulated as UO

models, such as electromagnetic energy [22], neural networks [24], image processing [12], and signal
processing [29] (for more cases, see [1, 33]).

Analytical methods are poor in solving UO problems, especially in high-dimension and for extremely
nonlinear objective functions. Therefore, iterative numerical methods are famous in this context. Two
main families of iterative algorithms in this field are line search (LS) and trust region (TR) methods.
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Here, we use an LS method with the following iterative formula

xk+1 = xk +αkdk, k ≥ 0, (1)

where αk is a step length and dk is a descent quasi-Newton (QN) direction, which is the solution of the
following system of linear equations

Bkdk =−gk, k ≥ 0, (2)

where gk =∇ f (xk) and Bk is the positive-definite symmetric approximate of the Hessian matrix. Usually,
the step length αk in (1) is determined by Wolfe LS conditions

f (xk +αkdk)≤ f (xk)+δαkgT
k dk, (3)

∇ f (xk +αkdk)
T dk ≥ σgT

k dk, (4)

with 0 < δ < σ < 1.
For QN methods, the sequence of Hessian approximations {Bk}k≥0, starting from an initial positive-

definite matrix B0 ∈ Rn×n is updated to satisfy the following so-called secant condition

Bk+1sk = yk, for all k ≥ 0, (5)

where sk = xk+1− xk and yk = gk+1− gk. In addition to the secant condition in (5), some QN updates
must preserve positive definiteness. Moreover, theoretical and numerical aspects of QN methods are
discussed in [18, 19].

As we know, QN updates, based on the previous approximation of the Hessian, are used in two main
approaches, containing full and diagonal matrices [4]. In the full case, the general update formula is
devoted to the Broyden family [13]

Bk+1 = Bk−
BksksT

k Bk

sT
k Bksk

+
ykyT

k

sT
k yk

+βukuT
k , (6)

where β is the measure parameter and

uk = (sT
k Bksk)

1/2
(

yk

sT
k yk
− Bksk

sT
k Bksk

)
.

In the update (6), for β = 0, β = 1, and β = 1/(1− sT
k Bksk

sT
k yk

), the method is reduced to Broyden–Felether–
Goldfarb–Shanno (BFGS), Davidon–Felether–Powell (DFP), and symmetric rank one (SR1), respec-
tively [37]. Among them, the BFGS is the most efficient method for solving medium-dimension UO
problems [14]. The global convergence of the method has been proved for convex functions [15, 16].
Despite very important and valuable features of the self-correction property of the BFGS method, this
method may not be converged for general functions. To overcome this defect, some researchers in-
troduced modified versions of BFGS (see [2] for more details). For instance, using a modified secant
equation (MSE) instead of the standard version of this equation is common in literatures [33]. This idea
is used to improve conjugate gradient (CG) methods [31] and spectral CG methods [32]. For the BFGS
update, MSE can be used for more accurate approximation of inverse Hessian, incorporating the func-
tion and the gradient in the secant equation (5). Recently, as an extension of MSEs proposed by Wei et
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al. [39], Zhang et al. [43], and Li and Fukushima [25] and Arazm et al. [7] introduced an extended MSE
by the following equation

Bk+1sk = ỹk, (7)

where

ỹk = yk + τksk, τk = τ
θ̄k

‖sk‖2 +C‖gk‖p, θk = 2( fk− fk+1)+ sT
k (gk +gk+1), (8)

in which τ , C, and p are nonnegative constants and θ̄k =max{θk,0}. In (8), if τ =C = 0, then the MSE is
reduced to the standard secant equation. If τ = 0 and C > 0, then (7) is reduced to the MSE proposed by
Li and Fukushima [25]. Finally, if C = 0, then the choices τ = 3 and τ = 1 coincide to MSEs proposed by
Zhang et al. [43] and Wei et al. [39], respectively. Resently, using MSE in (7), Babaie-Kafaki et al. [11]
have introduced a QN method, based on the SR1 update. By the similar manner, Aminifard et al. [2]
proposed an augmented BFGS, called the ABFGS update

BABFGS
k+1 = BBFGS

k+1 + τk
sksT

k

sT
k yk

, (9)

where τk is defined in (8). Moreover, using the Shermen-Morrison formula [37], we have

HABFGS
k+1 = HBFGS

k+1 −
τk

γk

zkzT
k

sT
k yk

, (10)

where Hk = B−1
k is the approximation of the inverse by the Hessian matrix at xk and

zk =−vkyk +

(
1+ vk

‖yk‖2

sT
k yk

)
sk, γk = τk +

sT
k yk

‖sk‖2 + τkvk

(
‖yk‖2

sT
k yk
−

sT
k yk

‖sk‖2

)
,

where vk > 0 is a scaled parameter. It is notable that the ABFGS update in (9) can be considered as a
rank-one modification of the BFGS update formula [2]. The self-scaling memoryless version of ABFGS,
called SMABFGS, is obtained by setting Bk =

1
vk

In in (9) or Hk = vkIn in (10), where In is the identity
matrix. The update of the Hessian approximation and its inverse of SMABFGS are, respectively,

BSMABFGS
k+1 =

1
vk

In−
1
vk

sksT
k

sT
k sk

+
ykyT

k

sT
k yk

+ τk
sksT

k

sT
k sk

, (11)

HSMABFGS
k+1 = vkIn− vk

skyT
k + yksT

k

sT
k yk

+

(
1+ vk

yT
k yk

sT
k yk

)
sksT

k

sT
k yk
− τk

γk

zkzT
k

sT
k yk

. (12)

It should be mentioned that the ABFGS formula (12) preserves the positive definiteness condition pro-
vided that Hk is positive-definite satisfying (7) [2]. However, similar to setting the spectral parameter of
SMBFGS, selecting an appropriate parameter in SMABFGS is critical theoretically and numerically.

For the SMBFGS updates, the two well-known choices for scale parameters are chosen by Oren and
Spedicator [35] and Oren and Luenberger [34], which are based on a two-point approximation of the
standard secant equation (5). These parameters are as follows

vOS
k =

sT
k yk

‖yk‖2 , vOL
k =

‖sk‖2

sT
k yk

. (13)
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Moreover, there are some ideas in literature for tuning this parameter, such as clustering the eigenvalues
in the search direction matrix [2,3,5,40], minimizing the condition number [9,10], the measure function
[5,20,38], the distance between the direction matrices [17,30], and the difference between the largest and
the smallest eigenvalues [9,26]. Recently, Andrei [5] has introduced three procedures for determining the
scale parameter in SMBFGS based on clustering the eigenvalues, using the determinate and the trace of
the search direction matrix and minimizing the measure function of Byrd and Nocedal [15] (see [6,28]).

As we know, the scaled parameter of the SMABFGS has not been discussed in the previous studies.
Hence, motivated by setting this parameter for the augmented version of the QN method, the SMBFGS
updates in (11) and (12), a novel algorithm in the LS category for UO problems is introduced. The
idea is to cluster the eigenvalues of the search direction matrix using three approaches, which contain
evaluating the trace, the determinate, and the measure function of this matrix. The main features of
the new algorithm are that the method enforces the sufficient descent property for uniformly convex
functions and the global convergence for general functions.

The paper is organized as follows. In Section 2, using clustering of the eigenvalues of SMABFGS, a
new scaling parameter is suggested. In Section 3, the convergence analysis of the new method is proved.
In Section 4, two numerical experiments are made to demonstrate the efficiency of our algorithm. Finally,
conclusions are given in Section 5.

2 A new version of the SMABFGS update

In this section, similar to [5], we use a one-point clustering approach for the SMABFGS method to set
the scale parameter. In continuation, for simplification, we omit the up script notation of SMABFGS for
both matrix and search direction. So, by rewriting (11) and (12), the approximations of Hessian and its
inverse are, respectively, defined

Bk+1 =
1
vk

In +
ykyT

k

sT
k yk

+

(
τk

‖sk‖2 −
1

vk‖sk‖2

)
sksT

k , (14)

Hk+1 = vkIn−
vk

sT
k yk

(
skyT

k + yksT
k

)
+

(
1+

vk‖yk‖2

sT
k yk

)
sksT

k

sT
k yk
− τk

γk

zkzT
k

sT
k yk

. (15)

Now, by applying (15) to (2), the search direction

dk =−vkgk + vk
skyT

k + yksT
k

sT
k yk

gk−
(

1+ vk
yT

k yk

sT
k yk

)
sksT

k

sT
k yk

gk +
τk

γk

zkzT
k

sT
k yk

gk, (16)

is obtained, where τk, γk, and zk are from (7) and (10). It is notable that for τk = 0, the corresponding
QN method is reduced to SMBFGS. As we know, the self-scaling memoryless version of the QN method
is very sensitive on the scaled parameter, vk. Therefore, using clustering of eigenvalues, similar to [5]
for SMBFGS, we apply three approaches to choose this parameter in (14) or (15). First of all, we
need to compute the determinant and the trace of the matrix Bk+1 in (14). After some simple algebraic
manipulations on (14), the trace can be obtained by

tr(Bk+1) =
n−1

vk
+
‖yk‖2

sT
k yk

+ τk. (17)
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Moreover, using the determinate of the rank-two update, [37, Eq. (1.2.70)], the determinate of Bk+1 in
(14)

det(Bk+1) =
1
vn

k

[
v2

kτk

(
‖yk‖2

sT
k yk
−

sT
k yk

‖sk‖2

)
+ vk

(
τk +

sT
k yk

‖sk‖2

)]
, (18)

is achieved. By applying an eigenvalue analysis, similar to [5], it can be deduced that the matrix Bk+1
in (14) has the same (n− 2) eigenvalues equal to 1

vk
, with ρ

±
k as two remainder of them. Now, to

obtain the scaled parameter, we adjust ρ
±
k in a way that all eigenvalues are clustered to one point, that

is ρ
+
k = ρ

−
k = 1

vk
. To impose this condition, in the first approach, we apply the trace of Bk+1 to (17).

Therefore, it uses the condition

tr(Bk+1) =
n
vk
, (19)

where tr(Bk+1) is given by (17) and we get

n−1
vk

+
‖yk‖2

sT
k yk

+ τk =
n
vk
, (20)

which leads to a new scaled parameter

vT R
k =

sT
k yk

‖yk‖2 + τksT
k yk

. (21)

The well definedness of vT R
k in (21) can be guaranteed by the Wolfe LS conditions, given in (3)–(4), that

guarantee sT
k yk > 0.

In the second approach, we use the determinant of Bk+1 in (18). By applying similar manner of the
trace approach, the condition

det(Bk+1) =
1
vn

k
, (22)

can be imposed, which leads to the algebraic equation

1
vn

k

[
v2

kτk

(
‖yk‖2

sT
k yk
−

sT
k yk

‖sk‖2

)
+ vk

(
τk +

sT
k yk

‖sk‖2

)]
=

1
vn

k
.

By elimination vn
k from both sides of this equation, we have

τk

(
‖yk‖2

sT
k yk
−

sT
k yk

‖sk‖2

)
v2

k +

(
τk +

sT
k yk

‖sk‖2

)
vk−1 = 0, (23)

which is equivalent to a quadratic equation in terms of vk. As a special case, for τ = c = 0, we have
τk = 0 and the solution of (23) is reduced to vOL

k in (13), proposed in [34]. For the general case, the
solution of (23) is

v±k =

−
(

τk +
sT

k yk
‖sk‖2

)
±

√(
τk +

sT
k yk

‖sk‖2

)2

+4τk

(
‖yk‖2

sT
k yk
− sT

k yk

‖sk‖2

)
2τk

(
‖yk‖2

sT
k yk
− sT

k yk

‖sk‖2

) . (24)
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Now, similar to [10], we consider the following definition

M̄k = max
{

ε,min
{

1
ε
,
‖yk‖2

sT
k yk
−

sT
k yk

‖sk‖2

}}
, (25)

where ε is a small positive constant. The truncated version of (24) is as follows

v±k =
−Bk±

√
B2

k +4Ak

2τkM̄k
, (26)

where Ak = τk

(
‖yk‖2

sT
k yk
− sT

k yk
‖sk‖2

)
and Bk = τk +

sT
k yk
‖sk‖2 . The well definedness of (26) is shown in Lemma 1.

Lemma 1. The roots v±k in (26) of the quadratic equation (23) are real and well defined, provided that
τk > 0 and sT

k yk > 0.

Proof. Based on the Cauchy–Schwarz inequality, it is clear that

(sT
k yk)

2 ≤ ‖sk‖2‖yk‖2. (27)

By dividing the both sides of (27) to sT
k yk > 0 and rewriting (27), we have

‖yk‖2

sT
k yk
−

sT
k yk

‖sk‖2 > 0,

provided that sk and yk are independent vectors. Now, by multiplying by τk > 0, we have

4τk

(
‖yk‖2

sT
k yk
−

sT
k yk

‖sk‖2

)
> 0. (28)

By (28) we have

B2
k +4Ak =

(
τk +

sT
k yk

‖sk‖2

)2

+4τk

(
‖yk‖2

sT
k yk
−

sT
k yk

‖sk‖2

)
> 0,

which shows that v±k in (26) are real. Moreover to indicate the well definednees, we shown that the
denominator (26) has a positive lower bound. Let there exist a constant ε2 > 0, ‖gk‖ ≥ ε2, otherwise
the convergent holds. So from (8), the inequality |τk| ≥C‖gk‖P ≥CεP

2 is holds and from (25), M̄k ≥ ε ,
which leads to 2τkM̄k ≥ 2CεP

2 ε .

To set the new scale parameter, based on (26) and Lemma 1, we can define

vDT
k = max{v+k ,v

−
k }> 0, (29)

which guarantees the positiveness. Since v+k ≥ v−k , therefore from (29), we have vDT
k = v+k . In the third

approach of setting the parameter vk in (14) or (15), the measure function is applied. The main advantage
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of this method is the use of both the trace and the determinant of the search direction matrix. Byrd and
Nocedal [15] proposed the measure function

ϕ(Bk+1) = tr(Bk+1)− ln(det(Bk+1)), (30)

where ln(·) denotes the natural logarithm. Since Bk+1 is a positive definite matrix, it follows that the
measure function (30) is well defined. However, it is quite possible that in some iterations we have
ln(det(Bk+1)) < 0. This is more harmful to minimiz ϕ(Bk+1) in (14). Therefore, here another measure
function given by Dennis and Wolkowicz [20] is applied, which is defined as follows

w(Bk+1) =
tr(Bk+1)

n
(

det(Bk+1)
) 1

n
.

Now, by replacing the trace and the determinant of Bk+1, given in (19) and (22), respectively, we have a
new function, which depends on vk and should be minimized, similar to [5] for SMBFGS. Therefore, the
new optimization problem min

vk>0
w(Bk+1) should be solved. After some manipulations, using the optimal

necessary condition, this problem can be converted to the quadratic algebraic equation

τk(n−2)
(‖yk‖2

sT
k yk
−

sT
k yk

‖sk‖2

)(‖yk‖2

sT
k yk

+ τk
)
v2

k

+(n−1)
((

τk +
sT

k yk

‖sk‖2

)(‖yk‖2

sT
k yk

+ τk
)
−2τk

(‖yk‖2

sT
k yk
−

sT
k yk

‖sk‖2

))
vk−

(
τk +

sT
k yk

‖sk‖2

)
(n−1) = 0, (31)

by solving dw
dvk

= 0. In the special case when τ = c = 0, we have τk = 0 and the solution of (31) is reduced
to vk, proposed by Oren and Spedicato [35] in (13). Similar to (26), the truncated version of the solution
of (31) is as follows

v±k =
−N(BkCk−2Ak)±

√
(BkCkN)2 +4A2

kN2−4AkBkCkN

2(N−1)M̄kCk
, (32)

where, Ck =
‖yk‖2

sT
k yk

+ τk, N = n−1. The well definedness of (32) is shown in Lemma 2.

Lemma 2. The roots v±k in (32) of the quadratic equation (31) are real and well defined, provided that
τk > 0 and sT

k yk > 0.

Proof. Since sT
k yk > 0, then Ak = τk

(‖yk‖2

sT
k yk
− sT

k yk
‖sk‖2

)
6= 0 and Ck =

‖yk‖2

sT
k yk

+ τk 6= 0. Therefore, v±k well

defined. Also, similar to Lemma 1, it can be seen that v±k are real. We define vMF
k as follows:

vMF
k = max{v+k ,v

−
k }= v+k > 0. (33)

By replacing the spectral parameter vk in direction (16) with one of the proposed parameters vT R
k in (21),

vDT
k in (29), or vMF

k in (33), the new SMABFGS update, called NSMA, is obtained, which is summarized
in Algorithm 1.
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Algorithm 1 NSMA algorithm.

Input Choose an initial point x0 ∈ Rn, the constants 0 < δ < σ < 1, τ,C, p ∈ R, and 0 < ε < 1 suffi-
ciently small. Set g0 = ∇ f (x0), d0 =−g0.

Step 1. If ‖gk‖ ≤ ε , then stop.
Step 2. Compute the step size αk > 0, satisfying the Wolfe LS conditions (3)–(4).
Step 3. Compute xk+1 = xk +αkdk, fk+1 = f (xk+1), and gk+1 = ∇ f (xk+1). Then set sk = xk+1− xk and

yk = gk+1−gk, and compute the scaling factors v∗k by one of (21), (29), (33).
Step 4. Compute the search direction by (16) with vk = v∗k .
Step 5. Set k = k+1, and go to Step 1.

Based on selecting the scaled parameter in Step 3 of Algorithm 1, we have three versions of the
NSMA algorithm, shown by TR, DT, and MF methods.

3 Convergence analysis

In this section, the convergence analysis of Algorithm 1 is proved for the uniformly convex and general
functions, separately. First of all, we need to assume some basic assumptions on the objective function
as follows.

Assumption 1. For arbitrary x0 ∈Rn, suppose that S = {x ∈Rn| f (x)≤ f (x0)} is a bounded set, that is,
there exists a constant a > 0 such that

‖x‖ ≤ a, for all x ∈ S. (34)

In a neighborhood N of S, ∇ f (x) is Lipschitz continuous, that is, there exists a constant L > 0 such that

‖∇ f (x)−∇ f (y)‖ ≤ L‖x− y‖, for all x,y ∈ N. (35)

Based on Assumption 1, there exists a positive constant µ such that

‖∇ f (x)‖ ≤ µ, for all x ∈ S. (36)

From inequalities (34) and (36), it can be shown that, there exist a positive constant M̃ such that

| f (x)| ≤ M̃, for all x ∈ S. (37)

Moreover from (35), it results in

‖yk‖ ≤ L‖sk‖. (38)

If a smooth function f is uniformly convex on S, then there exists a constant ζ > 0 such that

yT
k sk ≥ ζ‖sk‖2, for all k ≥ 0. (39)

The boundedness of the parameter vk in (14) or (15) is important. This issue has been proved for the
parameter vOS

k in [2]. Now, we prove it in the following Lemma for the proposed parameter v∗k in (21),
(29), and (33).
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Lemma 3. If f is a uniformly convex function on a neighborhood N of S, then the proposed scaled
parameters vT R

k , vDT
k , and vMF

k are bounded.

Proof. First for vT R
k , since sT

k yk > 0, for τk > 0, we have

‖yk‖2 + τksT
k yk > ‖yk‖2. (40)

Now, using the definition of vT R
k in (21) and the inequality (40), we obtain

|vT R
k |=

∣∣∣∣ sT
k yk

‖yk‖2 + τksT
k yk

∣∣∣∣.
Using the Cauchy–Schwarz inequality, sT

k yk ≤ ‖sk‖‖yk‖, (39), and (40), we have

|vT R
k | ≤

‖sk‖‖yk‖
‖yk‖2 =

‖sk‖
‖yk‖

≤ 1
ζ
, (41)

which shows that the parameter vT R
k is bounded. To show the boundedness of vDT

k , from the mean theorem
and (8), (35), (36), and the Cauchy–Schwarz inequality, we have

|θk|= |2( fk− fk+1)+ sT
k (gk +gk+1)|=

∣∣∣∣(−2∇ f (xz)+∇ f (xk)+∇ f (xk+1)
)T sk

∣∣∣∣,
where, xz = zxk +(1− z)xk+1, for some z ∈ (0,1). Therefore

|θk| ≤ (‖∇ f (xk)−∇ f (xz)‖+‖∇ f (xk+1)−∇ f (xz)‖)‖sk‖
≤ (L(1− z)‖sk‖+Lz‖sk‖)‖sk‖= L‖sk‖2, (42)

where, L is a positive constant. Moreover,

|τk|=
∣∣∣∣ τkθk

‖sk‖2 +C‖gk‖p
∣∣∣∣≤ τ

L‖sk‖2

‖sk‖2 +C‖gk‖P ≤ τL+Cµ
P = L1, (43)

and ∣∣∣∣ sT
k yk

‖sk‖2

∣∣∣∣≤ ‖sk‖‖yk‖
‖sk‖2 =

‖yk‖
‖sk‖

≤ L. (44)

From (43) and (44), the inequality

|Bk|=
∣∣∣∣τk +

sT
k yk

‖sk‖2

∣∣∣∣≤ L1 +L = M1, |Ck|=
∣∣∣∣‖yk‖2

sT
k yk

+ τk

∣∣∣∣≤ L2

ζ
+L1 = M2, (45)

is satisfied. Moreover

|Ak|= |τk|
∣∣∣∣‖yk‖2

sT
k yk
−

sT
k yk

‖sk‖2

∣∣∣∣≤ L1

(
‖yk‖2

ζ‖sk‖2 +
‖sk‖‖yk‖
‖sk‖2

)
≤
(

L2

ζ
+L
)

L1 = M3. (46)
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For the lower bound of the denominator of vDT
k in (29), assuming that there exist a constant ε2 > 0,

‖gk‖ ≥ ε2, otherwise the convergent holds, we have |τk| ≥Cε
p
2 . Now, using (25)

2|τk|M̄k ≥ 2Cε
P
2 ε. (47)

From (45), (46), (47), and (29) we conclude that

|vDT
k |=

∣∣∣∣−Bk +
√

B2
k +4Ak

2τkM̄k

∣∣∣∣≤ (L1 +L)+
√

(L1 +L)2 +4(L2

ζ
+L)L1

2CεP
2 ε

. (48)

On the other hand, for the lower bound of vDT
k , by rationalizing the numerator of vDT

k in (29) and inequal-
ities (45), (46) and (47), we have:∣∣∣∣−Bk +

√
B2

k +4Ak

∣∣∣∣=∣∣∣∣ 4Ak

Bk +
√

B2
k +4Ak

∣∣∣∣= ∣∣∣∣ 4τkM̄k

Bk +
√

B2
k +4Ak

∣∣∣∣
≥ 4CεP

2 ε

(L1 +L)+
√
(L1 +L)2 +4(L2

ζ
+L)L1

= m1.

Also, from M̄k ≤ 1
ε

and (43) it is clear that |2τkM̄k| ≤ 2L1
ε

. Therefore, we have

|vDT
k |=

∣∣∣∣−Bk +
√

B2
k +4Ak

2τkM̄k

∣∣∣∣≥ εm1

2L1
,

which can be considered as a lower bound for vDT
k . Finally, we prove the boundedness of vMF

k . From the
defination of vMF

k in (33) we have

|vMF
k |=

−B1k +
√
(BkCkN)2 +4A2

kN2−4C1k

2(N−1)M̄kCk
, (49)

where, B1k = (n−1)BkCk−2Ak, C1k = (n−1)AkBkCk.
In following, we obtain the lower and upper bound of (49). For the upper bound, we show that the
numerator of (49) has as upper bound and the denumerator of it has lower bound. Since

|B1k|= (n−1)|BkCk−2Ak| ≤ (n−1)(|BkCk|+2|Ak|)≤ (n−1)(M1M2 +2M3) = M4, (50)

and

|C1k|= (n−1)|AkBkCk| ≤ (n−1)M1M2M3 = M5, (51)

therefore ∣∣∣∣−B1k +
√

(BkCkN)2 +4A2
kN2−4C1k

∣∣∣∣≤M4 +
√

M1M2 +4M2
3 +4M5. (52)
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Moreover from (26) and (32), we have

|τk| ≥Cε
P
2 , |Ck| ≥ |τk| ≥Cε

P
2 , |Bk| ≥ |τk| ≥Cε

P
2 , (53)

and

2(N−1)|M̄kCk| ≥ 2(N−1)|M̄k||τk| ≥ 2(N−1)Cε
P
2 ε = M6. (54)

Therefore, from (52) and (54), we have

|vMF
k |=

∣∣∣∣−B1k +
√
(BkCkN)2 +4A2

kN2−4C1k

∣∣∣∣
2(N−1)|M̄kCk|

≤
M4 +

√
M1M2 +4M2

3 +4M5

M6
, (55)

which is an upper bounded for parameter vMF
k . Similar to the upper bound process for the lower bound

of vMF
k for lower bound of vMF

k , by rationalizing the numerator of vMF
k in (33) and inequalities (52), (53)

and (54), we have

∣∣∣∣−B1k +
√

(BkCkN)2 +4A2
kN2−4C1k

∣∣∣∣=
∣∣∣∣4(N−1)M̄kBkCk

∣∣∣∣∣∣∣∣B1k +
√

(BkCkN)2 +4A2
kN2−4C1k

∣∣∣∣
≥ 4(N−1)C2ε2P

2 ε

M4 +
√

M1M2 +4M2
3 +4M5

= m2.

On the other hand, since

M̄k ≤
1
ε
, |Ck| ≤

L2

ζ
+L1,

it is clear that

|τkM̄kCk|<
L1

ε
(
L2

ζ
+L1) = L2.

So, we have

|vMF
k |=

∣∣∣∣−B1k +
√
(BkCkN)2 +4A2

kN2−4C1k

2(N−1)M̄kCk

∣∣∣∣≥ m2

2(N−1)L2
,

which is a lower bound of vMF
k .

By Lemma 3, the scaling parameters vT R
k , vDT

k , and vMF
k are bounded, that is,

vT R
k ,vDT

k ,vMF
k ∈ [m,M], (56)

Lemma 4. If f is uniformly convex on a neighborhood N of S, then directions (2) with vT R
k , vDT

k , and
vMF

k enforce the sufficient descent condition, that is gT
k dk ≤−η‖gk‖2, where η > 0 is constant.
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Proof. Similar to the proof of Lemma 3.6 of [8], it suffices to prove that tr(Bk+1) is bounded above.
From (11), (35), (36), (43) and (44), we have

tr(Bk+1)≤
n−1

vk
+

L2

ζ
+ τ
‖θk‖
‖sk‖2 +C‖gk‖p ≤ n−1

m
+

L2

ζ
+ τL+Cµ

p.

Now, to prove the convergence of the NSMA, we need to use the following result.

Lemma 5. [36] Suppose that Assumption 1 holds. Consider any LS method, where dk satisfies the
sufficient condition (2) and the Wolfe LS conditions, (3)–(4). If

∞

∑
k=0

1
‖dk‖2 = ∞,

then the method converges globally in the sense that

liminf
k→∞

‖gk‖= 0.

Theorem 1. If f is uniformly convex on a neighborhood N of S, then the NSMA algorithm with vT R
k , vDT

k ,
and vMF

k parameters is converged.

Proof. Lemma 4 implies that dk 6= 0 for all k ≥ 0. Hence considering Lemma 5, it suffices to prove that
dk in (16) is bounded above. In this context, from (10), (39), and the Cauchy–Schwarz inequality, we
have

γk ≥
sT

k yk

‖sk‖2 ≥ ζ .

Given K̄ = 1+ ML2

ζ
, the above inequalities together with (10), (12), (36), and (39) lead to

‖Hk+1‖ ≤vk +2vk
‖sk‖‖yk‖

sT
k yk

+

(
1+ vk

‖yk‖2

sT
k yk

)
‖sk‖2

sT
k yk

+
τk

γk

‖zk‖2

sT
k yk

≤M+2M
L
ζ
+

1
ζ

K̄ +
tξ +Cµ p

ζ 2

(
LM+ K̄

)2

= Λ.

Therefore, it follows from (2) and (36) that

0 < ‖dk+1‖ ≤ ‖Hk+1‖‖gk+1‖ ≤ Λµ.

So, the sequence of search direction {dk}k≥0 is bounded above. Now, from Lemma 5, the global conver-
gence is guaranteed.

For the general function, the global convergence of the proposed NSMA method can be achieved as
in [2], in which the vector yk in (10) is replaced by ỹk in (7); for more detail, see [2, 44].
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Figure 1: Dolan–More performance profiles based on CPUT (a) and TNF (b).

4 Numerical experiments

In this section, to investigate the efficiency of the proposed method (NSMA algorithm or Algorithm
1), two numerical experiments are implemented. The first is based on the collection of CUTEr test
problems [23], and the second is based on image processing as an applicable case study. Moreover, to
compare the proposed scale parameters, we consider vT R

k in (21), vDT
k in (29), vMF

k in (33), vOS
k in (13),

and vOL
k in (13) in the NSMA algorithm. For the LS procedure, the Wolfe LS conditions described in

(3)–(4) with the parameters σ = 0.99 and δ = 10−4 as in [2] are considered. All algorithms are stopped if
‖g‖∞ < 10−6 the number of iterations exceed 10000. The parameters of the NSMA algorithm are chosen
as p = 1, τ = 1, and C = 10−3, Moreover, similar to [10], the parameter in (25) is set to 10−8. The codes
were written in MATLAB 9.4.0.8 (R2018).

4.1 CUTEr collection

In this subsection, a set of 80 UO test problems from the CUTEr collection [23] is selected. In Table 1,
the first column is the name of the problems; the second column is the dimension of them, which vary
from 50 to 10000; also, for TR, DT, and MF methods, the third, fourth, and fifth columns, respectively,
represent the CPU time (CPUT), number of iteration (NI), and the total number of evaluations of function
(NF) and gradient (NG), which is defined by TNF=NF+3NG.

To approximately assess the performance of different algorithms, we use the performance profile
introduced by Dolan and More [21] with respect to CPUT and the weighted sum for NF and NG as TNF.

Figure 1 shows the performances of the NSMA algorithm, which contains TR, DT, MF, OL, and OS
methods with respect to CPUT and TNF criteria.

Comparing the methods shown in Figure 1, we can see that the TR and DT methods performed better
than the MF, OL, and OS methods. Moreover, MF and OS methods are competitive, and that all methods
are better than the method OL.
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Table 1: The test problems

Function n T R
T IME/NI/T NF

DT
T IME/NI/T NF

MF
T IME/NI/T NF

ARGLINA 200 1.45E-01/ 2/ 12 1.92E-01/ 2/ 12 2.00E-01/ 2 /12
BDEXP 5000 8.83E-02/ 2/ 12 9.86E-02/ 2 /12 2.86E-01/ 55/ 233
BDQRTIC 5000 5.56E-01/ 162/ 1086 9.94E-01/ 370/ 985 1.24E-01/ 460/ 1012
BIGGSB1 5000 2.05E+00/ 2091/ 9442 2.98E+00/ 2596/ 1245 5.19E+00/ 4235 /12456
BOX 10000 2.54E-01/ 8/ 58 7.00E-01/ 89 /705 3.04E-01/ 15 /106
BROWNAL 200 7.14E-02 /18/ 94 8.03E-02/ 30 /169 5.12E-02/ 4/ 24
BROYDN7D 5000 5.19E+01 /8042/ 32780 5.95E-01/ 9326 /22567 6.90E-01/ 10000/ 31234
BRYBND 5000 2.57E-01/ 45 /239 7.12E-01 /244 /1097 5.74E-01/ 133 /852
CHAINWOO 4000 1.67E-01/ 10000/ 42028 1.64E-02/ 10000/ 39871 8.03E-01 /393/ 1671
COSINE 10000 1.43E-01 /4 /33 1.26E-01/ 4/ 33 2.14E-01 /14 /79
DIXMAANA 3000 5.99E-02 /6/ 31 7.60E-02/ 6 /31 2.93E-01 /107/ 76
DIXMAANB 3000 6.09E-02 /6 /31 5.86E-02/ 6/ 31 3.00E-01/ 121 /55
DIXMAANC 3000 5.28E-02/ 6/ 32 6.97E-02/ 6 /32 2.58E-01 /116/ 65
DIXMAAND 3000 5.79E-02/ 7 /37 6.59E-02 /7/ 37 6.29E-02/ 7/ 37
DIXMAANE 3000 4.04E-01/ 339 /1459 6.62E-01/ 593 /1345 5.64E-01 /369 /1554
DIXMAANF 3000 3.43E-01/ 269/ 1185 4.15E-01 /326 /975 5.83E-01 /414 /1748
DIXMAANG 3000 2.32E-01 /173 /752 2.94E-01/ 247 /987 3.92E-01/ 305/ 1314
DIXMAANH 3000 2.39E-01 /166/ 726 4.45E-01 /349 /1441 5.69E-01/ 461/ 1903
DIXMAANI 3000 8.04E-01/ 685 /3038 9.00E-01 /812/ 1280 2.02E-01/ 1165/ 2567
DIXMAANJ 3000 2.36E-01/ 173/ 761 2.37E-01 /177/744 2.38E-01 /177 /734
DIXMAANK 3000 1.64E-01/ 106/ 458 1.69E-01 /119 /490 2.07E-01 /147 /609
DIXMAANL 3000 1.27E-01/ 76 /338 2.34E-01/ 174 /734 1.91E-01 /127/525
DQDRTIC 5000 1.42E-01/ 37 /189 1.81E-01 /60 /157 1.97E-01/ 63 /250
DQRTIC 5000 3.41E-02/ 0 /4 5.06E-02 /0 /4 4.25E-02/ 0 /4
ENGVAL1 5000 1.09E-01/ 10 /50 1.30E-01/ 10 /50 1.45E-01 /24/ 138
EXTROSNB 1000 7.84E-01/ 1370 /7570 1.98E-01/ 3340/ 20990 7.28E+01 /10000 /40440
FLETCBV2 5000 8.96E-02/ 0 /4 9.32E-02/ 0 /4 1.10E-01 /0 /4
GENROSE 500 7.10E-01/ 1496/ 6636 8.77E-01 /1617 /6655 8.58E-01 /1713/ 7081
LIARWHD 5000 2.77E-01 /101/ 687 5.16E-01/ 198/ 1617 2.42E-01 /97 /323
NONDIA 5000 1.47E-01 /45 /328 5.64E-01 /133 /885 1.96E-01 /72 /447
PENALTY2 200 8.69E-03/ 0 /4 1.21E-02/ 0/ 4 2.09E-02/ 0/ 4
QUARTC 5000 3.40E-02/ 0 /4 4.47E-02/ 0 /4 4.11E-02 /0/ 4
SCHMVETT 5000 1.65E-01/ 9/ 47 1.46E-01/ 9 /47 1.64E-01/ 12/ 64
SPARSQUR 10000 4.52E-01/ 83 /348 4.94E-01 /88/ 250 4.70E-01 /81/ 361
SPMSRTLS 4999 6.71E-01 /278 /1191 1.48E+00 /663 /765 7.93E-01 /339 /1415
SROSENBR 5000 9.00E-02 /26 /183 1.25E-01 /53 /336 9.81E-02/ 26 /153
TOINTGSS 5000 1.03E-01/ 9 /46 1.01E-01/ 9 /46 1.09E-01/ 9/ 46
TRIDIA 5000 2.85E+00/ 2916/ 13110 5.54E+00/ 5244/ 1508 4.25E+00 /3985 /16660
VARDIM 200 7.56E-03 /1 /8 8.78E-03 /1 /8 5.47E-02/ 1/ 8
VAREIGVL 50 2.31E-02/ 24/ 113 3.22E-02/ 23 /110 4.69E-02/ 33 /153
WOODS 4000 6.93E-02/ 20 /94 7.85E-02/ 24/ 109 3.41E-01/ 226 /256
CHNROSNB 50 1.78E-01/ 399/ 1759 2.04E-01 /472 /1995 2.06E-01 /538 /1986
CRAGGLVY 5000 4.36E-01/ 74 /316 3.86E-01/ 65 /282 5.18E-01 /85/ 381
CURLY10 10000 3.00E-01/ 47 /235 3.02E-01/ 46 /232 3.60E-01 /72 /350
CURLY20 10000 6.40E-01/ 105/ 499 5.95E-01/ 84 /384 7.00E-01 /126 /563
CURLY30 10000 1.00E+00/ 164 /774 8.39E-01 /113 /504 1.01E+00/ 156/ 700
DECONVU 63 1.64E-01/ 407/ 2008 2.59E-01 /652 /1567 5.56E-01/ 1038/ 5287
EDENSCH 2000 6.38E-02/ 22/ 112 6.60E-02/ 22 /112 9.19E-02/ 45/ 195
EIGENBLS 2550 1.15E+01/ 7808/ 34772 1.40E-01/ 10000/ 33705 1.39E+01 /10000 /2456
ERRINROS 50 2.99E-01 /541/ 2625 1.50E+00 /3901/ 17692 4.03E+00 /10000/ 41205
FLETCHCR 1000 1.01E-01/ 98/ 508 1.33E-01 /129 /543 1.31E-01 /137 /657
FMINSRF2 5625 7.27E-01/ 369/ 1578 9.55E-01 /378 /1608 1.24E+00/ 568 /2395
FMINSURF 5625 1.17E+00 /550 /2442 1.40E+00 /626/ 2631 2.35E+00/ 1044 /4284
FREUROTH 5000 1.35E-01/ 15/ 99 1.45E-01 /15 /106 1.53E-01/ 28/ 162
GENHUMPS 5000 6.57E-02/ 0 /4 7.60E-02/ 0/ 4 5.98E-02/ 0/ 4
MANCINO 100 2.89E-01 /15 /93 2.90E-01 /15 /93 7.60E+00 /288 /3636
MOREBV 5000 1.02E-01/ 19/ 82 1.32E-01/ 32 /137 1.35E-01/ 37 /160
MSQRTALS 1024 1.05E+01/ 3097/ 13981 1.72E+01 /5397 /15432 1.18E+01 /3632/ 14936
MSQRTBLS 1024 7.59E+00/ 2255 /10108 1.24E+01/ 3763 /12345 7.89E+00/ 2375 /9863
NCB20 5010 4.97E-01 /63 /271 5.40E-01/ 62/ 282 1.43E+00/ 236 /961
NCB20B 5000 4.14E-01/ 43 /201 3.46E-016 40 /175 3.60E-01/ 40 /175
NONCVXU2 5000 4.41E-02 /0 /4 6.23E-02 /0 /4 4.28E-02 /0 /4
NONDQUAR 5000 1.90E+00 /1678/ 7708 3.10E+00 /2309 /4500 1.54E+00 /1401 /5783
POWELLSG 5000 1.96E-01 /147/ 717 2.16E-01 /139/ 624 1.92E-01/ 145/ 686
POWER 10000 1.10E+00 /674 /2965 1.51E+00 /878 /2650 1.89E+00 /1105/ 4483
SINQUAD 5000 2.71E-01 /9 /82 2.90E-01 /14/ 106 3.71E-01/ 28 /241
SPARSINE 5000 3.96E+01 /9870/ 45385 3.87E+01 /10000 /3500 3.88E+01 /10000 /41612
TESTQUAD 5000 1.02E+01/ 9938/ 45454 2.11E+01 /9765/ 3509 2.98E+01/ 9711 /42244
TOINTGOR 50 4.56E-02 /89 /373 4.93E-02/ 95 /398 4.93E-02 /84 /354
TOINTQOR 50 2.90E-02/ 23 /103 2.94E-02 /27 /119 2.65E-02 /24/ 106
TOINTPSP 50 5.53E-02/ 103/ 471 5.23E-02/ 115 /496 6.00E-02/ 118/ 522
TQUARTIC 5000 2.52E-01/61/ 455 2.18E-01/53 /346 1.95E-01/ 45 /273
CHENHARK 5000 1.88E-01/ 98/ 520 9.68E+00 /8566/ 1789 4.22E-01 /284 /1172
CLPLATEB 5041 2.09E+01 /10000 /45272 2.13E+01 /10000 /25600 2.10E+01 /10000 /2678
DRCAV1LQ 4489 1.20E-01 /0/ 4 8.66E-02 /0/ 4 1.46E-01 /0 /4
DRCAV2LQ 4489 1.14E-01 /0/ 4 1.23E-01/ 0 /4 8.34E-02/ 0/ 4
DRCAV3LQ 4489 1.08E-01 /0 /4 1.00E-01/ 0 /4 1.01E-01 /0 /4
FLETCBV3 5000 1.94E-01/ 3 /164 1.80E-01/ 3 /162 1.51E-01 /3/ 160
FLETCHBV 5000 1.92E-01 /3 /164 1.95E-01 /3 /164 1.53E-01/ 3/ 156
GENHUMPS 5000 6.45E-02 /0/ 4 1.02E-02 /0/4 5.84E-02 /0/ 4
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4.2 Image processing

Digital image processing is widely used in the subject literature, for example, in medicine, photography,
security, and so on; see [27, 42]. Noise problem-solving methods have been used in [12]. In image
processing, one of the main tasks is to remove noise. A filter is used to reduce the amount of unwanted
noise in a specific image, and a filter usually operates on a neighborhood of pixels in an image. There
are various types of filters, such as average filter, median filter, and adaptive median filter. Also, types of
noises can be called Gaussian noise, salt and pepper noise, and Poison noise. Yu et al. [41] introduced
the following smooth function for image restoration:

f (x) = ∑
(i, j)∈N

{
∑

(m,n)∈vi, j\N
ϕα(xi j−ξmn)+

1
2 ∑
(m,n)∈vi, j∩N

ϕα(xi j− xmn)

}
, (57)

where N = {(i, j)∈A\ ¯ξi, j 6= ξi, j,ξi, j = smax or smin}, vi, j = {(i, j−1),(i, j+1),(i−1, j),(i+1, j)},
and A = {1,2, . . . ,M}× {1,2, . . . ,N} is a neighborhood of (i, j). Moreover, ξ is the observed noisy
image of X corrupted random by salt and pepper noise, ξ̄ is obtained by applying median filter to the
noisy image ξ , and Smin and Smax, respectively, denote the minimum and maximum of a noisy pixel.
Also, ϕα is an edge-preserving functional, which is chosen as ϕα(t) =

√
t2 +α . We set α = 0.75 in our

tests.
Image quality is measured by the three parameters: CPUT (in second), relative error (in short RElErr) (in
percent), and peak signal-to-noise ratio (in short PSNR) (in dB) defined in [12]. The calculation formulas
are as follows:

PSNR = 10log10
2552

1
M×N ‖X∗−X‖

, RELErr = 100× ‖X
∗−X‖
‖X‖

.

An algorithm with large PSNR and small CPUT and RELErr is called efficient and chosen as the best
algorithm. Three images named Bird, Lena, and Goldhill, used in [12], are chosen. Then we removed
the noise by using salt and pepper noise with 35% degree in 256×256 dimensions. Applying TR, DT,
and MF methods, we solve (57).

Table 2 shows the summary of these numerical results. Especially, this table demonstrates the su-
periority of TR, DT, and MF methods over OL and OS, and the best result of each line was shown in
bold.

Table 2: Image restoration outputs: CPUT, RELErr, and PSNR.

Method
Critria Figures OL OS TR DT MF

Bird 10.1242 10.1194 9.8818 9.8348 9.7222
CPUT Lena 16.5207 16.2428 16.2234 16.2228 16.2225

Goldhill 16.1247 16.3261 16.3424 16.0481 16.3905
Bird 0.2695 0.2524 0.2521 0.2522 0.2520

RELErr Lena 2.0798 2.0554 2.0536 2.0550 2.0533
Goldhill 2.0739 2.0383 2.0377 2.0272 2.0274

Bird 38.1461 38.3696 38.3741 38.3741 38.3740
PSNR Lena 30.4665 30.6674 30.7751 30.7701 30.7752

Goldhill 29.1855 29.5653 29.5736 29.5735 29.4734
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Table 3: Images corrupted by 35% salt and pepper noise in the first line; the restored images via OL in
the second line; the restored images via OS in the third line; the restored images via TR, DT and MF in
the fourth, fifth, and sixth lines.

noise

OL

OS

TR

DT

MF
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Table 3 shows the graphical results of Bird, Lena, and Goldhill images, for the OS, OL, TR, DT, and
MF methods. Regarding the time criterion, we see that DT and MF methods have better performance
than OL, OS, and TR methods. Compared to RELErr, the DT and MF methods perform better and
compared to PSNR, the TR, DT, and MF methods perform better than OL and OS methods.

5 Conclusion

Due to the importance of effectively setting the spectral parameter in the SMBFGS algorithms and the key
role of this parameter in the quality of the algorithms, we introduced new parameters in the augmented
version of these methods. Assuming the idea of clustering, the eigenvalues about one point were applied
to introduce the spectral parameter with three approaches based on the trace, the determinant, and the
measure functions of the direction matrix. The condition of sufficient descent for the convex function
and global convergence for the general function were proved. Our algorithm was efficient not only in the
CUTEr collection but also it was able to remove noise.
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